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As a generation of ordinary fuzzy set, the concept of intuitionistic fuzzy set (IFS), characterized both by a membership degree and
by a nonmembership degree, is a more flexible way to cope with the uncertainty. Similarity measures of intuitionistic fuzzy sets are
used to indicate the similarity degree between intuitionistic fuzzy sets. Although many similarity measures for intuitionistic fuzzy
sets have been proposed in previous studies, some of those cannot satisfy the axioms of similarity or provide counterintuitive cases.
In this paper, a new similarity measure and weighted similarity measure between IFSs are proposed. It proves that the proposed
similarity measures satisfy the properties of the axiomatic definition for similarity measures. Comparison between the previous
similarity measures and the proposed similarity measure indicates that the proposed similarity measure does not provide any
counterintuitive cases. Moreover, it is demonstrated that the proposed similarity measure is capable of discriminating difference
between patterns.

1. Introduction

Since it was proposed by Zadeh [1], the theory of fuzzy
set (FS) has achieved great success due to its capability
of handling uncertainty. Therefore, over the last decades,
several higher order fuzzy sets have been introduced in the
literature. Intuitionistic fuzzy set (IFS), as one of the higher
order fuzzy sets, was proposed by Atanassov [2] to deal with
vagueness. The main advantage of the IFS is its property to
cope with the uncertainty that may exist due to information
impression. Because it assigns to each element a membership
degree, a nonmembership degree, and a hesitation degree,
IFS constitutes an extension of Zadeh’s fuzzy set which only
assigns to each element a membership degree [3]. So IFS is
regarded as a more effective way to deal with vagueness than
fuzzy set. Although Gau and Buehrer later presented vague
set [4], it was pointed out by Bustince and Burillo that the
notion of vague sets was the same as that of IFS [5].

The definition of similarity measure between two IFSs
is one of the most interesting topics in IFSs theory. A
similarity measure is defined to compare the information
carried by IFSs. Measures of similarity between IFSs, as

an important tool for decision making, pattern recognition,
machine learning, and image processing, have receivedmuch
attention in recent years [6, 7]. Many similarity measures
have been proposed. A few of them come from the well-
known distance measures. The first study was carried out by
Szmidt andKacprzyk [8] extending the well-known distances
measures, such as the Hamming distance and the Euclidian
distance, to IFS environment and comparing them with the
approaches used for ordinary fuzzy sets. However, Wang and
Xin [9] implied that the distance measures of Szmidt and
Kacprzyk [8] were not effective in some cases. Therefore,
several new distance measures were proposed and applied
to pattern recognition. Grzegorzewski [10] also extended
the Hamming distance, the Euclidean distance, and their
normalized counterparts to IFS environment. Later, Chen
[11] pointed out that some errors existed in Grzegorzewski
[10] by showing some counterexamples. Hung and Yang [12]
extended the Hausdorff distance to IFSs and proposed three
similarity measures.

On the other hand, instead of extending the well-known
measures, some studies defined new similarity measures for
IFSs. Dengfeng and Chuntian [13] suggested a new similarity
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measure for IFSs based on the membership degree and
the nonmembership degree. Mitchell [14] showed that the
similarity measure of Dengfeng and Chuntian [13] had some
counterintuitive cases and modified the similarity measure
based on statistical point of view.Moreover, Liang and Shi [15]
presented some examples to show that the similarity measure
of Dengfeng and Chuntian [13] was not reasonable for some
conditions and therefore proposed several new similarity
measures for IFSs. Li et al. [16] analyzed, compared, and sum-
marized the existing similarity measures between IFSs/vague
sets by their counterintuitive examples in pattern recognition.
Ye [7] conducted a similar comparative study of the existing
similarity measures between IFSs and proposed a cosine
similarity measure and a weighted cosine similarity measure.
Hwang et al. [17] proposed a similarity measure for IFSs in
which Sugeno integral was used for aggregation. The pro-
posed similarity measure was applied to clustering problem.
Xu [18] introduced a series of similaritymeasures for IFSs and
applied them to multiple attribute decision making problem
based on intuitionistic fuzzy information. Xu and Chen [19]
introduced a series of distance and similaritymeasures, which
are various combinations and generalizations of the weighted
Hamming distance, the weighted Euclidean distance, and the
weighted Hausdorff distance. Xu and Yager [20] developed a
similarity measure between IFSs and applied the developed
similarity measure for consensus analysis in group decision
making based on intuitionistic fuzzy preference relations. Xia
and Xu [6] proposed a series of distance measures based on
the intuitionistic fuzzy point operators. In addition to these
studies, some works have been interested in relationships
between distancemeasure, similaritymeasure, and entropy of
IFSs. Zeng and Guo [21] investigated the relationship among
the normalized distance, the similaritymeasure, the inclusion
measure, and the entropy of interval-valued fuzzy sets. It
was also showed that the similarity measure, the inclusion
measure, and the entropy of interval-valued fuzzy sets could
be induced by the normalized distance of interval-valued
fuzzy sets based on their axiomatic definitions. Wei et al.
[22] introduced an entropy measure generalizing the existing
entropy measures for IFS and IFSs. Also an approach was
introduced to construct similarity measures using entropy
measures for IFS and IFSs. Boran and Akay [23] proposed
a new general type of similarity measure for IFS with two
parameters, expressing 𝐿𝑝 norm and the level of uncertainty,
respectively. This similarity measure can also make sense in
terms of counterintuitive cases.

Moreover, Zhang and Yu [24] presented a new distance
(or similarity) measure based on interval comparison, where
the IFSs were, respectively, transformed into the symmetric
triangular fuzzy numbers. Comparison with the widely used
methods indicated that the proposedmethod containedmore
information, with much less loss of information. Li et al.
[25] introduced an axiomatic definition of the similarity
measure of IFSs. The relationship between the entropy and
the similarity measure of IFS was investigated in detail. It
was proved that the similarity measure and the entropy
of IFS can be transformed into each other based on their
axiomatic definitions. Farhadinia [26] generalized results on
the entropy of interval-valued fuzzy sets (IVFSs) based on

the intuitionistic distance and its relationship with similarity
measure. Based on the set of new axioms, he also proved some
theorems that entropy and similarity measure for IVFSs can
be transformed by each other in a general way. Li [27] defined
two dissimilarity measures between intuitionistic fuzzy sets
of a finite set, and it was proved that both of the measures
are metrical. Papakostas et al. [28] investigated the main
theoretical and computational properties of the measures as
well as the relationships between them. A comparison of the
distance and similarity measures was carried out by them,
from a pattern recognition point of view.

