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We establish a Fejér type inequality for harmonically convex functions. Our results are the generalizations of some known results.
Moreover, some properties of the mappings in connection with Hermite-Hadamard and Fejér type inequalities for harmonically
convex functions are also considered.

1. Introduction

Let 𝑓 : 𝐼 ⊆ R → R be a convex function and 𝑎, 𝑏 ∈ 𝐼 with
𝑎 < 𝑏; then

𝑓(
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 ≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
. (1)

Inequality (1) is known in the literature as the Hermite-
Hadamard inequality. Fejér [1] established the following
weighted generalization of inequality (1).

Theorem 1. If 𝑓 : [𝑎, 𝑏] → R is a convex function, then the
following inequality holds:

𝑓(
𝑎 + 𝑏

2
)∫
𝑏

𝑎

𝑝 (𝑥) 𝑑𝑥 ≤ ∫
𝑏

𝑎

𝑓 (𝑥) 𝑝 (𝑥) 𝑑𝑥

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
∫
𝑏

𝑎

𝑝 (𝑥) 𝑑𝑥,

(2)

where 𝑝 : [𝑎, 𝑏] → R is positive, integrable, and symmetric
with respect to 𝑥 = (𝑎 + 𝑏)/2.

Some generalizations, refinements, variations, and
improvements of inequalities (1) and (2) were investigated by
Wu [2], Chen and Liu [3], Sarikaya and Ogunmez [4], and
Xiao et al. [5], respectively.

In [6], Dragomir proposed an interesting Hermite-
Hadamard type inequality which refines the left hand side of
inequality of (1) as follows.

Theorem 2 (see [6]). Let 𝑓 be a convex function defined on
[𝑎, 𝑏]. Then 𝐻 is convex, increasing on [0, 1], and for all 𝑡 ∈
[0, 1], one has

𝑓(
𝑎 + 𝑏

2
) = 𝐻 (0) ≤ 𝐻 (𝑡) ≤ 𝐻 (1) =

1

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥,

(3)

where

𝐻(𝑡) =
1

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓(𝑡𝑥 + (1 − 𝑡)
𝑎 + 𝑏

2
) 𝑑𝑥. (4)

An analogous result for convex functions which refines
the right hand side of inequality (1) was obtained by Yang and
Hong in [7] as follows.

Theorem 3 (see [7]). Let 𝑓 be a convex function defined on
[𝑎, 𝑏]. Then 𝐹 is convex, increasing on [0, 1], and for all 𝑡 ∈
[0, 1], one has

1

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐹 (0) ≤ 𝐹 (𝑡) ≤ 𝐹 (1) =
𝑓 (𝑎) + 𝑓 (𝑏)

2
,

(5)
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where

𝐹 (𝑡) =
1

2 (𝑏 − 𝑎)
∫
𝑏

𝑎

[𝑓((
1 + 𝑡

2
) 𝑎 + (

1 − 𝑡

2
) 𝑥)

+𝑓((
1 + 𝑡

2
) 𝑏 + (

1 − 𝑡

2
) 𝑥)] 𝑑𝑥.

(6)

Yang and Tseng in [8] established the following Fejér type
inequalities, which is the generalization of inequalities (3) and
(5) as well as the refinement of the Fejér inequality (2).

Theorem 4 (see [8]). If 𝑓 is convex on [𝑎, 𝑏], 𝑝 : [𝑎, 𝑏] → R

is positive, integrable, and symmetric about 𝑥 = (𝑎+𝑏)/2.Then
𝑃 and 𝑄 are convex, increasing on [0, 1], and for all 𝑡 ∈ [0, 1],
one has

𝑓(
𝑎 + 𝑏

2
)∫
𝑏

𝑎

𝑝 (𝑥) 𝑑𝑥 = 𝑃 (0) ≤ 𝑃 (𝑡) ≤ 𝑃 (1)

= ∫
𝑏

𝑎

𝑓 (𝑥) 𝑝 (𝑥) 𝑑𝑥

= 𝑄 (0) ≤ 𝑄 (𝑡) ≤ 𝑄 (1)

