
Research Article
A Globally Convergent Matrix-Free Method for Constrained
Equations and Its Linear Convergence Rate

Min Sun1 and Jing Liu2

1 School of Mathematics and Statistics, Zaozhuang University, Shandong 277160, China
2 School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018, China

Correspondence should be addressed to Min Sun; ziyouxiaodou@163.com

Received 24 January 2014; Accepted 8 May 2014; Published 19 May 2014

Academic Editor: Vladimir Danilov

Copyright © 2014 M. Sun and J. Liu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Amatrix-freemethod for constrained equations is proposed, which is a combination of thewell-knownPRP (Polak-Ribière-Polyak)
conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also
completelymatrix-free, and consequently, it can be applied to solve large-scale constrained equations.We obtain global convergence
of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient
methods for solving such problem, the newmethod possesses linear convergence rate under standard conditions, and a relax factor
𝛾 is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

1. Introduction

Let 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 be a continuous nonlinearmapping and𝐶 a

nonempty closed convex set of 𝑅𝑛. In this paper, we consider
the problem of finding 𝑥 ∈ 𝐶 such that

𝐹 (𝑥) = 0. (1)

Nonlinear constrained equations (1), denoted by CES (𝐹, 𝐶),
arise in various applications, for instance, ballistic trajectory
computation and vibration systems [1], the power flow
equations [2], chemical equilibrium systems [3], and so forth.

In recent years, many numerical methods have been
proposed to find a solution of nonsmooth CES (𝐹, 𝐶), which
include the trust region methods [4, 5], the Levenberg-
Marquardt method [6], and the projection methods [7–9].
Compared with the trust region method and the Levenberg-
Marquardt method, the projection method is more efficient
for solving large-scale CES (𝐹, 𝐶). Noting this, Wang et al.
[7] proposed a projection method for solving CES (𝐹, 𝐶),
which possesses global convergence property without the
differentiability. A drawback of this method is that it needs
to solve a linear equation inexactly at each iteration, and its
variants [8, 10] also have this drawback.

It is well-known that the spectral gradient method and
the conjugate gradient method are two efficient methods
for solving large-scale unconstrained optimization problems
due to their simplicity and low storage. Recently, La Cruz
and Raydan [11] successfully applied the famous spectral
gradient method to solve unconstrained equations by using
some merit function. Then, Zhang and Zhou [12] presented
a spectral gradient projection method (SGP) for solving
unconstrained monotone equations, which does not utilize
any merit function. Later, the SGP was extended by Yu
et al. [9] to solve monotone constrained equations. How-
ever, the study of conjugate gradient methods for large-
scale (un)constrained equations is relatively rare. Cheng
[13] proposed a PRP type method (PRPT) for systems of
monotone equations, which is a combination of the well-
known PRP method and the hyperplane projection method,
and the numerical results in [13] show that the PRPTmethod
performs better than the SGP method in [12].

Different from the methods in [7, 8, 10], the methods in
[9, 11–13] do not need to solve a linearized equation at each
iteration; however, the latter do not investigate the convergent
rate, and evenwe do not knowwhether they possess the linear
convergence rate. In this paper, motivated by the projection
methods in [7, 8, 10] and the gradient methods in [9, 12,
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13], we propose a matrix-free method for solving nonlinear
constrained equations, which can be viewed as a combination
of the well-known PRP conjugate gradient method and the
famous hyperplane projectionmethod, and it possesses linear
convergence rate under standard conditions. The remainder
of this paper is organized as follows. Section 2 describes the
newmethod and presents its global convergence analysis.The
linear convergence rate of the new method is established in
Section 3.Numerical results are reported in Section 4. Finally,
some final remarks are included in Section 5.

2. Algorithm and Convergence Analysis

Let 𝐶∗ denote the solution set of CES (𝐹, 𝐶). Throughout this
paper, we assume that 𝐶∗ is nonempty and 𝐹(⋅) is monotone;
that is,

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑅
𝑛

, (2)

which implies that the solution set𝐶∗ is closed.Then let𝑃
𝐶
(𝑥)

denote the orthogonal projection of a point 𝑥 ∈ 𝑅
𝑛 onto the

convex set𝐶, which has the following nonexpansive property:
𝑃𝐶 (𝑥) − 𝑃

𝐶
(𝑦)

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝑅
𝑛

. (3)

Now, we describe the matrix-free method for nonlinear
constrained equations.

