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This paper is concerned with a delay logarithmic population model. Under proper conditions, we employ a novel proof to establish
a criterion on guaranteeing the existence and global exponential stability of positive almost periodic solutions for the model.
Moreover, an example and its numerical simulation are given to illustrate the main results.

1. Introduction

In the classic study of population dynamics, the dynamical
analysis of logarithmic population model has attracted a
great attention of many mathematicians and biologists in
recent years. It is well known that the environment is varying
periodically with time in many realistic systems and the
parameters of the system usually change along with time
periodically. So it is reasonable to study periodic solution for
logarithmic population model and its modified model with
periodic coeflicients. There exist some results on the existence
of periodic solution for the model; see, for example, [1-8].
Compared with periodic effects, almost periodic effects are
more frequent (see [9-12]). Hence, it is of great importance to
consider the dynamical behaviors of logarithmic population
model with almost periodically varying coeflicient. Recently,
by utilizing the continuation theorem and contraction map-
ping principle, some criteria have been established to prove
the existence and local exponential stability of positive almost
periodic solutions for delay logarithmic population model
and its generalized modification in the literature; see [13-
17]. However, to the best of our knowledge, there is no
literature considering the existence and global exponential
stability of positive almost periodic solutions problem for
delay logarithmic population model.

Inspired by the above discussions, in this paper, we con-
sider the following delay logarithmic population equation:

) =x@)[yt)—a, ®)nx ) —a,t)Inx(t-1@1)],

t>0,
)

which was proposed by Gopalsamy [18] to describe a model of
single species population. Here x is the size of population, y(t)
is the growth rate while there are plenty of resources and there
is no intraspecific competition for these resources, g, (t) is the
measure of the competition among the individuals, a, () is
added to generalize the model with the same interpretation
of competitive effects, and 7(t) is a maturation delay in the
sense that competition involves adults who have matured by
an age of 7(t) units.

A primary purpose of this paper is to consider the
existence and global exponential stability of positive almost
periodic solutions of (1). A new approach will be developed
to obtain a delay-independent condition for the global expo-
nential stability of the positive almost periodic solutions of

(D).
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For convenience, we introduce some notations. Given a
bounded continuous function g defined on R, let g* and g~
be defined as

g =supg(t), g =infg(t). @)

teR teR

It will be assumed that y, a;, a,,7 : R — [0,+00) are
continuous almost periodic functions. Let R, denote the
nonnegative real number space, let C = C([-7,0],R)
be the continuous functions space equipped with the usual
supremun norm || - ||, and let C, = C([-7", 0], R,).

Due to the biological interpretation of model (1), only
positive solutions are meaningful and therefore admissible.
Thus we just consider admissible initial conditions

x(t)=¢(t), te[-t7,0], peC,. (3)

Let x(t) = ¢’®; then (1) and admissible initial conditions

(3) can be rewritten in the form

YO =y -a®)yt)-a®)yt-1@t), t=0, (4

y(t)y=¢(t), te[-17,0], ¢€C. (5)
Obviously, model (1) has a unique positive almost periodic
solution which is globally exponentially stable if and only if
system (4) has a unique almost periodic solution which is
globally exponentially stable.

2. Preliminary Results

In this section, some lemmas and definitions will be pre-
sented, which are of great significance in proving our main
results in Section 3.

Definition 1 (see [9, 10]). Let u(t) : R — R be continuous
in t. u(t) is said to be almost periodic on R if, for any € > 0,
the set T(u,e) = {0 : |lu(t + ) —u(t)| < e forallt € R} is
relatively dense; that is, for any & > 0, it is possible to find a
real number [ = I(¢) > 0, and for any interval with length
I(¢), there exists a number § = (¢) in this interval such that
|u(t +6) —u(t)| < & forallt € R.

From the theory of almost periodic functions in [9, 10], it
follows that, for any € > 0, it is possible to find a real number
I = I(e) > 0, and for any interval with length I(¢), there exists
anumber § = 6(¢) in this interval such that

ly(t+6)—y(t)| <e, |a1 t+98)—q (t)| <€, ©
|a2(t+6)—a2(t)|<e, lt@+8)—-1@®) <e,
forallt € R.