Among similarity measures proposed by other authors,
some of those, however, cannot satisfy the axioms of sim-
ilarity or provide counterintuitive cases or are produced
by complex formats. Therefore, we propose new similarity
measures with relative simple expression. The proposed sim-
ilarity measure depends on the triplet, membership degree,
nonmembership degree, and hesitation margin. This paper
proves that the proposed measures satisfy the properties of
the axiomatic definition for similarity measures. In addition,
several numerical examples are provided to compare the
proposed measure with a number of existing measures.

The remainder of this paper is organized as follows.
Section 2 recalls the definitions related to the IFSs and
lists the properties that a distance measure for IFSs and a
similarity measure for IFSs should possess. In Section 3, the
existing similarity measures for IFSs will be recalled. The
new similarity measure, together with its proofs, is presented
in Section 4. Comparison between the proposed similarity
measure and the existing similarity measures is carried out in
Section 5.The application of the proposed similarity measure
to pattern recognition is presented in Section 6, followed by
the conclusion of this paper in Section 7.

2. Preliminaries

In this section, we briefly recall the basic concepts related to
IFS and then list the properties of the axiomatic definition for
similarity measures.

Definition 1. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of dis-
course; then, a fuzzy set 𝐴 in𝑋 is defined as follows [1]:

𝐴 = {⟨𝑥, 𝜇𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where 𝜇𝐴(𝑥) : 𝑋 → [0, 1] is the membership degree.

Definition 2. An IFS 𝐴 in 𝑋 defined by Atanassov can be
written as [2]

𝐴 = {⟨𝑥, 𝜇𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (2)

where 𝜇𝐴(𝑥) : 𝑋 → [0, 1] and V𝐴(𝑥) : 𝑋 → [0, 1] are
membership degree and nonmembership degree, respective-
ly, with the condition

0 ≤ 𝜇𝐴 (𝑥) + V𝐴 (𝑥) ≤ 1. (3)

𝜋𝐴(𝑥) determined by the following expression:

𝜋𝐴 (𝑥) = 1 − 𝜇𝐴 (𝑥) − V𝐴 (𝑥) , (4)
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is called the hesitancy degree of the element 𝑥 ∈ 𝑋 to the set
𝐴, and 𝜋𝐴(𝑥) ∈ [0, 1], for all 𝑥 ∈ 𝑋.

𝜋𝐴(𝑥) is also called the intuitionistic index of 𝑥 to 𝐴.
Greater 𝜋𝐴(𝑥) indicates more vagueness on 𝑥. Obviously,
when 𝜋𝐴(𝑥) = 0, for all 𝑥 ∈ 𝑋, the IFS degenerates into an
ordinary fuzzy set.

In the sequel, the couple ⟨𝜇𝐴(𝑥), V𝐴(𝑥)⟩ is called an IFS or
intuitionistic fuzzy value (IFV) for clarity. Let IFSs(𝑋) denote
the set of all IFSs in𝑋.

Definition 3. For 𝐴 ∈ IFSs(𝑋) and 𝐵 ∈ IFSs(𝑋), some
relations between them are defined as

(R1) 𝐴 ⊂ 𝐵 if and only if for all 𝑥 ∈ 𝑋 𝜇𝐴(𝑥) ≤

𝜇𝐵(𝑥), V𝐴(𝑥) ≥ V𝐵(𝑥);

(R2) 𝐴 = 𝐵 if and only if for all 𝑥 ∈ 𝑋 𝜇𝐴(𝑥) =

𝜇𝐵(𝑥), V𝐴(𝑥) = V𝐵(𝑥);

(R3) 𝐴𝐶 = {⟨𝑥, V𝐴(𝑥), 𝜇𝐴(𝑥)⟩ | 𝑥 ∈ 𝑋}, where 𝐴𝐶 is the
complement of 𝐴.

Definition 4. Let 𝐷 denote the mapping 𝐷 : IFS × IFS →

[0, 1]; if 𝐷(𝐴, 𝐵) satisfies the following properties, 𝐷(𝐴, 𝐵) is
called a distance between 𝐴 ∈ IFSs(𝑋) and 𝐵 ∈ IFSs(𝑋).
Consider the following:

(DP1) 0 ≤ 𝐷(𝐴, 𝐵) ≤ 1;

(DP2) 𝐷(𝐴, 𝐵) = 0, if and only if 𝐴 = 𝐵;

(DP3) 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴);

(DP4) if𝐴 ⊆ 𝐵 ⊆ 𝐶, then𝐷(𝐴, 𝐵) ≤ 𝐷(𝐴, 𝐶), and𝐷(𝐵, 𝐶) ≤
𝐷(𝐴, 𝐶).

Definition 5. The mapping 𝑆 : IFS × IFS → [0, 1] is called a
degree of similarity between𝐴 ∈ IFSs(𝑋) and 𝐵 ∈ IFSs(𝑋), if
𝑆(𝐴, 𝐵) satisfies the following properties:

(SP1) 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1;

(SP2) 𝑆(𝐴, 𝐵) = 1, if and only if 𝐴 = 𝐵;

(SP3) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴);

(SP4) if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑆(𝐴, 𝐵) ≥ 𝑆(𝐴, 𝐶), and 𝑆(𝐵, 𝐶) ≥
𝑆(𝐴, 𝐶).

Because distance and similarity measures are comple-
mentary concepts, similarity measures can be used to define
distance measures and vice versa.

3. Existing Similarity Measures

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of discourse. 𝐴 ∈

IFSs(𝑋) and 𝐵 ∈ IFSs(𝑋) are two IFSs in 𝑋, denoted by
𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), V𝐴(𝑥)⟩ | 𝑥 ∈ 𝑋} and 𝐵 = {⟨𝑥, 𝜇𝐵(𝑥), V𝐵(𝑥)⟩ |
𝑥 ∈ 𝑋}, respectively.

Considering the outcome of the analysis presented by
Bustince and Burillo [5], which concluded that the intuition-
istic fuzzy sets and the vague sets are similar, Chen [29]
proposed the first similarity measure for IFSs defined as

𝑆𝐶 (𝐴, 𝐵)

= 1 −
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨(𝜇𝐴 (𝑥𝑖) − V𝐴 (𝑥𝑖)) − (𝜇𝐵 (𝑥𝑖) − V𝐵 (𝑥𝑖))
󵄨󵄨󵄨󵄨

2𝑛
.

(5)

Hong and Kim [30] proposed the following measure to
overcome the deficiency of Chen’s similarity measure:

𝑆𝐻 (𝐴, 𝐵)

= 1 −
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨(𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)) − (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))
󵄨󵄨󵄨󵄨

2𝑛
.