Algorithm 1. Consider the following.

Step 0. Given an arbitrary initial point 𝑥
0
∈ 𝐶, the parameters

0 < 𝜌 < 1, 0 < 𝜎 < 𝑟 ≤ 1, 0 < 𝛾 < 2, and 0 < 𝛽min < 𝛽max.
Given the initial steplength 𝛽

0
= 1 and set 𝑘 := 0.

Step 1. If 𝐹(𝑥
𝑘
) = 0, then stop; otherwise go to Step 2.

Step 2. Compute 𝑑
𝑘
by

𝑑
𝑘

= {
−𝐹 (𝑥

𝑘
) , if 𝑘 = 0,

−𝐹 (𝑥
𝑘
) + 𝛽
𝑘
𝑑
𝑘−1

− 𝜃
𝑘
(𝐹 (𝑥
𝑘
) − 𝐹 (𝑥

𝑘−1
)) , if 𝑘 ≥ 1,

(4)

where

𝛽
PRP
𝑘

=
⟨𝐹 (𝑥
𝑘
) , 𝐹 (𝑥

𝑘
) − 𝐹 (𝑥

𝑘−1
)⟩

𝐹(𝑥𝑘−1)

2

,

𝜃
𝑘
=

𝐹(𝑥
𝑘
)
⊤

𝑑
𝑘−1

𝐹(𝑥𝑘−1)

2
,

∀𝑘 ≥ 1.

(5)

If ‖𝑑
𝑘
‖ > ‖𝐹(𝑥

𝑘
)‖/𝑟, set 𝑑

𝑘
= −𝐹(𝑥

𝑘
).

Step 3. Find the trial point 𝑦
𝑘
= 𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
, where 𝛼

𝑘
= 𝛽
𝑘
𝜌
𝑚𝑘

with𝑚
𝑘
being the smallest nonnegative integer𝑚 such that

− ⟨𝐹 (𝑦
𝑘
) , 𝑑
𝑘
⟩ ≥ 𝜎

𝑑𝑘

2

. (6)

Step 4. Compute

𝑥
𝑘+1

= 𝑃
𝐶
[𝑥
𝑘
− 𝛾𝜉
𝑘
𝐹 (𝑦
𝑘
)] , (7)

where

𝜉
𝑘
=

⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩

𝐹(𝑦𝑘)

2

. (8)

Choose an initial steplength 𝛽
𝑘+1

such that 𝛽
𝑘+1

∈ [𝛽min,
𝛽max]. Set 𝑘 := 𝑘 + 1 and go to Step 1.

Remark 2. Obviously 𝑑
𝑘
, defined by (4), is motivated by [14],

and it is not difficult to deduce that 𝑑
𝑘
satisfies

𝐹(𝑥
𝑘
)
⊤

𝑑
𝑘
= −

𝐹(𝑥𝑘)

2

. (9)

Therefore, by Cauchy-Schwartz inequality, we have ‖𝑑
𝑘
‖ ≥

‖𝐹(𝑥
𝑘
)‖. This together with Step 2 of Algorithm 1 implies

𝐹 (𝑥
𝑘
)
 ≤

𝑑𝑘
 ≤

𝐹 (𝑥
𝑘
)


𝑟
. (10)

Remark 3. In (7), we attach a relax factor 𝛾 ∈ (0, 2) (better
when close to 2) to 𝐹(𝑦

𝑘
) based on numerical experiences.

Remark 4. Line search (6) is different from that of [12, 13],
which is well-defined by the following Lemma.

Lemma 5. For all 𝑘 ≥ 0, there exists a nonnegative number
𝑚
𝑘
satisfying (6).