Lemma 2. Suppose that a; — a, > 0 and y(t) is a solution
of (4) with initial conditions satisfying (5) and the following
condition:

y++1
;_

p@f < ——. )
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Then, for t in the interval of existence

.
y +1
. 8
a; —a; ®

ly @] <

Proof. Assume, by way of contradiction, that (8) does not
hold. Then suppose that there exists t* > 0 such that

+ +
. y +1 y +1
= POl

— vt e [-1',t").
a, —4a, a,

)

Calculating the upper left-hand derivative of | y(t)|, it follows
from (4) and (9) that

0< D™ (ly ("))
<y () —a () [y () +a, () [y (¢ -7 (7))]

<y —a |y (") +a; |y ()|

(10)
.
- y +1
:y+_(a1 _a; al—_a;
<0,
which is contradictory and shows that (8) holds. O

Remark 3. By virtue of the boundedness of this solution,
from the theory of functional differential equations in [19], it
follows that the solution of system (4) with initial conditions
(7) can be defined on [0, +00).

Lemma4. Leta, —a, > 0 hold. Assume that y(t) is a solution
of (4) with initial condition ¢ such that (7) is satisfied. Then
for any € > 0, there exists | = I(e) > 0, such that every interval
[, & + [] contains at least one number § for which there exists
N > 0 which satisfies

|y(t+8)—y(t)|£e,

Proof. Define a continuous function I'() by setting

Vt > N. (1)

T(u)=p—-a; +aie", uelo1]. (12)
Then, we have
I0)=-a, +a, <0, (13)

which implies that there exist two constants # > 0 and A €
(0, 1] such that

TAM)=A-a + a;re)\T+ < -7 (14)

For t € (00, —7"], we add the definition of y(t) with y(t) =
y(-1"). Set

€@,t)= —[a,t+8)—a, (t)] y(t+9)
—[a,t+8)-a, )] y(t+6-7(t+9))
—a, M) [yt+8-1(t+8)-y(t+d6—1(t))]

+yp(E+8)—y(t), teR.

(15)
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By Lemma 2, the solution y(t) is bounded and

+

y +1
1| < , VteR, 16
yOl< (16)

which implies that the right side of (4) is also bounded, and
y'(t) is a bounded function on [-7", +00). Thus, in view of
the fact that y(t) = y(—1") for t € (—co, —7"], we obtain that
y(t) is uniformly continuous on R. From (6), for any € > 0,
there exists I = I(e) > 0, such that every interval [a, & + ],
a € R, contains a § for which

le (8,8)] < %ne, vVt € R. 17)

Recall that 7 is the same as the one mentioned in (14).
Let N, > max{0, —6}. For t € R, denote

u()=y(t+06)-y(). (18)
Then, for all t > N, we get

du;it) =p(t+8)—ay (t+0)y(t+0)

—a,t+8)yt+d-1(+9)) (19)

~[y@®-a ) yt)-ay () yt -7 (1)]
= -—agQu@)—a,Out-7()+e(d,t).

Calculating the left upper derivative of e*|u(t)| yields
D™ (" u (®)])
< AeM |u(t)]
v fma () lu )] + |—a, O ut -t () + e G}
<(A=a (1) " ()] +a, (1) e [u(t -7 (1))

+eMe(s,1)].
(20)

Let

U= sup {"u@)l}. (21)

—co<sst

It is obvious that e |u(t)| < U(¢) and that U(¢) is nondecreas-

lng'Now, we distinguish two cases to finish the proof since

eMlu(t)| < U(t) and e™|u(t)| = U(t) are both possible.