(6)

Following the work of Hong and Kim, Li and Xu [31]
proposed new similarity measures:

𝑆𝐿 (𝐴, 𝐵)

= 1 −
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨(𝜇𝐴 (𝑥𝑖) − V𝐴 (𝑥𝑖)) − (𝜇𝐵 (𝑥𝑖) − V𝐵 (𝑥𝑖))
󵄨󵄨󵄨󵄨

4𝑛

−
∑
𝑛

𝑖=1
(
󵄨󵄨󵄨󵄨𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)

󵄨󵄨󵄨󵄨)

4𝑛
.

(7)

Taking the membership distance and the nonmember
ship distance between the two IFSs into consideration, Li
et al. [32] proposed a similarity measure as follows:

𝑆𝑂 (𝐴, 𝐵)

= 1 −
√
∑
𝑛

𝑖=1
((𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖))

2
+ (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))

2
)

2𝑛
.

(8)

Dengfeng and Chuntian [13] pointed out that some
similarity could not deal with the similarity between IFSs
well. So they defined a new similarity measure for pattern
recognition:

𝑆DC (𝐴, 𝐵) = 1 −
𝑝
√
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝜑𝐴 (𝑥𝑖) − 𝜑𝐵 (𝑥𝑖)
󵄨󵄨󵄨󵄨

𝑝

𝑛
,

(9)

where 𝜑𝐴(𝑥𝑖) = (𝜇𝐴(𝑥𝑖)+1−V𝐴(𝑥𝑖))/2 and 𝜑𝐵(𝑥𝑖) = (𝜇𝐵(𝑥𝑖)+

1 − V𝐵(𝑥𝑖))/2.
Mitchell [14] found that the similarity measure 𝑆DC(𝐴, 𝐵)

would characterize two different IFSs as identical. To over-
come this drawback, he provided a more realistic strong
similarity measure of the following form:

𝑆HB (𝐴, 𝐵) =
1

2
(𝜌𝜇 (𝐴, 𝐵) + 𝜌V (𝐴, 𝐵)) , (10)

where 𝜌𝜇(𝐴, 𝐵) = 1 −
𝑝
√∑
𝑛

𝑖=1
|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|

𝑝
/𝑛, 𝜌V(𝐴, 𝐵) =

1 −
𝑝
√∑
𝑛

𝑖=1
|V𝐴(𝑥𝑖) − V𝐵(𝑥𝑖)|

𝑝
/𝑛.
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Liang and Shi [15] proposed the following three similarity
measures:

𝑆
𝑝

𝑒
(𝐴, 𝐵) = 1 −

𝑝
√
∑
𝑛

𝑖=1
(𝜙𝜇 (𝑥𝑖) + 𝜙V (𝑥𝑖))

𝑝

𝑛
,

(11)

where 𝜙𝜇(𝑥𝑖) = |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|/2, 𝜙V(𝑥𝑖) = |(1 − V𝐴(𝑥𝑖)) −
(1 − V𝐵(𝑥𝑖))|/2. Consider

𝑆
𝑝

𝑠
(𝐴, 𝐵) = 1 −

𝑝
√
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝜓𝑠1 (𝑥𝑖) + 𝜓𝑠2 (𝑥𝑖)
󵄨󵄨󵄨󵄨

𝑝

𝑛
,

(12)

where 𝜓𝑠1(𝑥𝑖) = |𝑚𝐴1(𝑥𝑖) − 𝑚𝐵1(𝑥𝑖)|/2, 𝜓𝑠2(𝑥𝑖) = |𝑚𝐴2(𝑥𝑖) −
𝑚𝐵2(𝑥𝑖)|/2, 𝑚𝐴1(𝑥𝑖) = |𝜇𝐴(𝑥𝑖) + 𝑚𝐴(𝑥𝑖)|/2, 𝑚𝐵1(𝑥𝑖) =

|𝜇𝐵(𝑥𝑖) + 𝑚𝐵(𝑥𝑖)|/2, 𝑚𝐴2(𝑥𝑖) = |1 − V𝐴(𝑥𝑖) + 𝑚𝐴(𝑥𝑖)|/2,
𝑚𝐵2(𝑥𝑖) = |1 − V𝐵(𝑥𝑖) + 𝑚𝐵(𝑥𝑖)|/2, 𝑚𝐴(𝑥𝑖) = |1 − V𝐴(𝑥𝑖) +
𝜇𝐴(𝑥𝑖)|/2, and 𝑚𝐵(𝑥𝑖) = |1 − V𝐵(𝑥𝑖) + 𝜇𝐵(𝑥𝑖)|/2. Consider

𝑆
𝑝

ℎ
(𝐴, 𝐵) = 1 −

𝑝
√
∑
𝑛

𝑖=1
(𝜂1 (𝑥𝑖) + 𝜂2 (𝑥𝑖) + 𝜂3 (𝑥𝑖))

𝑝

3𝑛
,

(13)

where 𝜂1(𝑥𝑖) = 𝜙𝜇(𝑥𝑖) + 𝜙V(𝑥𝑖) (defined in 𝑆
𝑝

𝑒
), 𝜂2(𝑥𝑖) =

|𝜑𝜇(𝑥𝑖) − 𝜑V(𝑥𝑖)| (defined in 𝑆DC), 𝜂3(𝑥𝑖) = max(𝑙𝐴(𝑥𝑖),
𝑙𝐵(𝑥𝑖)) −min(𝑙𝐴(𝑥𝑖), 𝑙𝐵(𝑥𝑖)), 𝑙𝐴(𝑥𝑖) = (1 − 𝜇𝐴(𝑥𝑖) − V𝐴(𝑥𝑖))/2,
and 𝑙𝐵(𝑥𝑖) = (1 − 𝜇𝐵(𝑥𝑖) − V𝐵(𝑥𝑖))/2.

Hung and Yang [12] introduced three similarity measures
based on the Hausdorff distance 𝑑𝐻(𝐴, 𝐵):

𝑆
1

HY (𝐴, 𝐵) = 1 − 𝑑𝐻 (𝐴, 𝐵) ,

𝑆
2

HY (𝐴, 𝐵) =
𝑒
−𝑑𝐻(𝐴,𝐵) − 𝑒

−1

1 − 𝑒−1
,

𝑆
3

HY (𝐴, 𝐵) =
1 − 𝑑𝐻 (𝐴, 𝐵)

1 + 𝑑𝐻 (𝐴, 𝐵)
,

(14)

where 𝑑𝐻(𝐴, 𝐵) = (1/𝑛)∑
𝑛

𝑖=1
max(|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|, |V𝐴(𝑥𝑖) −

V𝐵(𝑥𝑖)|).
Based on the concept of the cosine similarity measure for

fuzzy sets, a cosine similarity measure was proposed by Ye [7]
as follows:

𝐶IFS (𝐴, 𝐵)

=
1

𝑛

𝑛

∑

𝑖=1

𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

√(𝜇𝐴 (𝑥𝑖))
2
+ (V𝐴 (𝑥𝑖))

2
√(𝜇𝐵 (𝑥𝑖))

2
+ (V𝐵 (𝑥𝑖))

2
.