Proof. In fact, if 𝑑
𝑘
= 0, then from (10), we have ‖𝐹(𝑥

𝑘
)‖ =

0, which means that Algorithm 1 terminates with 𝑥
𝑘
being a

solution of CES (𝐹, 𝐶). Now, we consider 𝑑
𝑘

̸= 0 for all 𝑘. For
the sake of contradiction, we suppose that there exists 𝑘

0
≥ 0

such that (6) is not satisfied for any nonnegative integer 𝑚;
that is,

−⟨𝐹 (𝑥
𝑘0

+ 𝛽
𝑘0
𝜌
𝑚

𝑑
𝑘0
) , 𝑑
𝑘0
⟩ < 𝜎


𝑑
𝑘0



2

, ∀𝑚 ≥ 1. (11)

Letting𝑚 → ∞ and using the continuity of 𝐹(⋅) yield

−⟨𝐹 (𝑥
𝑘0
) , 𝑑
𝑘0
⟩ ≤ 𝜎


𝑑
𝑘0



2

. (12)

On the other hand, by (10), we obtain

−⟨𝐹 (𝑥
𝑘0
) , 𝑑
𝑘0
⟩ =


𝐹 (𝑥
𝑘0
)


2

≥ 𝑟

𝑑
𝑘0



2

, (13)

which together with (12) means that 𝜎 ≥ 𝑟; however, this
contradicts the fact that 𝑟 > 𝜎 > 0. Therefore the assertion
holds. This completes the proof.

Lemma6. Suppose that𝐹(⋅) is monotone and let {𝑥
𝑘
} and {𝑦

𝑘
}

be the sequences generated by Algorithm 1; then {𝑥
𝑘
} and {𝑦

𝑘
}

are both bounded; furthermore, it holds that

lim
𝑘→∞

𝛼
𝑘

𝑑𝑘

2

= 0. (14)
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Proof. From (6), we have

⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩ ≥ 𝜎𝛼

𝑘

𝑑𝑘

2

> 0. (15)

For any 𝑥
∗

∈ 𝐶
∗, from (3), the nonexpansiveness of the

projection operator, it holds that

𝑥𝑘+1 − 𝑥
∗
2

=
𝑃𝐶[𝑥𝑘 − 𝛾𝜉

𝑘
𝐹(𝑦
𝑘
)] − 𝑥

∗
2

≤
𝑥𝑘 − 𝛾𝜉

𝑘
𝐹(𝑦
𝑘
) − 𝑥
∗
2

=
𝑥𝑘 − 𝑥

∗
2

− 2𝛾𝜉
𝑘
⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑥
∗

⟩ + 𝛾
2

𝜉
2

𝑘

𝐹(𝑦𝑘)

2

.

(16)

By the monotonicity of mapping 𝐹(⋅), we have

⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑥
∗

⟩

= ⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩ + ⟨𝐹 (𝑦

𝑘
) , 𝑦
𝑘
− 𝑥
∗

⟩

≥ ⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩ + ⟨𝐹 (𝑥

∗

) , 𝑦
𝑘
− 𝑥
∗

⟩

= ⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩ .

(17)

Substituting (15) and (17) into (16), we have

𝑥𝑘+1 − 𝑥
∗
2

≤
𝑥𝑘 − 𝑥

∗
2

− 2𝛾𝜉
𝑘
⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩ + 𝛾
2

𝜉
2

𝑘

𝐹 (𝑦
𝑘
)

2

=
𝑥𝑘 − 𝑥

∗
2

− 𝛾 (2 − 𝛾)
⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩
2

𝐹 (𝑦
𝑘
)

2

≤
𝑥𝑘 − 𝑥

∗
2

− 𝛾 (2 − 𝛾)
𝜎
2

𝛼
2

𝑘

𝑑𝑘

4

𝐹 (𝑦
𝑘
)

2

,

(18)

which together with 𝛾 ∈ (0, 2) indicates that, for all 𝑘,
𝑥𝑘+1 − 𝑥

∗ ≤
𝑥𝑘 − 𝑥

∗ , (19)

which shows that the sequence {𝑥
𝑘
} is bounded. By (10),

it holds that {𝑑
𝑘
} is bounded and so is {𝑦

𝑘
}. Then, by the

continuity of 𝐹(⋅), there exists a constant 𝑀 > 0 such that
‖𝐹(𝑦
𝑘
)‖ ≤ 𝑀 for all 𝑘. Therefore it follows from (18) that

𝛾 (2 − 𝛾)
𝜎
2

𝑀2

∞

∑

𝑘=0

𝛼
2

𝑘

𝑑𝑘

4

≤

∞

∑

𝑘=0

(
𝑥𝑘 − 𝑥

∗
2

−
𝑥𝑘+1 − 𝑥

∗
2

) < ∞,

(20)

which implies that the assertion (14) holds. The proof is
completed.

