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The dropping damage evaluation for packaging system is essential for safe transportation and storage. A dynamic model of nonlinear
cubic-quintic Duffing oscillator for the suspension spring packaging system was proposed. Then, a first-order approximate solution
was obtained by applying He's variable iteration method. Based on the results, a damage evaluation equation was derived, which
reveals the main controlling physical parameters for damage potential of drop to packaged products concretely. Finally, the dropping
damage boundary curves and surfaces for the system were discussed. It was found that decreasing the suspension angle can improve

the safe region of the system.

1. Introduction

Newton [1] proposed the concept of damage boundary for the
first time in 1968, which established the foundation of present
cushioning packaging dynamics. However, it can only be
applied to linear packaging systems. For nonlinear packaging
systems, there has been some undergoing work since then. A
dropping damage evaluation for a tangent nonlinear system
with a critical component was proposed by Wang et al. [2].
Wang et al. [3] proposed a three-dimensional shock spectrum
for nonlinear packaging system with a critical component.
They also suggested the damage boundary surfaces concept
for damage evaluation of a tangent nonlinear packaging
system with a critical component [4]. The fatigue damage of
most packaged products is caused by dropping shock in the
process of transportation. Therefore, Wang [5, 6] proposed
the concept of dropping damage boundary curve with system
parameter and the dimensionless dropping shock velocity
as two basic evaluation quantities. These theories are all
based on numerical analysis method. However, the influence
of relevant parameters cannot be revealed to show their
physical significance clearly. The variational iteration method
(VIM) proposed by He et al. [7-9], which has been widely
applied [10-19], can solve many kinds of nonlinear equations
without small parameters limitation (first-order approximate

analytical solutions can achieve high precision). Wang et al.
[20-22] studied the dropping response of typical nonlinear
packaging systems and obtained inner-resonance conditions.

The suspension spring system with eight springs as cush-
ioning components performs geometric nonlinearity and is
suitable for protecting high precision instrument with low
fragility. Wu and Yang [23] studied the natural vibration
characteristics of the system under the excitation of founda-
tional displacement. They found that the shock absorption
performance of the system with pendulum springs was better
than the one with vertical springs. Assuming the system was
excited by rectangular pulse, the three-dimensional shock
spectrum and the damage boundary surface were obtained by
Wang and Chen [24-26]. They achieved the conclusion that
both increasing the pulse incentive amplitude and decreasing
the suspension angle could expand the safe area, and the safe
area would be expanded more obviously when the angle was
less than 75°.

In this paper, by applying the VIM, we solve the nondi-
mensional dynamic equation of the suspension spring system
under the excitation of dropping shock to obtain a first-
order approximate solution and obtain the nondimensional
maximum acceleration expression. Then, a damage evalua-
tion equation presenting the relationship between physical
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FIGURE 1: Dynamic model of the suspension spring system.

parameters and the damage boundary is suggested. Finally,
the dropping damage boundary curves and surfaces of the
system are discussed according to the damage evaluation
equation.

2. Modelling and Equations

The dynamic model of the suspension spring packaging
system is shown in Figure 1. A product is suspended in the
middle of the container by 8 springs (four springs are on the
upside, and the other four are on the downside).

Wang and Chen [24-26] proposed an approximate
dynamic equation with a cubic oscillator of the suspension
spring system. For acquiring a higher precision, we establish a
more concrete dynamic model with nonlinear cubic-quintic
Duffing oscillators of the system by using the Taylor series,
which can be expressed as
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Based on dropping shock, the initial conditions can be written
as

(3)

dx (0) —

Here are the coeflicients: H is the dropping height, x
denotes the product displacement, m denotes the product
mass, g is the acceleration of gravity, k denotes the coupling
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stiffness, [, denotes the original length of the springs, and ¢,
denotes the suspension angle.

By introducing new nondimensional parameters, (1) can
be equivalently written in the following dimensionless form:
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The initial conditions can be written as
y(0) =0,

dy (0) v 2gmH (6)
dr 8kiZ

where V denotes the dimensionless dropping velocity.

3. Variational Iteration Method

A nonlinear equation can be written as
Ly(®) + Ny (t) = g(t), 7)

where L is a linear operator, N is a nonlinear operator, and g
is a continuous function.

The VIM is proposed by He et al. [7-9] for the first time,
and the correction functional for the nonlinear equation can
be established as follows:

t
Yot = 10 O+ | 16 {Ly 9+ N7, () - g )} ds,

(8)

where A is the Laplace multiplier which can be obtained by the

variational theory and ¥, is the restriction on varying which
is equal to 0 solving the Laplace multiplier.

Applying the VIM, construct the following correction
functional of the system:

yn+1 (T)
=Y, (7)

i d’y, (s) _ _
+ J-O A(s) ( e +ayy, (s) + boyz (s) + coyﬁ (s)) ds.
)
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According to the principle of stationary, (9) can be turned
into the following form:

8yn+1 (1)
=6y, (1)

(SJOTA(S)<d

=8y, +8 | 197, 0ds+8 | A9y, (9 ds

2

n S -~ ..
31/52( ) + aoyn (S) + b()yz (5) + C()yi (S)) ds
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+ LT [A (s) + agA (s)] -8y, (s)ds.