=
𝑓 (𝑎) + 𝑓 (𝑏)

2
∫
𝑏

𝑎

𝑝 (𝑥) 𝑑𝑥,

(7)

where

𝑃 (𝑡) = ∫
𝑏

𝑎

𝑓(𝑡𝑥 + (1 − 𝑡)
𝑎 + 𝑏

2
)𝑝 (𝑥) 𝑑𝑥, (8)

𝑄 (𝑡) =
1

2
∫
𝑏

𝑎

[𝑓((
1 + 𝑡

2
) 𝑎 + (

1 − 𝑡

2
) 𝑥)𝑝(

𝑥 + 𝑎

2
)

+𝑓((
1 + 𝑡

2
) 𝑏 + (

1 − 𝑡

2
) 𝑥)𝑝(

𝑥 + 𝑏

2
)] 𝑑𝑥.

(9)

In [9, 10], İşcan and Wu gave the definition of harmonic
convexity as follows.

Definition 5. Let 𝐼 ⊆ R \ {0} be a real interval. A function
𝑓 : 𝐼 → R is said to be harmonically convex if

𝑓(
𝑥𝑦

𝑡𝑥 + (1 − 𝑡) 𝑦
) ≤ 𝑡𝑓 (𝑦) + (1 − 𝑡) 𝑓 (𝑥) , (10)

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1]. If the inequality in (10) is
reversed, then 𝑓 is said to be harmonically concave.

The following Hermite-Hadamard inequality for har-
monically convex functions holds true.

Theorem 6 (see [9]). Let 𝑓 : 𝐼 ⊆ R \ {0} → R be a
harmonically convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If
𝑓 ∈ 𝐿(𝑎, 𝑏), then one has

𝑓(
2𝑎𝑏

𝑎 + 𝑏
) ≤

𝑎𝑏

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑑𝑥 ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2
. (11)

In [10], İşcan and Wu established the following Hermite-
Hadamard inequalities for harmonically convex functions via
the Riemann-Liouville fractional integral.

Theorem 7 (see [10]). Let 𝑓 : 𝐼 ⊆ (0,∞) → R be a function
such that 𝑓 ∈ 𝐿(𝑎, 𝑏), where 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 is
a harmonically convex function on [𝑎, 𝑏], then the following
inequalities for fractional integrals hold:

𝑓(
2𝑎𝑏

𝑎 + 𝑏
) ≤

Γ (𝛼 + 1)

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

[𝐽𝛼
1/𝑎−

(𝑓 ∘ 𝑔) (
1

𝑏
)

+𝐽𝛼
1/𝑏+

(𝑓 ∘ 𝑔) (
1

𝑎
)]

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
,

(12)

where 𝛼 > 0 and 𝑔(𝑥) = 1/𝑥.

TheRiemann-Liouville fractional integrals 𝐽𝛼
𝑎+
𝑓 and 𝐽𝛼

𝑏−
𝑓

of order 𝛼 > 0 with 𝑎 ≥ 0 are defined by

𝐽𝛼
𝑎+
𝑓 (𝑥) =

1

Γ (𝛼)
∫
𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1𝑓 (𝑡) 𝑑𝑡, 𝑥 > 𝑎,

𝐽𝛼
𝑏−
𝑓 (𝑥) =

1

Γ (𝛼)
∫
𝑏

𝑥

(𝑡 − 𝑥)
𝛼−1𝑓 (𝑡) 𝑑𝑡, 𝑥 < 𝑏,

(13)

where Γ(𝛼) is the Gamma function defined by Γ (𝛼) =

∫
∞

0
𝑒−𝑡𝑡𝛼−1𝑑𝑡.
In this paper, we establish a Fejér type inequality for

harmonically convex functions; our main result includes, as
special cases, the inequalities given by Theorems 6 and 7.
Moreover, we investigate some properties of the mappings in
connection toHermite-Hadamard and Fejér type inequalities
for harmonically convex functions.

2. Fejér Type Inequality for Harmonically
Convex Functions

The following Fejér inequality for harmonically convex func-
tions holds true.