Now, we prove the global convergence of Algorithm 1.

Theorem 7. Suppose that the conditions in Lemma 6 hold.
Then the sequence {𝑥

𝑘
} generated by Algorithm 1 globally

converges to a solution of CES (𝐹, 𝐶).

Proof. We consider the following two possible cases.

Case 1. Consider lim inf
𝑘→∞

‖𝑑
𝑘
‖ = 0. Thus, by (10), we have

lim inf
𝑘→∞

‖𝐹(𝑥
𝑘
)‖ = 0. This together with the continuity of

𝐹(⋅) implies that the sequence {𝑥
𝑘
} has some accumulation

point 𝑥 such that 𝐹(𝑥) = 0. From (19), it holds that {‖𝑥
𝑘
−

𝑥‖} converges, and since 𝑥 is an accumulation point of {𝑥
𝑘
},

it must hold that {𝑥
𝑘
} converges to 𝑥.

Case 2. Consider lim inf
𝑘→∞

‖𝑑
𝑘
‖ > 0. Then by (14), it

follows that lim
𝑘→∞

𝛼
𝑘
= 0. Therefore, from the line search

(6), for sufficiently large 𝑘, we have

−⟨𝐹 (𝑥
𝑘
+ 𝛽
𝑘
𝜌
𝑚𝑘−1𝑑
𝑘
) , 𝑑
𝑘
⟩ < 𝜎

𝑑𝑘

2

. (21)

Since {𝑥
𝑘
}, {𝑑
𝑘
} are both bounded, we can choose a sequence

and letting 𝑘 → ∞ in (21), we can obtain

−⟨𝐹 (𝑥) , 𝑑⟩ ≤ 𝜎

𝑑


2

, (22)

where 𝑥 and 𝑑 are limit points of corresponding subse-
quences. On the other hand, by (10), we obtain

− ⟨𝐹 (𝑥
𝑘
) , 𝑑
𝑘
⟩ =

𝐹(𝑥𝑘)

2

≥ 𝑟
𝑑𝑘


2

. (23)

Letting 𝑘 → ∞ in the above inequality, we obtain

−⟨𝐹 (𝑥) , 𝑑⟩ ≥ 𝑟

𝑑


2

. (24)

Thus, by (22) and (24), we get 𝑟 ≤ 𝜎, and this contradicts the
fact that 𝑟 > 𝜎 > 0. Therefore, lim inf

𝑘→∞
‖𝑑
𝑘
‖ > 0 does not

hold. This completes the proof.

3. Convergence Rate

By Theorem 7, we know that the sequence {𝑥
𝑘
} generated by

Algorithm 1 converges to a solution of CES (𝐹, 𝐶). In what
follows, we always assume that 𝑥

𝑘
→ 𝑥

∗ as 𝑘 → ∞,
where 𝑥

∗

∈ 𝐶
∗. To establish the local convergence rate of

the sequence generated byAlgorithm 1, we need the following
assumption.

Assumption 8. For 𝑥∗ ∈ 𝐶
∗, there exist three positive con-

stants 𝛿, 𝑐, and 𝐿 such that

𝑐 dist (𝑥, 𝐶∗) ≤ ‖𝐹 (𝑥)‖ , ∀𝑥 ∈ 𝑁 (𝑥
∗

, 𝛿) , (25)
𝐹 (𝑥) − 𝐹 (𝑦)

 ≤ 𝐿
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝑁 (𝑥
∗

, 𝛿) , (26)

where dist(𝑥, 𝐶∗) denotes the distance from 𝑥 to the solution
set 𝐶∗, and

𝑁(𝑥
∗

, 𝛿) = {𝑥 ∈ 𝑅
𝑛

|
𝑥 − 𝑥

∗ ≤ 𝛿} . (27)

Now, we analyze the convergence rate of the sequence {𝑥
𝑘
}

generated by Algorithm 1 under conditions (25) and (26).
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Lemma 9. If the conditions in Assumption 8 hold, then the
sequence {𝛼

𝑘
} generated by line search (6) has a positive bound

from below.