(15)

One of the latest results on similarity measure is the
biparametric similarity measure for IFS, proposed by Boran
andAkay [23]. It has the following formwith two parameters:

𝑆
𝑝

𝑡 (𝐴, 𝐵)

= 1 − (

𝑛

∑

𝑖=1

1

2𝑛 (1 + 𝑝)
{
󵄨󵄨󵄨󵄨𝑡 (𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖))

− (V𝐴(𝑥𝑖) − V𝐵(𝑥𝑖))
󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨𝑡 (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))

− (𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))
󵄨󵄨󵄨󵄨

𝑝
})

1/𝑝

,

(16)

where 𝑝 = 1, 2, 3, . . . is the 𝐿𝑝 norm and 𝑡 = 2, 3, 4, . . .

identifies the level of uncertainty.

4. A New Similarity Measure

Let 𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), V𝐴(𝑥)⟩ | 𝑥 ∈ 𝑋} and 𝐵 = {⟨𝑥, 𝜇𝐵(𝑥),

V𝐵(𝑥)⟩ | 𝑥 ∈ 𝑋} be two IFSs in𝑋.Wepropose a new similarity
measure:

𝑆𝑌 (𝐴, 𝐵)

=
1

2𝑛

𝑛

∑

𝑖=1

(√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖)

+ 2√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖) + √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖))) ,

(17)

where 𝜋𝐴(𝑥𝑖) and 𝜋𝐵(𝑥𝑖) are, respectively, the hesitancy
degree of the element 𝑥𝑖 ∈ 𝑋 to the sets 𝐴 and 𝐵.

Theorem 6. 𝑆𝑌(𝐴, 𝐵) is the similarity measure between two
IFSs 𝐴 and 𝐵 in𝑋.

Proof. For the sake of simplicity, IFSs 𝐴 and 𝐵 are denoted
by 𝐴 = {⟨𝜇𝐴(𝑥𝑖), V𝐴(𝑥𝑖)⟩} and 𝐵 = {⟨𝜇𝐵(𝑥𝑖), V𝐵(𝑥𝑖)⟩},
respectively.

(SP1) For each𝑥, 𝑦 ∈ [0, +∞], we have 0 ≤ √𝑥𝑦 ≤ (𝑥+𝑦)/2.

Given 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 1, 0 ≤ V𝐴(𝑥𝑖) ≤ 1, 0 ≤ 𝜋𝐴(𝑥𝑖) ≤ 1, 0 ≤
𝜇𝐵(𝑥𝑖) ≤ 1, 0 ≤ V𝐵(𝑥𝑖) ≤ 1, 0 ≤ 𝜋𝐵(𝑥𝑖) ≤ 1, 0 ≤ 1−V𝐴(𝑥𝑖) ≤ 1,
and 0 ≤ 1 − V𝐵(𝑥𝑖) ≤ 1, we get

0 ≤ √𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) ≤
𝜇𝐴 (𝑥𝑖) + 𝜇𝐵 (𝑥𝑖)

2
,

0 ≤ √V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖) ≤
V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖)

2
,
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0 ≤ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖) ≤
𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)

2
,

0 ≤ √(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖)) ≤
1 − V𝐴 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖)

2
.

(18)

Then we have

0 ≤ √𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2
√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖) +
√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖))

≤
𝜇𝐴 (𝑥𝑖) + 𝜇𝐵 (𝑥𝑖)

2
+ 2 ⋅

V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖)
2

+
𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)

2
+
1 − V𝐴 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖)

2

= 1 +
𝜇𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) + 𝜋𝐴 (𝑥𝑖)

2

+
𝜇𝐵 (𝑥𝑖) + V𝐵 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)

2

= 2.

(19)

Hence,

0 ≤

𝑛

∑

𝑖=1

(√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2
√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖))) ≤ 2𝑛.

(20)

Finally, we get the following inequality: 0 ≤ 𝑆𝑌(𝐴, 𝐵) ≤

(1/2𝑛) ⋅ 2𝑛 = 1.
Thus, 0 ≤ 𝑆𝑌(𝐴, 𝐵) ≤ 1.

(SP2) We know that √𝑥𝑦 assumes its maximum value (𝑥 +
𝑦)/2 when 𝑥 = 𝑦. Therefore, we have

𝑆𝑌 (𝐴, 𝐵) = 1 ⇐⇒
√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2

√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+ √(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖)) = 2

⇐⇒ 𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) , V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖) ,

𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖) , 1 − V𝐴 (𝑥𝑖) = 1 − V𝐵 (𝑥𝑖)

⇐⇒ 𝐴 = 𝐵.

(21)

Thus, 𝑆𝑌(𝐴, 𝐵) = 1, if and only if 𝐴 = 𝐵.
(SP3) It is easy to note that the expression of 𝑆𝑌(𝐴, 𝐵) is

commutative. So we have

𝑆𝑌 (𝐴, 𝐵) = 𝑆𝑌 (𝐵, 𝐴) . (22)

(SP4) Let 𝐶 be another IFS in 𝑋, denoted by 𝐶 =

{⟨𝜇𝐶(𝑥𝑖), V𝐶(𝑥𝑖)⟩}.𝐴, 𝐵, and𝐶 satisfy the relation𝐴 ⊆

𝐵 ⊆ 𝐶. Then, we have 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 𝜇𝐵(𝑥𝑖) ≤ 𝜇𝐶(𝑥𝑖) ≤
1 and 0 ≤ V𝐶(𝑥𝑖) ≤ V𝐵(𝑥𝑖) ≤ V𝐴(𝑥𝑖) ≤ 1, for all 𝑥 ∈ 𝑋.
Based on (17), the similarity measures between (𝐵, 𝐶)
and (𝐴, 𝐶) can be written as

𝑆𝑌 (𝐵, 𝐶) =
1

2𝑛

𝑛

∑

𝑖−1

(√𝜇𝐵 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) +
√V𝐵 (𝑥𝑖) V𝐶 (𝑥𝑖)

+ √𝜋𝐵 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖)

+√(1 − V𝐵 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖))) ,

𝑆𝑌 (𝐴, 𝐶) =
1

2𝑛

𝑛

∑

𝑖=1

(√𝜇𝐴 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) +
√V𝐴 (𝑥𝑖) V𝐶 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖)

+√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖))) .