Theorem 8. Let 𝑓 : 𝐼 ⊆ R \ {0} → R be a harmonically
convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 ∈ 𝐿 (𝑎, 𝑏), then
one has

𝑓(
2𝑎𝑏

𝑎 + 𝑏
)∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥 ≤ ∫

𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑝 (𝑥) 𝑑𝑥

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥,

(14)

where 𝑝 : [𝑎, 𝑏] → R is nonnegative and integrable and
satisfies

𝑝(
𝑎𝑏

𝑥
) = 𝑝(

𝑎𝑏

𝑎 + 𝑏 − 𝑥
) . (15)
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Proof. Since𝑓 is a harmonically convex function on [𝑎, 𝑏], we
have, for all 𝑥, 𝑦 ∈ [𝑎, 𝑏],

𝑓(
2𝑥𝑦

𝑥 + 𝑦
) ≤

𝑓 (𝑦) + 𝑓 (𝑥)

2
. (16)

Choosing 𝑥 = 𝑎𝑏/(𝑡𝑏 + (1 − 𝑡)𝑎) and 𝑦 = 𝑎𝑏/(𝑡𝑎 + (1 − 𝑡)𝑏),
we have

𝑓(
2𝑎𝑏

𝑎 + 𝑏
)

≤
𝑓 (𝑎𝑏/ (𝑡𝑏 + (1 − 𝑡) 𝑎)) + 𝑓 (𝑎𝑏/ (𝑡𝑎 + (1 − 𝑡) 𝑏))

2

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
.

(17)

Since 𝑝 is nonnegative and satisfies the condition of (15), we
obtain

𝑓(
2𝑎𝑏

𝑎 + 𝑏
)𝑝(

𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
)

≤ (𝑓(
𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
)𝑝(

𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
)

+𝑓(
𝑎𝑏

𝑡𝑎 + (1 − 𝑡) 𝑏
)𝑝(

𝑎𝑏

𝑡𝑎 + (1 − 𝑡) 𝑏
)) × 2−1

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
𝑝(

𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
) .

(18)

Integrating both sides of the above inequalities with respect
to 𝑡 over [0, 1], we obtain

𝑓(
2𝑎𝑏

𝑎 + 𝑏
)∫
1

0

𝑝(
𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
) 𝑑𝑡

≤ ∫
1

0

((𝑓(
𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
)𝑝(

𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
)

+𝑓(
𝑎𝑏

𝑡𝑎 + (1 − 𝑡) 𝑏
)𝑝(

𝑎𝑏

𝑡𝑎 + (1 − 𝑡) 𝑏
)) × 2−1)𝑑𝑡

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
∫
1

0

𝑝(
𝑎𝑏

𝑡𝑏 + (1 − 𝑡) 𝑎
) 𝑑𝑡.

(19)

The proof of Theorem 8 is completed.

Remark 9. Putting 𝑝(𝑥) ≡ 1 in Theorem 8, we obtain
inequality (11).

Remark 10. Choosing

𝑝 (𝑥) =
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

{(
1

𝑥
−
1

𝑏
)
𝛼−1

+ (
1

𝑎
−
1

𝑥
)
𝛼−1

} ,

(𝛼 > 0, 0 < 𝑎 < 𝑏) ,

(20)

inTheorem 8, it is easy to observe that 𝑝 (𝑎𝑏/𝑥) = 𝑝 (𝑎𝑏/(𝑎 +
𝑏 − 𝑥)).