Proof. We only need to prove that for sufficiently large 𝑘, 𝛼
𝑘

has a positive bound from below. If 𝛼
𝑘

≤ 𝛽
𝑘
, then by the

construction of 𝛼
𝑘
, we have

−⟨𝐹 (𝑥
𝑘
+ 𝛽
𝑘
𝛼
𝑘
𝜌
−1

𝑑
𝑘
) , 𝑑
𝑘
⟩ < 𝜎

𝑑𝑘

2

. (28)

In addition, by (10), we have

− ⟨𝐹 (𝑥
𝑘
) , 𝑑
𝑘
⟩ =

𝐹(𝑥𝑘)

2

≥ 𝑟
𝑑𝑘


2

. (29)

Then, by the above two inequalities, we can obtain

⟨𝐹 (𝑥
𝑘
+ 𝛽
𝑘
𝛼
𝑘
𝜌
−1

𝑑
𝑘
) − 𝐹 (𝑥

𝑘
) , 𝑑
𝑘
⟩ ≥ (𝑟 − 𝜎)

𝑑𝑘

2

. (30)

On the other hand, from (26), we have

⟨𝐹 (𝑥
𝑘
+ 𝛽
𝑘
𝛼
𝑘
𝜌
−1

𝑑
𝑘
) − 𝐹 (𝑥

𝑘
) , 𝑑
𝑘
⟩ ≤

𝐿𝛽
𝑘
𝛼
𝑘

𝜌

𝑑𝑘

2

. (31)

By (30) and (31), for 𝑘 sufficiently large we obtain

𝛼
𝑘
≥

𝜌 (𝑟 − 𝜎)

𝐿𝛽
𝑘

≥
𝜌 (𝑟 − 𝜎)

𝐿𝛽max
. (32)

Therefore, there is a positive constant 𝛼, such that
𝛼
𝑘
≥ 𝛼, (33)

for all 𝑘. The proof is completed.

Theorem 10. In addition to the assumptions in Theorem 7, if
conditions (25) and (26) hold, then the sequence {dist(𝑥

𝑘
, 𝐶
∗

)}

Q-linearly converges to 0; hence the whole sequence {𝑥
𝑘
}

converges to 𝑥
∗ R-linearly.

Proof. Let 𝑧
𝑘
∈ 𝐶
∗ be the closest solution to 𝑥

𝑘
.That is, ‖𝑥

𝑘
−

𝑧
𝑘
‖ = dist(𝑥

𝑘
, 𝐶
∗

). By (18), we have

𝑥𝑘+1 − 𝑧
𝑘


2

≤
𝑥𝑘 − 𝑧

𝑘


2

− 𝛾 (2 − 𝛾)
⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩
2

𝐹 (𝑦
𝑘
)

2

.

(34)

For sufficiently large 𝑘, it follows from (10) and (26) that
𝐹 (𝑦
𝑘
)
 =

𝐹 (𝑦
𝑘
) − 𝐹 (𝑧

𝑘
)


≤ 𝐿
𝑦𝑘 − 𝑧

𝑘



≤ 𝐿 (
𝑥𝑘 − 𝑦

𝑘

 +
𝑥𝑘 − 𝑧

𝑘

)

≤ 𝐿 (𝛽max
𝑑𝑘

 +
𝑥𝑘 − 𝑧

𝑘

)

≤ 𝐿(
𝛽max

𝐹 (𝑥
𝑘
)


𝑟
+
𝑥𝑘 − 𝑧

𝑘


)

= 𝐿(
𝛽max

𝐹 (𝑥
𝑘
) − 𝐹 (𝑧

𝑘
)


𝑟
+
𝑥𝑘 − 𝑧

𝑘


)

≤ 𝐿 (
𝛽max𝐿

𝑟
+ 1)

𝑥𝑘 − 𝑧
𝑘



= 𝐿 (
𝛽max𝐿

𝑟
+ 1) dist (𝑥𝑘, 𝐶

∗

) .