(23)

For 𝑎, 𝑏 ∈ [0, 1], 𝑎 + 𝑏 ≤ 1 we can define a function 𝑓 as

𝑓 (𝑥, 𝑦) = √𝑎𝑥 + 2√𝑏𝑦 + √(1 − 𝑎 − 𝑏) (1 − 𝑥 − 𝑦)

+ √(1 − 𝑏) (1 − 𝑦),

(24)

where 𝑥, 𝑦 ∈ [0, 1], 𝑥 + 𝑦 ∈ [0, 1].
Then we have

𝜕𝑓

𝜕𝑥
=

√𝑎

2√𝑥
−

√1 − 𝑎 − 𝑏

2√1 − 𝑥 − 𝑦
,

𝜕𝑓

𝜕𝑦
=
√𝑏

√𝑦
−

√1 − 𝑎 − 𝑏

2√1 − 𝑥 − 𝑦
−

√1 − 𝑏

2√1 − 𝑦
.

(25)

Given 𝑎 ≤ 𝑥 ≤ 1, 𝑏 ≤ 1, we have

𝜕𝑓

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑏

=
√𝑎

2√𝑥
−

√1 − 𝑎 − 𝑏

2√1 − 𝑥 − 𝑦

=
(𝑎 − 𝑥) (1 − 𝑏)

2√𝑥 (1 − 𝑥 − 𝑦) (√𝑎 (1 − 𝑥 − 𝑦) + √(1 − 𝑎 − 𝑏) 𝑥)

≤ 0,

(26)

whichmeans that𝑓 is a decreasing function of 𝑥, when 𝑦 = 𝑏,
𝑥 ≥ 𝑎.

For 0 ≤ 𝑥 ≤ 𝑎, 𝑏 ≤ 1, we can get (𝜕𝑓/𝜕𝑥)|
𝑦=𝑏

≥ 0, which
means that 𝑓 is an increasing function of 𝑥, when 𝑦 = 𝑏, 𝑥 ≤
𝑎.
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Similarly, as for 𝜕𝑓/𝜕𝑦, we can get

𝜕𝑓

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑎

=
(𝑏 − 𝑦) (1 − 𝑎)

2√𝑦 (1 − 𝑥 − 𝑦) (√𝑏 (1 − 𝑥 − 𝑦) + √(1 − 𝑎 − 𝑏) 𝑦)

+
𝑏 − 𝑦

2√𝑦 (1 − 𝑦) (√𝑏 (1 − 𝑦) + √(1 − 𝑏) 𝑦)

,

(27)

which reveals that 𝑓 is an increasing function of 𝑦 for 𝑥 = 𝑎,
𝑦 ≤ 𝑏, but a decreasing function when 𝑥 = 𝑎, 𝑦 ≥ 𝑏.

Given 𝑎 = 𝜇𝐴(𝑥𝑖), 𝑏 = V𝐴(𝑥𝑖), and two couples (𝜇𝐵(𝑥𝑖),
V𝐵(𝑥𝑖)), (𝜇𝐶(𝑥𝑖), V𝐶(𝑥𝑖)), satisfying 𝑎 = 𝜇𝐴(𝑥𝑖) ≤ 𝜇𝐵(𝑥𝑖) ≤

𝜇𝐶(𝑥𝑖), V𝐶(𝑥𝑖) ≤ V𝐵(𝑥𝑖) ≤ V𝐴(𝑥𝑖) = 𝑏, we can get

𝑓 (𝜇𝐶 (𝑥𝑖) , 𝑏) ≤ 𝑓 (𝜇𝐵 (𝑥𝑖) , 𝑏) ≤ 𝑓 (𝑎, 𝑏) ,

𝑓 (𝑎, V𝐶 (𝑥𝑖)) ≤ 𝑓 (𝑎, V𝐵 (𝑥𝑖)) ≤ 𝑓 (𝑎, 𝑏) .
(28)

Since 𝑓(𝑥, 𝑦) is a continuous concave function, it is true
that 𝑓(𝜇𝐶(𝑥𝑖), V𝐶(𝑥𝑖)) ≤ 𝑓(𝜇𝐵(𝑥𝑖), V𝐵(𝑥𝑖)); that is,

√𝜇𝐴 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) +
√V𝐴 (𝑥𝑖) V𝐶 (𝑥𝑖) + √𝜋𝐴 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖)

+ √(1 − V𝐴 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖))

≤ √𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2
√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖) +
√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖)),

(29)

which indicates that 𝑆𝑌(𝐴, 𝐵) ≥ 𝑆𝑌(𝐴, 𝐶).
Similarly, if we suppose 𝑎 = 𝜇𝐶(𝑥𝑖) 𝑏 = V𝐶(𝑥𝑖), consid-

ering another two couples (𝜇𝐴(𝑥𝑖), V𝐴(𝑥𝑖)), (𝜇𝐵(𝑥𝑖), V𝐵(𝑥𝑖)),
where 𝜇𝐴(𝑥𝑖) ≤ 𝜇𝐵(𝑥𝑖) ≤ 𝜇𝐶(𝑥𝑖) = 𝑎, 𝑏 = V𝐶(𝑥𝑖) ≤ V𝐵(𝑥𝑖) ≤
V𝐴(𝑥𝑖), we have

𝑓 (𝜇𝐴 (𝑥𝑖) , 𝑏) ≤ 𝑓 (𝜇𝐵 (𝑥𝑖) , 𝑏) ≤ 𝑓 (𝑎, 𝑏) ,

𝑓 (𝑎, V𝐴 (𝑥𝑖)) ≤ 𝑓 (𝑎, 𝜇𝐵 (𝑥𝑖)) ≤ 𝑓 (𝑎, 𝑏) .
(30)

Considering the continuity and concavity of 𝑓(𝑥, 𝑦), we can
finally get 𝑓(𝜇𝐴(𝑥𝑖), V𝐴(𝑥𝑖)) ≤ 𝑓(𝜇𝐵(𝑥𝑖), V𝐵(𝑥𝑖)), also written
as

√𝜇𝐴 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) +
√V𝐴 (𝑥𝑖) V𝐶 (𝑥𝑖) + √𝜋𝐴 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖)

+ √(1 − V𝐴 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖))

≤ √𝜇𝐵 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) + 2
√V𝐵 (𝑥𝑖) V𝐶 (𝑥𝑖)

+ √𝜋𝐵 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖) +
√(1 − V𝐵 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖)).