Since

∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥

= ∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

∫
𝑏

𝑎

1

𝑥2
{(

1

𝑥
−
1

𝑏
)
𝛼−1

+ (
1

𝑎
−
1

𝑥
)
𝛼−1

}𝑑𝑥

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

∫
𝑏

𝑎

1

𝑥2
{(

1

𝑥
−
1

𝑏
)
𝛼−1

+ (
1

𝑎
−
1

𝑥
)
𝛼−1

}𝑑𝑥

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

∫
1/𝑎

1/𝑏

{(𝑢 −
1

𝑏
)
𝛼−1

+ (
1

𝑎
− 𝑢)
𝛼−1

}𝑑𝑢

= 1,

∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑝 (𝑥) 𝑑𝑥

= ∫
𝑏

𝑎

𝑓 (𝑥) 𝑝 (𝑥)

𝑥2
𝑑𝑥

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

× ∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
{(

1

𝑥
−
1

𝑏
)
𝛼−1

+ (
1

𝑎
−
1

𝑥
)
𝛼−1

}𝑑𝑥

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

× ∫
1/𝑎

1/𝑏

𝑓(
1

𝑢
){(𝑢 −

1

𝑏
)
𝛼−1

+ (
1

𝑎
− 𝑢)
𝛼−1

}𝑑𝑢

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

{∫
1/𝑎

1/𝑏

𝑓(
1

𝑢
) (𝑢 −

1

𝑏
)
𝛼−1

𝑑𝑢

+∫
1/𝑎

1/𝑏

𝑓(
1

𝑢
) (

1

𝑎
− 𝑢)
𝛼−1

𝑑𝑢}

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

{∫
1/𝑎

1/𝑏

𝑓 ∘ 𝑔 (𝑢) (𝑢 −
1

𝑏
)
𝛼−1

𝑑𝑢

+∫
1/𝑎

1/𝑏

𝑓 ∘ 𝑔 (𝑢) (
1

𝑎
− 𝑢)
𝛼−1

𝑑𝑢}

=
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

× {Γ (𝛼) [𝐽
𝛼

1/𝑎−
(𝑓 ∘ 𝑔) (

1

𝑏
) + 𝐽𝛼
1/𝑏+

(𝑓 ∘ 𝑔) (
1

𝑎
)]}

=
Γ (𝛼 + 1)

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

× [𝐽𝛼
1/𝑎−

(𝑓 ∘ 𝑔) (
1

𝑏
) + 𝐽𝛼
1/𝑏+

(𝑓 ∘ 𝑔) (
1

𝑎
)] ,

(21)
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where 𝑔(𝑥) = 1/𝑥, which implies that inequality (14) can be
transformed to inequality (12) under an appropriate selection
of 𝑝 (𝑥).

Remark 11. InTheorem 8, taking 𝑝 (𝑎𝑏/𝑥) = 𝜔 (𝑥), where 0 <
𝑎 < 𝑏, 𝜔 (𝑥) is nonnegative, integrable, and symmetric with
respect to 𝑥 = (𝑎 + 𝑏)/2. Then inequality (14) becomes

𝑓(
2𝑎𝑏

𝑎 + 𝑏
)∫
𝑏

𝑎

𝜔 (𝑥) 𝑑𝑥 ≤ ∫
𝑏

𝑎

𝑓(
𝑎𝑏

𝑥
)𝜔 (𝑥) 𝑑𝑥

≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
∫
𝑏

𝑎

𝜔 (𝑥) 𝑑𝑥.

(22)

3. Some Mappings in connection with
Hermite-Hadamard and Fejér Inequalities
for Harmonically Convex Functions

Lemma 12. Let𝑓 : 𝐼 ⊆ R\{0} → R be a harmonically convex
function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏, and let

ℎ (𝑡) =
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑡
) +

1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑡
) , (23)

𝑡 ∈ [0, 𝑏 − 𝑎]. Then ℎ is convex, increasing on [0, 𝑏 − 𝑎], and for
all 𝑡 ∈ [0, 𝑏 − 𝑎],

𝑓(
2𝑎𝑏

𝑎 + 𝑏
) ≤ ℎ (𝑡) ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2
. (24)

Proof. Firstly, for 𝑥, 𝑦 ∈ [0, 𝑏 − 𝑎], we have

ℎ (𝑡𝑥 + (1 − 𝑡) 𝑦)

=
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − [𝑡𝑥 + (1 − 𝑡) 𝑦]
)

+
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + [𝑡𝑥 + (1 − 𝑡) 𝑦]
)