Case 1. Consider the following:
U@)>eMu() Vi=N,. (22)

We claim that

U (t) =U (N,)is a constant V¢ > N,. (23)

Assume, by way of contradiction, that (23) does not hold.
Then, there exists t; > N, such that U(t;) > U(N,). Since

Mu) <U(Np) V<N, (24)
there must exist 3 € (N, ¢;) such that

M lu(p)=U(t)=U(p). (25)

which contradicts (22). This contradiction implies that (23)
holds. It follows that there exists t, > N, such that

@) <e™U@) =eMU(N) <e Vezt,  (26)

Case 2. Thereisat; > N, that U(t;) = Mo lu(ty)l. Then, in
view of (14) and (20), we get

0< D (M |u())|

t=t;
< (A-ay (£)) € Ju (t5)]

+ay () DM |y (15— (1)

+eM e (8,1))]
<(A-a () +a () ™) U () + ¢ [e (8,15

+ At

- Aty
S(/\—a1+aze 0

* 1
) U (ty) + =nee
2
<—nU (t5) +nee™,
(27)
which yields that
M lu()|=U ) <ee™, |u(t])<e — (28)

For any t > t;, with the same approach as that in deriving of
(28), we can show

Mu@) <ee™, |Ju®)<e (29)

ifU(t) = eMu(t)].
On the other hand, if U(t) > e"|u(t)| and t > £, we can
choose ty < t; <t such that

Ul(t;) = M |u(25)], U(s)>e™u(s) Vse (t5.1],

(30)
which, together with (29), yields
lu(ts)| <e. (31)

With a similar argument as that in the proof of Case 1, we can
show that

U(s) =U (t;) is a constant Vs € (t5,£],  (32)
which implies that
()] < e MU 1) = e MU (t;) = u(t3)] e ™7 <e. (33)

In summary, there must exist N > max{t,, Ny, t,} such that
|u(t)] < € holds for all + > N. The proof of Lemma 4 is now
complete. O



3. Main Results

In this section, we establish sufficient conditions on the
existence and global exponential stability of almost periodic
solutions of (4).

Theorem 5. Under the assumptions of Lemma 4, (4) has at
least one almost periodic solution y*(t).

Proof. Let v(t) be a solution of (4) with initial conditions
satisfying the assumptions in Lemma 4. We also add the
definition of v(t) with v(t) = v(—7") for all t € (o0, -7"].
Set
ek,t)y= —[a, (t+t) —a, ®)]v(t+1t)

—la(t+t ) —a, )] v(t+t, —T(t+1))

—a, W) [v(t+t—T(t+8))—v(E+t—T1(1))]

+y(t+t)—y@), teR,

(34)

where {t} is any sequence of real numbers. By Lemma 4, the
solution v(t) is bounded and

+

1
ol < L2, vieR, (35)
1 2

which implies that the right side of (4) is also bounded, and
v'(t) is a bounded function on [-7*, +00). Thus, in view of
the fact that v(t) = v(-t") for t € (—00, —7"], we obtain that
v(t) is uniformly continuous on R. Then, from the almost
periodicity of y, a;, a,, and 7, we can select a sequence
{t,} — +oo such that

1 1

sty O =t (ert)-a0]< 5

1 1

la, (t+1) —a, (B)] < -, lt(t+t)-7()| < -,
k k (36)

1

kt| < —

elk,t| < A

Vt.

Since {v(t + tk)},:ff is uniformly bounded and equiuniformly
continuous, by Arzala-Ascoli lemma and diagonal selection
principle, we can choose a subsequence {tkj} of {t;}, such

that v(t + tkj) (for convenience, we still denote by v(t + t;))

uniformly converges to a continuous function y*(t) on any
compact set of R, and

. ME
o)< T,

a —a,

vVt e R. (37)

Journal of Applied Mathematics

In the sequel, we prove that y* () is a solution of (4). In
fact, for any t > 0 and At € R, from (36), we have

Y (t+ A -y (1)

= lim [v(t+At+t)—v(t+t)]

k— +oo

= im [y ) e ) v (1)
—a () v(u+t -7 (p+ )} dp
[ e - v
—a(Wv(p+te—7(w)+e(kpw)tdu

= dim [ - ()

k— +00 Jt

= lim
k — +00

—a,(Wv(p+t-7(W)du

t+At
+ lim j e(k,p)du
t

k— +oo

[ - " )

—a,(W)y" (u-7(W)}du,

= lim
k— +o0o

(38)

where t + At > 0. Consequently, (38) implies that

d * * *
S Ol=yO-a Oy O-a®y t-1®). (9
Therefore, y*(t) is a solution of (4).