(31)

So we have 𝑆𝑌(𝐵, 𝐶) ≥ 𝑆𝑌(𝐴, 𝐶).
Thus, 𝑆𝑌(𝐴, 𝐵) satisfies (SP4).
So the similarity measure 𝑆𝑌(𝐴, 𝐵) satisfies all properties

in Definition 5. It is a similarity measure between IFSs.

Considering the weights of 𝑥𝑖, we can define the weighted
similarity between two IFSs as follows:

𝑆WY (𝐴, 𝐵) =
1

2

𝑛

∑

𝑖=1

𝑤𝑖 (
√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖)

+ 2√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖) + √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖))) ,

(32)

where 𝑤𝑖 is the weights factor of the features 𝑥𝑖, 𝑤𝑖 ∈ [0, 1]

and ∑𝑛
𝑖=1

𝑤𝑖 = 1.

Theorem 7. 𝑆𝑊𝑌(𝐴, 𝐵) is the similarity measure between two
IFSs 𝐴 and 𝐵 in𝑋.

Proof. (SP1) From the proof of (SP1) in the last theorem, we
can get

0 ≤

𝑛

∑

𝑖=1

𝑤𝑖 (
√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2

√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖)))

≤

𝑛

∑

𝑖=1

2𝑤𝑖 = 2 ⋅

𝑛

∑

𝑖=1

𝑤𝑖 = 2.

(33)

Therefore, 0 ≤ 𝑆WY(𝐴, 𝐵) ≤ 1.
(SP2) Considering the implication rule in the proof of

(SP2) for Theorem 6, we have

𝑆WY (𝐴, 𝐵) = 1 ⇐⇒ 𝑤𝑖 (
√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖)

+ 2√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖)))

= 2𝑤𝑖
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⇐⇒ √𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2
√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖)

+ √(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖)) = 2

⇐⇒ 𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) , V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖) ,

𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖) , 1 − V𝐴 (𝑥𝑖) = 1 − V𝐵 (𝑥𝑖)

⇐⇒ 𝐴 = 𝐵.

(34)

So we get 𝑆WY(𝐴, 𝐵) = 1 ⇔ 𝐴 = 𝐵.
(SP3)It is straightforward that 𝑆WY(𝐴, 𝐵) satisfies (SP3).
(SP4) Since all 𝑤𝑖 ≥ 0, we can get

𝑤𝑖 (
√𝜇𝐴 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) +

√V𝐴 (𝑥𝑖) V𝐶 (𝑥𝑖)

+√𝜋𝐴 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖) +
√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖)))

≤ 𝑤𝑖 (
√𝜇𝐴 (𝑥𝑖) 𝜇𝐵 (𝑥𝑖) + 2

√V𝐴 (𝑥𝑖) V𝐵 (𝑥𝑖)

+√𝜋𝐴 (𝑥𝑖) 𝜋𝐵 (𝑥𝑖) +
√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐵 (𝑥𝑖))) ,

𝑤𝑖 (
√𝜇𝐴 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) +

√V𝐴 (𝑥𝑖) V𝐶 (𝑥𝑖)

+ √𝜋𝐴 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖) +
√(1 − V𝐴 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖)))

≤ 𝑤𝑖 (
√𝜇𝐵 (𝑥𝑖) 𝜇𝐶 (𝑥𝑖) + 2

√V𝐵 (𝑥𝑖) V𝐶 (𝑥𝑖)

+√𝜋𝐵 (𝑥𝑖) 𝜋𝐶 (𝑥𝑖) +
√(1 − V𝐵 (𝑥𝑖)) (1 − V𝐶 (𝑥𝑖))) .

(35)

Finally we have 𝑆WY(𝐴, 𝐵) ≥ 𝑆WY(𝐴, 𝐶), 𝑆WY(𝐵, 𝐶) ≥

𝑆WY(𝐴, 𝐶).
So far, we have finished the proof that 𝑆WY(𝐴, 𝐵) is a

similarity measure between IFSs 𝐴 and 𝐵.

5. Numerical Comparisons

In order to illustrate the superiority of the proposed similarity
measure, a comparison between the proposed similarity
measure and all the existing similarity measures is conducted
based on the numerical cases in [23]. Table 1 presents a
comprehensive comparison of the similaritymeasures for IFS
with counterintuitive examples (𝑝 = 1 for 𝑆HB, 𝑆

𝑝

𝑒
, 𝑆𝑝
𝑠
, 𝑆𝑝
ℎ
and

𝑝 = 1, 𝑡 = 2 for 𝑆𝑝𝑡 ).
We can see that 𝑆𝐶(𝐴, 𝐵) = 𝑆DC(𝐴, 𝐵) = 𝐶IFS(𝐴, 𝐵) = 1

for two different IFSs 𝐴 = ⟨0.3, 0.3⟩ and 𝐵 = ⟨0.4, 0.4⟩. This
indicates that the second axiom of similarity measure (SP2)
is not satisfied by 𝑆𝐶(𝐴, 𝐵), 𝑆DC(𝐴, 𝐵), and 𝐶IFS(𝐴, 𝐵). This
also can be illustrated by 𝑆𝐶(𝐴, 𝐵) = 𝑆DC(𝐴, 𝐵) = 1 when
𝐴 = ⟨0.5, 0.5⟩, 𝐵 = ⟨0, 0⟩ and 𝐴 = ⟨0.4, 0.2⟩, 𝐵 = ⟨0.5, 0.3⟩.

As for 𝑆𝐻, 𝑆𝑂, 𝑆HB, 𝑆
𝑝

𝑒
, 𝑆𝑝
𝑠
, and 𝑆

𝑝

ℎ
, different pairs of 𝐴, 𝐵

may provide the identical results, which cannot satisfy the
application of pattern recognition. It can be read from Table 1
that 𝑆HB = 0.9 for both 𝐴 = ⟨0.3, 0.3⟩, 𝐵 = ⟨0.4, 0.4⟩

and 𝐴 = ⟨0.3, 0.4⟩, 𝐵 = ⟨0.4, 0.3⟩. Such situation seems
to be going from bad to worse for 𝑆1HY, where all the cases
take the same similarity degree except Case 3 and Case 4.
𝑆
2

HY and 𝑆
3

HY are also stuck with this problem. 𝑆𝑝𝑡 seems to
be reasonable without any counterintuitive results. However,
we can notice an interesting situation when comparing Case
3 and Case 4. Suppose two vote results, “all in favor” and
“all abstentions,” which, respectively, represent 𝐴 = ⟨1, 0⟩

and 𝐵 = ⟨0, 0⟩. It is reasonable to take the similarity degree
between them as 0.5. 𝐴󸀠 = ⟨0.5, 0.5⟩ and 𝐵

󸀠
= ⟨0, 0⟩ can

be interpreted as “the vote for resolution is half in favor,
half against” and “the vote for resolution is all abstentions,”
respectively. The similarity degree between them is 0.833,
which is greater than 0.5. From the view of vote practice, the
similarity degree between 𝐴 and 𝐵 should be equal to or not
less than the similarity between 𝐴󸀠 and 𝐵󸀠. Furthermore, it is
worth considering the determination of parameters 𝑝 and 𝑡
in 𝑆𝑝𝑡 . In such a sense, the proposed similarity measure is the
most reasonable onewith a relative simple expression and has
none of the counterintuitive cases.