=
1

2
𝑓(

2𝑎𝑏

𝑡 (𝑎 + 𝑏 − 𝑥) + (1 − 𝑡) (𝑎 + 𝑏 − 𝑦)
)

+
1

2
𝑓(

2𝑎𝑏

𝑡 (𝑎 + 𝑏 + 𝑥) + (1 − 𝑡) (𝑎 + 𝑏 + 𝑦)
)

≤
𝑡

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑥
) +

1 − 𝑡

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑦
)

+
𝑡

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑥
) +

1 − 𝑡

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑦
)

= 𝑡ℎ (𝑥) + (1 − 𝑡) ℎ (𝑦) ,

(25)

and hence ℎ is convex on [0, 𝑏 − 𝑎].

Next, if 𝑡 ∈ [0, 𝑏 − 𝑎], it follows from the harmonic
convexity of 𝑓 that

ℎ (𝑡) =
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑡
) +

1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑡
)

≥ 𝑓(
2𝑎𝑏

(1/2) (𝑎 + 𝑏 − 𝑡) + (1/2) (𝑎 + 𝑏 + 𝑡)
)

= 𝑓(
2𝑎𝑏

𝑎 + 𝑏
) .

(26)

It is easy to observe that

ℎ (𝑡) =
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑡
) +

1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑡
)

=
1

2
𝑓(2𝑎𝑏 × (

𝑏 − 𝑎 + 𝑡

𝑏 − 𝑎
𝑎 +

𝑏 − 𝑎 − 𝑡

𝑏 − 𝑎
𝑏)
−1

)

+
1

2
𝑓(2𝑎𝑏 × (

𝑏 − 𝑎 − 𝑡

𝑏 − 𝑎
𝑎 +

𝑏 − 𝑎 + 𝑡

𝑏 − 𝑎
𝑏)
−1

)

≤
1

2

(𝑏 − 𝑎) + 𝑡

2 (𝑏 − 𝑎)
𝑓 (𝑏) +

1

2

(𝑏 − 𝑎) − 𝑡

2 (𝑏 − 𝑎)
𝑓 (𝑎)

+
1

2

(𝑏 − 𝑎) + 𝑡

2 (𝑏 − 𝑎)
𝑓 (𝑎) +

1

2

(𝑏 − 𝑎) − 𝑡

2 (𝑏 − 𝑎)
𝑓 (𝑏)

=
𝑓 (𝑎) + 𝑓 (𝑏)

2
.

(27)

Thus inequality (24) holds.
Finally, for 0 < 𝑡1 < 𝑡2 ≤ 𝑏−𝑎, since ℎ is convex, it follows

from (24) that
ℎ (𝑡2) − ℎ (𝑡1)

𝑡2 − 𝑡1
≥
ℎ (𝑡1) − ℎ (0)

𝑡1 − 0

=
ℎ (𝑡1) − 𝑓 (2𝑎𝑏/ (𝑎 + 𝑏))

𝑡1
≥ 0,

(28)

and hence, ℎ(𝑡2) ≥ ℎ(𝑡1), which means that ℎ is increasing on
[0, 𝑏 − 𝑎]. This completes the proof of Lemma 12.

Theorem 13. Let 𝑓 : 𝐼 ⊆ R \ {0} → R be a harmonically
convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 ∈ 𝐿(𝑎, 𝑏) and𝐻
is defined by

𝐻(𝑡) =
1

2 (𝑏 − 𝑎)
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

𝑎 + 𝑏 − 𝑡𝑥
)𝑑𝑥

+
1

2 (𝑏 − 𝑎)
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

𝑎 + 𝑏 + 𝑡𝑥
)𝑑𝑥

=
1

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓(
𝑎𝑏

(1 − 𝑡) ((𝑎 + 𝑏) /2) + 𝑡𝑥
) 𝑑𝑥,

(29)

then𝐻 is convex and increasing on [0, 1], and

𝑓(
2𝑎𝑏

𝑎 + 𝑏
) = 𝐻 (0) ≤ 𝐻 (𝑡) ≤ 𝐻 (1)

=
𝑎𝑏

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑑𝑥.