(10)
The conditions of stationary can be written as
A(s) + agh (s) =
A(S)s=r = 0, (11)
The Laplace multiplier is obtained as
1
A = — i - .
(s) N sin [v/ay (s — 7)] (12)
The following iteration formula can be constructed as
Y1 (T)
= ¥ (7)
Tl
+ | ——=sin s-T (13)
J, 7 sim v ts =)
&y, (s)
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For the nondimensional dynamic equation (4) and the
initial conditions equation (6), we can take the initial solution
below:

¥ (1) = Asinar, (14)
where « is the frequency parameter and the amplitude A =
V/a. The first-order iteration approximate solution can be
obtained as
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Let the coeflicient of sin 1/a,7 be equal to zero so that
there is no secular term appearing in the next iteration;
namely,
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As the dropping shock pulse is a half-sine pulse, the nondi-
mensional dropping shock extended period can be obtained
as

== 17)
04

The first-order nondimensional displacement iteration app-
roximate expression, namely, the first-order approximate
solution, can be written as
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The first-order nondimensional acceleration iteration app-
roximate expression can be written as

3p, A
4(a? ~ a,)

+ 9o’ b A’
4(9a? - ay)

5¢,A°
8 (a? —ay)

] sinat

n@= —“2[

SCOA5
16 (902 — ay)

] sin 3at

— 2502 [ QA”

———— | sin 5ar.
16(25a2—ao)]sm .

(19)



Substitute ot = 71/2 into (18) and (19); the nondimen-
sional maximum displacement can be written as
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and the nondimensional maximum acceleration can be writ-
ten as

3b, A®
y{I(T)m |2 [ 0

4(a? - ay) i 8 (a? —ay)

5¢,A°
16 (9a2 — a,)

) b A
o [4(9a2_%)+ ] @

— 250* QA" ] ‘ .

[m

For the following amounts, m = 290 kg, k = 2 x 10° N/m,
and /; = 0.075 m, we choose the dropping height H = 0.3m,
and the suspension angle ¢, = 60°. According to (16), we gain
the frequency parameter o = 0.8148. By applying the VIM the
nondimensional maximum acceleration and the dropping
shock extended period are obtained as y/,, = 0.3298 and
T, = 3.8555. Applying the Runge-Kutta (R-K) method, results
are y/! = 0.3338 and 7 = 3.8392. Comparing with the R-K
method, the relative errors by using the VIM are E » = 1.20%
and E, = 0.42%, which can meet the requlrement of the
packaging design.

The impact energy under dropping shock is related
not only to the maximum acceleration, but also to the
whole waveform. Hence, it is necessary to prove that the
overall precision of the waveform can meet the requirement.
The nondimensional acceleration response curves can be
obtained just as shown in Figure 2. It indicates that the curve
by applying the VIM can meet very well with the one by the
R-K method.

4. Dropping Damage Evaluation

Wang [5, 6] proposed the concept of dropping damaging
boundary, which can provide the theoretical foundation for
the dropping damage evaluation of the suspension spring
system.

The dropping shock acceleration of the system can be
written as follows:

&x 'y
@~ FPa e
where the system parameter
I, 8kl
= — = —, 23
p=gz=— (23)
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FIGURE 2: Comparison of the nondimensional acceleration y"-time
7 response of the system by the VIM with the one by the R-K method
when the suspension angle ¢, = 60°.

Set A, as the product fragility. The relational expression
about the nondimensional maximum acceleration y,, the
product fragility A, and the system parameter 3 can be
obtained just as follows:

d*x
Acg:(y> ﬁ(d‘ﬂ) . (24)

By combining (21) and (24), the system parameter can be
written as
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Equation (25) includes more than one variable such as 3,
A,, A (related to Vand «), and ¢,. Therefore, according to
(25), we can evaluate the dropping shock characteristics of
the system.

Respectively, we choose the suspension angle ¢, equal
to 60°, 65°, 70°, and 75°, and select the product fragility
A,, equal to 10 and 15. The system parameter 3 and the
dimensionless dropping shock velocity V' are selected as two
basic evaluation quantities [5, 6]. According to (25), dropping
damage boundary curves of the system can be obtained just
as Figure 3 indicated. The safe area is under the dropping
damage boundary curve, and the product is safe when the
coordinate point (3, V) enters the area.
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FIGURE 3: Dropping damage boundary curves of the system when the suspension angle ¢, = 60°, 65°, 70°, and 75" and the product fragility
(a) A, =10and (b) A, = 15. V: the dimensionless dropping shock velocity; 3: the system parameter.
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FIGURE 4: Dropping damage boundary surfaces of the system when the product fragility (a) A, = 5, (b) A, = 10, (c) A, = 15,and (d) A, = 20.
V: the dimensionless dropping shock velocity; f3: the system parameter; ¢,: the suspension angle.
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By selecting the suspension angle as the third evaluation
quantity, set product fragility A, = 5, 10, 15, and 20,
respectively, and then dropping damage boundary surfaces
can be obtained by applying the VIM, just like Figure 4 indi-
cated. The safe area is under the dropping damage boundary
surfaces, and the product is safe when the coordinate point
(B, ¢y, V) enters the area.

According to Figures 3 and 4, it is shown that decreasing
the suspension angle ¢, the security performance of the
system will improve, and increasing the product fragility
A,, the damage boundary curves and surface will move
up obviously. So the characteristics of suspension geometry
nonlinear (¢, < 90°) to protect products are superior to the
linear system (¢, = 90°).

5. Conclusion

A dynamic model with nonlinear cubic-quintic Duffing oscil-
lators is proposed for thesuspension spring packaging system,
and the first-order approximate solution of the equation is
obtained by He’s variable iteration method. Based on the
results, the damage evaluation equation for the packaging
system is derived, revealing the main controlling parameters
of the damage potential of dropping shock to packaged
products. Finally, the damage boundary curves and surfaces
for the system are discussed. It is found that decreasing the
suspension angle can help to protect the packaged product.
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