(35)

Thus, from (6), (10), (25), and (33), for sufficiently large 𝑘, it
holds that

⟨𝐹 (𝑦
𝑘
) , 𝑥
𝑘
− 𝑦
𝑘
⟩ ≥ 𝜎𝛼

𝑘

𝑑𝑘

2

≥ 𝜎𝛼
𝑑𝑘


2

≥ 𝜎𝛼
𝐹(𝑥𝑘)


2

≥ 𝜎𝛼𝑐
2dist2 (𝑥

𝑘
, 𝐶
∗

) .

(36)

Substituting the above two inequalities into (34), we have

dist2 (𝑥
𝑘+1

, 𝐶
∗

) ≤
𝑥𝑘+1 − 𝑧

𝑘


2

≤ (1 −
𝜎𝛼𝑟
2

𝑐
2

𝛾 (2 − 𝛾)

𝐿2(𝛽max𝐿 + 𝑟)
2
) dist2 (𝑥

𝑘
, 𝐶
∗

) ,

(37)

which implies that the sequence {dist(𝑥
𝑘
, 𝐶
∗

)}𝑄-linearly
converges to 0.Therefore, the whole sequence {𝑥

𝑘
} converges

to 𝑥
∗

𝑅-linearly. The proof is completed.

4. Numerical Results

In this section, we test Algorithm 1 and compared it with the
projectionmethod in [7] and the spectral gradient projection
method in [9]. We give the following two simple problems to
test the efficiency of the three methods.

Problem 11. The mapping 𝐹(⋅) is taken as 𝐹(𝑥) = (𝑓
1
(𝑥),

𝑓
2
(𝑥), . . . , 𝑓

𝑛
(𝑥))
⊤, where

𝑓
𝑖
(𝑥) = 𝑒

𝑥𝑖 − 1, for 𝑖 = 1, 2, . . . , 𝑛 (38)

and 𝐶 = 𝑅
𝑛

+
. Obviously, this problem has a unique solution

𝑥
∗

= (0, 0, . . . , 0)
⊤.

Problem 12. The mapping 𝐹(⋅) is taken as 𝐹(𝑥) = (𝑓
1
(𝑥),

𝑓
2
(𝑥), . . . , 𝑓

𝑛
(𝑥))
⊤, where

𝑓
𝑖
(𝑥) = 𝑥

𝑖
− sin 𝑥𝑖 − 1

 , for 𝑖 = 1, 2, . . . , 𝑛 (39)

and 𝐶 = {𝑥 ∈ 𝑅
𝑛

+
| ∑
𝑛

𝑖=1
𝑥
𝑖
≤ 𝑛, 𝑥

𝑖
≥ −1, 𝑖 = 1, 2, . . . , 𝑛}.

Obviously, Problem 12 is nonsmooth at 𝑥 = (1, 1, . . . , 1)
⊤.

The codes are written inMablab7.0 and run on a personal
computer with 2.0GHZCPUprocessor.The parameters used
in Algorithm 1 are set as 𝜌 = 0.6, 𝑟 = 10

−4, 𝜎 = 5 × 10
−5, and

𝛾 = 1.65. The initial steplength in Step 2 of Algorithm 1 is set
to be the spectral coefficient

𝛽
𝑘+1

=
𝑠
⊤

𝑘
𝑠
𝑘

𝑠⊤
𝑘
𝑧
𝑘

, (40)

where 𝑠
𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
and 𝑧
𝑘
= 𝐹(𝑥

𝑘+1
)−𝐹(𝑥

𝑘
)+0.01(𝑥

𝑘+1
−𝑥
𝑘
).