(30)
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Proof. It follows from Lemma 12 that

ℎ (𝑡) =
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑡
) +

1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑡
) (31)

is convex and increasing on [0, 𝑏 − 𝑎]. Hence 𝐻(𝑡) is convex
and increasing on [0, 1]. Further, inequality (30) can be
deduced from (24). Theorem 13 is proved.

Theorem 14. Let 𝑓 : 𝐼 ⊆ R \ {0} → R be a harmonically
convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 ∈ 𝐿(𝑎, 𝑏) and 𝐺
is defined by

𝐺 (𝑡) =
1

2 (𝑏 − 𝑎)
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

2𝑎 + (1 − 𝑡) 𝑥
) 𝑑𝑥

+
1

2 (𝑏 − 𝑎)
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

2𝑏 − (1 − 𝑡) 𝑥
) 𝑑𝑥

=
1

2 (𝑏 − 𝑎)
∫
𝑏

𝑎

𝑓(
2𝑎𝑏

(1 + 𝑡) 𝑎 + (1 − 𝑡) 𝑥
) 𝑑𝑥

+
1

2 (𝑏 − 𝑎)
∫
𝑏

𝑎

𝑓(
2𝑎𝑏

(1 + 𝑡) 𝑏 + (1 − 𝑡) 𝑥
) 𝑑𝑥,

(32)

then 𝐺 is convex and increasing on [0, 1], and

𝑎𝑏

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑑𝑥 = 𝐺 (0) ≤ 𝐺 (𝑡) ≤ 𝐺 (1)

=
𝑓 (𝑎) + 𝑓 (𝑏)

2
.

(33)

Proof. We note that if 𝑓 is convex and 𝑔 is linear, then the
composition 𝑓 ∘ 𝑔 is convex. It follows from Lemma 12 that

ℎ (𝑡) =
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑡
) +

1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑡
) , (34)

and 𝑘(𝑡) = 𝑏 − 𝑎 − (1 − 𝑡)𝑥 are increasing on [0, 𝑏 − 𝑎] and
[0, 1], respectively. Hence,

ℎ (𝑘 (𝑡)) = 𝑓(
2𝑎𝑏

2𝑎 + (1 − 𝑡) 𝑥
) + 𝑓(

2𝑎𝑏

2𝑏 − (1 − 𝑡) 𝑥
) (35)

is convex and increasing on [0, 1]. We infer that 𝐺 is convex
and increasing on [0, 1]. Furthermore, inequality (33) follows
directly from (24).The proof ofTheorem 14 is completed.

Theorem 15. Let 𝑓 : 𝐼 ⊆ R \ {0} → R be a harmonically
convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 ∈ 𝐿 (𝑎, 𝑏) and 𝑃
is defined by

𝑃 (𝑡) =
1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

𝑎 + 𝑏 − 𝑡𝑥
)𝑝(

2𝑎𝑏

𝑏 + 𝑎 − 𝑥
)𝑑𝑥

+
1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

𝑎 + 𝑏 + 𝑡𝑥
)𝑝(

2𝑎𝑏

𝑏 + 𝑎 + 𝑥
)𝑑𝑥

=
1

𝑎𝑏
∫
𝑏

𝑎

𝑓(
𝑎𝑏

((𝑎 + 𝑏) /2) (1 − 𝑡) + 𝑡𝑥
)𝑝(

𝑎𝑏

𝑥
)𝑑𝑥,

(36)

where 𝑝 : [𝑎, 𝑏] → R is nonnegative and integrable and
satisfies the condition of (15), then 𝑃 is convex and increasing
on [0, 1], and

𝑓(
2𝑎𝑏

𝑎 + 𝑏
)∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥 = 𝑃 (0) ≤ 𝑃 (𝑡) ≤ 𝑃 (1)

= ∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑝 (𝑥) 𝑑𝑥.