Then, we prove that y”(¢) is an almost periodic solution
of (4). From Lemma 4, for any € > 0, there exists [ = I(g) > 0,
such that every interval [a, « +I] contains at least one number
d for which there exists N > 0 which satisfies

lv(t+68)—v(t)<e  Vt>N. (40)

Then, for any fixed s € R, we can find a sufficient large
positive integer N; > N such that for any k > N,

s+t >N, [v(s+t+8)—v(s+t )| <e. (41
Let k — +00; we obtain

ly" (s+8)—y"(s)| <& (42)
which implies that y* (¢) is an almost periodic solution of (4).
This completes the proof. O

The following result implies that (4) has a unique almost
periodic solution.

Theorem 6. Suppose that all conditions in Theorem 5 are satis-
fied. Then (4) has an almost periodic solution which is globally
exponentially stable.
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Proof. Theorem 5 tells us that (4) has at least one almost
periodic solution. Let y*(¢) be one of them. We show that
y*(t) is globally exponentially stable. Let y(¢) be an arbitrary
solution of (4) and define z(t) = y(t) — y*(t), where t €
[-77, 4+00). Then

Zt)=-a,O)z({t)-a,O)z(t-1(t), t=0. (43)
We consider the Lyapunov functional
V() = |z (t)] ™. (44)

Calculating the upper left derivative of V (¢) along the solution
z(t) of (43), we have

D (V (1)
<Az ()M + e (=a, (1) |2 (1) + a, (1) |2 (t = T (1))])

<(A-a))lz@®) e +ale™ |z(t—1(t)

(45)
We claim that
V(t) =z (t) "
H-y @) +1
<t€f[r_lfzfo]|y() y' )]+ (46)
=K Vt>0.

Contrarily, there must exist t, > 0 such that
V(t,) =K, V() <K Vte[-1',t,). (47)
Together with (45) and (47), we obtain
0<D (V(t.))

<(A-ap)lz(t,)]

. (48)
+ a;eh |z (t, -1 (t*))| M)
< (A —a; + a;e’w)K.
Thus,
0<A—a; +ae, (49)
which contradicts with (14). Hence, (46) holds. It follows that
lz ()| < Ke™ vt >o. (50)
This completes the proof of Theorem 5. O

Corollary 7. Suppose that all conditions in Theorem 5 are
satisfied. Then (1) has a unique positive almost periodic solution
which is globally exponentially stable.

Proof. From Theorems 5 and 6, we know that (4) has a
unique almost periodic solution y*(¢), which is globally
exponentially stable. Consider that x(¢f) and y(t) are the
solutions of (1) and (4) with the relation x(¢) = ¢’® > 0 and
the relevant initial conditions ¢ and ¢ € C satisfy ¢ = % €
C,; it is natural to get that (1) has a unique positive almost
periodic solution x*(¢), which is also globally exponentially
stable.

x(t)

1H

0

0 5 10 15 20 25 30
FIGURE I: Numerical solution x(¢) of system (51) for initial value
o(t) = 0.1,2,6.

4. An Example

In this section, we present an example to check the validity of
our results obtained in the previous sections.

Example 1. Consider the following delay logarithmic popula-
tion equation:

x (t) = x () [2 |sin 3t| — (3 + cos \/gt) In x (t)
(51)
- <1 + % sin \/§t>lnx(t - cosz\/gt)] .

Obviously, y(t) = 2|sin 3t|, a,(t) = 3 + cos V3t, ay(t) =1+
(1/2) sin V2t, 7(t) = cos®\/5¢. It is easy to get

a, —a, =2-15=05>0, (52)

which implies that (51) satisfies the assumptions of
Corollary 7. Therefore, (51) has a unique positive almost
periodic solution x* (¢), which is globally exponentially stable
with the exponential convergent rate A = 0.15. The numerical
simulation in Figure 1 strongly supports the conclusion.

Remark 8. Since [14, 15] only obtain the existence and local
exponential stability of positive almost periodic solutions for
delay logarithmic population model (1), one can observe that
all the results in this literature and the references therein
can not be applicable to prove the existence and global
exponential stability of positive almost periodic solution for
(51). This implies that the results of this paper are essentially
new.
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