In order to study the effectiveness of the proposed similar-
ity measure for IFS in the application of pattern recognition,
we consider the pattern recognition problem discussed in
[7, 13].

Suppose there are 𝑚 patterns, which can be represented
by IFSs 𝐴𝑗 = {⟨𝑥𝑖, 𝜇𝐴𝑗

(𝑥𝑖), V𝐴𝑗(𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑋}, 𝐴𝑗 ∈

IFSs(𝑋), 𝑗 = 1, 2, . . . , 𝑚. Let the sample to be recognized be
denoted by 𝐵 = {⟨𝑥𝑖, 𝜇𝐵(𝑥𝑖), V𝐵(𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑋}. According
to the recognition principle of maximum degree of similarity
between IFSs, the process of assigning 𝐵 to𝐴𝑘 is described by
[7]:

𝑘 = arg max
𝑗=1,2,...,𝑚

{𝑆 (𝐴𝑗, 𝐵)} . (36)

Example 8. Assume that there exist three known patterns𝐴1,
𝐴2, and𝐴3, with class labels𝐶1,𝐶2, and𝐶3, respectively. Each
pattern can be expressed by IFS in𝑋 = {𝑥1, 𝑥2, 𝑥3} as follows:

𝐴1 = {⟨𝑥1, 1, 0⟩ , ⟨𝑥2, 0.8, 0⟩ , ⟨𝑥3, 0.7, 0.1⟩} ,

𝐴2 = {⟨𝑥1, 0.8, 0.1⟩ , ⟨𝑥2, 1, 0⟩ , ⟨𝑥3, 0.9, 0⟩} ,

𝐴3 = {⟨𝑥1, 0.6, 0.2⟩ , ⟨𝑥2, 0.8, 0⟩ , ⟨𝑥3, 1, 0⟩} .

(37)

The sample 𝐵 which needs to be recognized is as follows:

𝐵 = {⟨𝑥1, 0.5, 0.3⟩ , ⟨𝑥2, 0.6, 0.2⟩ , ⟨𝑥3, 0.8, 0.1⟩} . (38)

The similarity degree between 𝐴 𝑖 (𝑖 = 1, 2, 3) and 𝐵

calculated by (17) is

𝑆𝑌 (𝐴1, 𝐵) = 0.887,

𝑆𝑌 (𝐴2, 𝐵) = 0.913,

𝑆𝑌 (𝐴3, 𝐵) = 0.936.

(39)
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Table 1: The comparison of similarity measures (counterintuitive cases are in bold type).

1 2 3 4 5 6
𝐴 ⟨0.3, 0.3⟩ ⟨0.3, 0.4⟩ ⟨1, 0⟩ ⟨0.5, 0.5⟩ ⟨0.4, 0.2⟩ ⟨0.4, 0.2⟩

𝐵 ⟨0.4, 0.4⟩ ⟨0.4, 0.3⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0.5, 0.3⟩ ⟨0.5, 0.2⟩

𝑆𝐶 1 0.9 0.5 1 1 0.95
𝑆𝐻 0.9 0.9 0.5 0.5 0.9 0.95
𝑆𝐿 0.95 0.9 0.5 0.75 0.95 0.95
𝑆𝑂 0.9 0.9 0.3 0.5 0.9 0.93
𝑆DC 1 0.9 0.5 1 1 0.95
𝑆HB 0.9 0.9 0.5 0.5 0.9 0.95
𝑆
𝑝

𝑒
0.9 0.9 0.5 0.5 0.9 0.95

𝑆
𝑝

𝑠
0.95 0.9 0.5 0.75 0.95 0.95

𝑆
𝑝

ℎ
0.933 0.933 0.5 0.67 0.933 0.95

𝑆
1

HY 0.9 0.9 0 0.5 0.9 0.9
𝑆
2

HY 0.85 0.85 0 0.38 0.85 0.85
𝑆
3

HY 0.82 0.82 0 0.33 0.82 0.82
𝐶IFS 1 0.96 0 0 0.9971 0.9965
𝑆
𝑝

𝑡 0.967 0.9 0.5 0.833 0.937 0.95
𝑆𝑌 0.985 0.994 0.5 0.354 0.936 0.896

It can be observed that pattern𝐵 should be classified to𝐴3
with a class label 𝐶3. According to the recognition principle
of maximum degree of similarity between IFSs, this result is
in agreement with the one obtained in [7, 13].

Let us assume that the weights of 𝑥1, 𝑥2, and 𝑥3 are
0.5, 0.3, and 0.2, respectively, as they were assumed in [7].
Considering (32), we can get

𝑆WY (𝐴1, 𝐵) = 0.853,

𝑆WY (𝐴2, 𝐵) = 0.919,

𝑆WY (𝐴3, 𝐵) = 0.949.

(40)

According to (36), 𝐵 can be recognized as 𝐴3, which is
identical to the result obtained in [7, 13].

To make our similarity measure more transparent and
comparable with the measures proposed earlier by other
authors, the example analyzed in [17] will be discussed next.

Example 9. Assume that there are three IFS patterns in 𝑋 =

{𝑥1, 𝑥2, 𝑥3}. The three patterns are denoted as follows:

𝐴1 = {⟨𝑥1, 0.3, 0.3⟩ , ⟨𝑥2, 0.2, 0.2⟩ , ⟨𝑥3, 0.1, 0.1⟩} ,

𝐴2 = {⟨𝑥1, 0.2, 0.2⟩ , ⟨𝑥2, 0.2, 0.2⟩ , ⟨𝑥3, 0.2, 0.2⟩} ,

𝐴3 = {⟨𝑥1, 0.4, 0.4⟩ , ⟨𝑥2, 0.4, 0.4⟩ , ⟨𝑥3, 0.4, 0.4⟩} .