(37)

Proof. From Lemma 12 we obtain that

ℎ (𝑡) =
1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 − 𝑡
) +

1

2
𝑓(

2𝑎𝑏

𝑎 + 𝑏 + 𝑡
) (38)

is convex and increasing on [0, 𝑏−𝑎]. Since 𝑝 (2𝑎𝑏/(𝑎+𝑏+𝑥))
is nonnegative and satisfies 𝑝 (2𝑎𝑏/(𝑎 + 𝑏 + 𝑥)) = 𝑝 (2𝑎𝑏/(𝑎 +
𝑏 − 𝑥)), it follows that 𝑃 (𝑡) is convex and increasing on [0, 1],
while inequality (37) can be deduced from (24). Theorem 15
is proved.

Theorem 16. Let 𝑓 : 𝐼 ⊆ R \ {0} → R be a harmonically
convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 ∈ 𝐿 (𝑎, 𝑏) and 𝑄
is defined by

𝑄 (𝑡) =
1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

2𝑎 + (1 − 𝑡) 𝑥
)𝑝(

2𝑎𝑏

2𝑎 + 𝑥
)𝑑𝑥

+
1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑓(
2𝑎𝑏

2𝑏 − (1 − 𝑡) 𝑥
)𝑝(

2𝑎𝑏

2𝑏 − 𝑥
)𝑑𝑥

=
1

2𝑎𝑏
∫
𝑏

𝑎

𝑓(
2𝑎𝑏

(1 + 𝑡) 𝑎 + (1 − 𝑡) 𝑥
)𝑝(

2𝑎𝑏

𝑥 + 𝑎
)𝑑𝑥

+
1

2𝑎𝑏
∫
𝑏

𝑎

𝑓(
2𝑎𝑏

(1 + 𝑡) 𝑏 + (1 − 𝑡) 𝑥
)𝑝(

2𝑎𝑏

𝑥 + 𝑏
)𝑑𝑥,

(39)

where 𝑝 : [𝑎, 𝑏] → R is nonnegative and integrable and
satisfies the condition of (15), then 𝑄 is convex and increasing
on [0, 1], and

∫
𝑏

𝑎

𝑓 (𝑥)

𝑥2
𝑝 (𝑥) 𝑑𝑥 = 𝑄 (0) ≤ 𝑄 (𝑡) ≤ 𝑄 (1)

=
𝑓 (𝑎) + 𝑓 (𝑏)

2
∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥.

(40)

Proof. By using the same method as in the proof of Theo-
rem 14, we obtain from Lemma 12 that

ℎ (𝑘 (𝑡)) = 𝑓(
2𝑎𝑏

2𝑎 + (1 − 𝑡) 𝑥
) + 𝑓(

2𝑎𝑏

2𝑏 − (1 − 𝑡) 𝑥
) (41)

is convex and increasing on [0, 1]. Since 𝑝 (2𝑎𝑏/(2𝑎 + 𝑥)) is
nonnegative and satisfies 𝑝 (2𝑎𝑏/(2𝑎+𝑥)) = 𝑝 (2𝑎𝑏/(2𝑏−𝑥)),
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we deduce that 𝑄 (𝑡) is convex and increasing on [0, 1].
Inequality (40) follows from (24) and the identity

1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑝(
2𝑎𝑏

2𝑎 + 𝑥
)𝑑𝑥 =

1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑝(
2𝑎𝑏

2𝑏 − 𝑥
)𝑑𝑥

=
1

2
{

1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑝(
2𝑎𝑏

2𝑎 + 𝑥
)𝑑𝑥

+
1

2𝑎𝑏
∫
𝑏−𝑎

0

𝑝(
2𝑎𝑏

2𝑏 − 𝑥
)𝑑𝑥}

=
1

2
∫
𝑏

𝑎

𝑝 (𝑥)

𝑥2
𝑑𝑥.

(42)

This completes the proof of Theorem 16.

Remark 17. If we put

𝑝 (𝑥) =
𝛼

2
(

𝑎𝑏

𝑏 − 𝑎
)
𝛼

{(
1

𝑥
−
1

𝑏
)
𝛼−1

+ (
1

𝑎
−
1

𝑥
)
𝛼−1

} ,

(43)

in inequalities (37) and (40), respectively, we obtain the
refined versions of inequality (12).
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