By the monotonicity and the Lipschitz continuity of 𝐹(⋅), it is
not difficult to show that

0.01𝑠
⊤

𝑘
𝑠
𝑘
≤ 𝑠
⊤

𝑘
𝑧
𝑘
≤ (𝐿 + 0.01) 𝑠

⊤

𝑘
𝑠
𝑘
, (41)

where 𝐿 is the Lipschitz constant. If 𝛽
𝑘

∉ [𝛽min, 𝛽max], we
replace the spectral coefficient by

𝛽
𝑘
=

{{

{{

{

1, if 𝐹 (𝑥
𝑘
)
 ≥ 1,

𝐹(𝑥𝑘)

−1

, if 10−5 ≤ 𝐹 (𝑥
𝑘
)
 ≤ 1,

10
5

, if 𝐹 (𝑥
𝑘
)
 ≤ 10

−5

,

(42)
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Table 1: Numerical results with different dimensions of Problem 11.

Dimension Method Iter. Fn CPU

50
Algorithm 1 1 5 0.0000

WPM 614 3703 0.5313
YSGP 6 15 0.0000

500
Algorithm 1 1 5 0.0156

WPM 657 3959 1.1406
YSGP 6 15 0.0156

5000
Algorithm 1 1 5 0.4219

WPM 692 4157 8.4063
YSGP 7 17 0.4375

50000
Algorithm 1 1 5 52.4688

WPM 724 4336 148.9219
YSGP 7 17 53.6719

Table 2: Numerical results with different initial points of Problem
12 with 𝑛 = 64.

Initial point Method Iter. Fn CPU

(1, 1, . . . , 1)

Algorithm 1 10 115 0.3438
WPM 330 1981 13.1094
YSGP 16 49 0.6094

(2, 2, . . . , 2)

Algorithm 1 9 91 0.2031
WPM 331 1985 11.7969
YSGP 16 47 0.6875

(3, 3, . . . , 3)

Algorithm 1 7 88 0.2031
WPM 331 1987 13.5781
YSGP 16 47 0.6250

(4, 4, . . . , 4)

Algorithm 1 11 117 0.2500
WPM 331 1987 11.5469
YSGP 16 48 0.6094

(5, 5, . . . , 5)

Algorithm 1 9 79 0.3281
WPM 331 1987 11.2031
YSGP 16 48 0.6719

where 𝛽min = 10
−10 and 𝛽max = 10

10. This parabolic model is
the same as the one described in [15]. We stop the iteration if
the iteration number exceeds 1000 or the inequality ‖𝐹(𝑥

𝑘
)‖ ≤

10
−6 is satisfied. The method in [7] (denoted by WPM) is

implemented with the following parameters: 𝐺
𝑘
≡ 0, 𝜎 = 0,

𝜆 = 0.95, 𝛽 = 0.5, and 𝜇
𝑘
≡ 2.5. The method in [9] (denoted

by YSGP) is implemented with the following parameters: 𝛽 =

0.5, 𝜎 = 0.01, and 𝑟 = 0.001.

For Problem 11, the initial point is set as 𝑥
0
= (1, 1, . . . , 1),

and Table 1 gives the numerical results by Algorithm 1,WPM,
and YSGP with different dimensions, where Iter. denotes
the iteration number, Fn denotes the number of function
evaluations, and CPUdenotes the CPU time in seconds when
the algorithm terminates. Table 2 lists the numerical results of
Problem 12 with different initial points.The numerical results
given in Tables 1 and 2 show that Algorithm 1 performs a
little better than YSGP in [9] and obviously better thanWPM
in [7], since it requires much lower number of iterations or
less CPU time than WPM in [7] and a little lower number of

iterations or less CPU time than YSGP in [9]. So the proposed
method is promising.

5. Conclusions

A globally convergent matrix-free method to solve con-
strained equations has been developed, which is not only
derivative-free but also completely matrix-free. Conse-
quently, it can be applied to solve large-scale nonsmooth
constrained equations.We established the global convergence
without the requirement of differentiability of the equations
and presented the linear convergence rate under standard
conditions. We also report some numerical results to show
the efficiency of the proposed method.

Numerical results indicate that the parameters 𝑟 and 𝛾

influence the performance of themethod, so the choice of the
positive constants 𝑟 and 𝜆 is our future work.
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