(41)

Assume that a sample 𝐵 = {⟨𝑥1, 0.3, 0.3⟩, ⟨𝑥2, 0.2, 0.2⟩,

⟨𝑥3, 0.1, 0.1⟩} is to be classified.
The similarity degrees of 𝑆(𝐴1, 𝐵), 𝑆(𝐴2, 𝐵), and 𝑆(𝐴3, 𝐵)

are calculated by (5)–(16) for all existing similarity measures
and shown in Table 2, where 𝑝 = 1 for 𝑆HB, 𝑆

𝑝

𝑒
, 𝑆𝑝
𝑠
, 𝑆𝑝
ℎ
and

𝑝 = 1, 𝑡 = 2 for 𝑆𝑝𝑡 .

The proposed similarity measure 𝑆𝑌 can be calculated by
(17) as follows:

𝑆𝑌 (𝐴1, 𝐵) = 1,

𝑆𝑌 (𝐴2, 𝐵) = 0.990,

𝑆𝑌 (𝐴3, 𝐵) = 0.932.

(42)

It is obvious that 𝐵 is equal to 𝐴1. This indicates that
sample 𝐵 should be classified to 𝐴1. However, the similarity
degrees of 𝑆(𝐴1, 𝐵), 𝑆(𝐴2, 𝐵), and 𝑆(𝐴3, 𝐵) are equal to
each other when 𝑆𝐶, 𝑆𝐻, 𝑆DC, and 𝐶IFS are employed. These
four similarity measures are not capable of discriminating
difference between the three patterns. Fortunately, the results
of 𝑆𝑌(𝐴 𝑖, 𝐵) (𝑖 = 1, 2, 3) can be used to make correct classi-
fication conclusion. This means that the proposed similarity
measure shows an identical performance withmajority of the
existing measures.

6. Applications in Pattern Recognition

Along with the previous investigation of classification capa-
bilities of the proposed measure, an additional experiment
discussed in [7, 22, 23, 33–36], will be presented as an
application in pattern recognition. In this paper, we propose
an alternative approach to medical diagnosis using the newly
defined similarity measure.

Let us consider the same data as in [7, 22, 23, 33–
36]. Suppose that there are four patients Al, Bob, Joe, Ted,
represented as 𝑃 = {Al, Bob, Joe, Ted}. Their symptoms are
𝑆 = {Temperature, Headache, Stomach pain, Cough, Chest
pain}. The set of diagnoses is defined as 𝐷 = {Viral fever,
Malaria, Typhoid, Stomach problem, Chest problem}. The
intuitionistic fuzzy relation 𝑃 → 𝑆 is presented in Table 3.
Table 4 gives the intuitionistic fuzzy relation 𝑆 → 𝐷. Each
element of the tables is given in the form of IFV, which is
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Table 2: The similarity measures between the known patterns and the unknown patterns in Example 9 (patterns not discriminated are in
bold type).

𝑆(𝐴1, 𝐵) 𝑆(𝐴2, 𝐵) 𝑆(𝐴3, 𝐵) 𝑆(𝐴1, 𝐵) 𝑆(𝐴2, 𝐵) 𝑆(𝐴3, 𝐵)

𝑆𝐶 1 1 1 𝑆
𝑝

𝑠
1 0.967 0.900

𝑆𝐻 1 1 1 𝑆
𝑝

ℎ
1 0.956 0.867

𝑆𝐿 1 0.967 0.9 𝑆
1

HY 1 0.967 0.8
𝑆𝑂 1 0.918 0.784 𝑆

2

HY 1 0.898 0.713
𝑆DC 1 1 1 𝑆

3

HY 1 0.875 0.667
𝑆HB 1 0.933 0.8 𝐶IFS 1 1 1
𝑆
𝑝

𝑒
1 0.933 0.8 𝑆

𝑝

𝑡 1 0.978 0.933

Table 3: Symptoms characteristic for the patients.

Temperature Headache Stomach pain Cough Chest pain
Al (0.8, 0.1) (0.6, 0.1) (0.2, 0.8) (0.6, 0.1) (0.1, 0.6)
Bob (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7) (0.1, 0.8)
Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) (0.0, 0.5)
Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) (0.3, 0.4)

Table 4: Symptoms characteristic for the diagnoses.

Viral fever Malaria Typhoid Stomach problem Chest pain problem
Temperature (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8)
Headache (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0, 0.8)
Stomach pain (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8)
Cough (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8)
Chest pain (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1)

Table 5: The proposed similarity measure 𝑆𝑌 between each patient’s symptoms and the considered set of possible diagnoses.

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.9347 0.9228 0.9223 0.7673 0.7490
Bob 0.8124 0.6775 0.8997 0.9760 0.8211
Joe 0.9152 0.8271 0.9188 0.7917 0.7456
Ted 0.9576 0.9034 0.9060 0.8577 0.8122

a pair of numbers corresponding to the membership and
nonmembership values, respectively.

In order to make a proper diagnosis for each patient,
we calculate the similarity degree between each patient and
each diagnose. According to the principle of maximum
similarity degree, the higher similarity degree indicates a
proper diagnosis. In Table 5, the similarity degree 𝑆𝑌 between
patients and diagnoses is presented. According to the sim-
ilarity degrees in Table 5, conclusion can be made that Al
suffers from Viral fever, Bob suffers from Stomach problem,
Joe suffers fromTyphoid, andTed suffers fromViral fever.The
diagnosis results for this case obtained in previous study have
been presented in [23]. It is clear that our proposed method
provides the same results obtained by Vlachos and Sergiadis
in [33], Own in [34], and Boran and Akay in [23]. Moreover,
our proposed similarity measure is calculated based on the
IFNs, without any other parameters such as 𝑝, 𝑡 in [23]. So it
can reduce the computation complexity.

7. Conclusion

Since most of the existing similarity measures for IFSs have
provided counterintuitive results, a new similarity measure
andweighted similaritymeasure between IFSswere proposed
in this paper. The new similarity measure is calculated based
on the membership degree 𝜇𝐴(𝑥), nonmembership degree
V𝐴(𝑥), hesitancy degree 𝜋𝐴(𝑥), and the upper bound of
membership 1 − V𝐴(𝑥). In some special cases where some
of the existing similarity measures cannot provide reason-
able results, the proposed similarity measure shows great
capacity for discriminating IFSs. Moreover, investigation of
the new measure’s classification capability was carried out
based on two numerical examples and medical diagnosis.
It has been illustrated that the proposed similarity measure
performs as well as or better than previous measures. Further
research will be focused on its applications in other practical
fields.
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