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We propose a three-step block method of Adam’s type to solve nonlinear second-order two-point boundary value problems of
Dirichlet type andNeumann type directly.We also extend thismethod to solve the systemof second-order boundary value problems
which have the same or different two boundary conditions. The method will be implemented in predictor corrector mode and
obtain the approximate solutions at three points simultaneously using variable step size strategy. The proposed block method will
be adapted with multiple shooting techniques via the three-step iterative method. The boundary value problem will be solved
without reducing to first-order equations. The numerical results are presented to demonstrate the effectiveness of the proposed
method.

1. Introduction

Boundary value problems (BVPs) arise in many areas of
applied mathematics, for example, application to chemical
reactor theory [1] and Bratu-type problem [2]. Recentlymany
methods are available to solve BVPs such asAdomian decom-
position method, variational iteration method, homotopy
perturbation method, and modified homotopy perturbation
method. The Adomian decomposition method and varia-
tional iteration method were developed by Singh and Kumar
[3] and Lu [4], respectively. The homotopy perturbation
method that has been introduced by Saadatmandi et al. [5] to
solve second-order BVPs has less iteration compared to Ado-
mian decomposition method. Asadi et al. [6] has extended
the modified homotopy perturbation method to solve the
nonlinear system of second-order BVPs.The quintic B-spline
collocation method has been modified by Lang and Xu [7]
to solve second-order BVPs. Srivastava et al. [8] developed
a numerical algorithm based on the nonpolynomial quintic
spline functions for the solution of second-order BVPs with
engineering applications, while Ibraheem andKhalaf [9] have
proposed a shooting neural networks algorithm for solving

BVPs. Rahman et al. [10] solved numerically second-order
BVPs by the Galerkin method. A smart nonstandard finite
difference scheme has been proposed by Erdogan and Ozis
[11] for solving second-order nonlinear BVPs. Besides that,
Liu et al. [12] solve BVPs with Neumann type by using
polynomial spline approach. The aim of this research is to
propose a three-step block method to solve the BVPs directly
using multiple shooting techniques with variable step size
strategy.

The present paper is organized as follows. In Section 2,
we present the derivation of the three-step block method.
In Section 3, we show the analysis of the method including
the order, consistency, and stability. In Section 4 we show
the implementation of the multiple shooting techniques.
The numerical results and the discussion are presented in
Section 5. Finally, a conclusion is given in Section 6.

2. Derivation of Three-Step Block Method

The general two-point second-order BVP and the system
of second-order BVP subject to two kinds of boundary
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Figure 1: Three-step Adam’s method.

condition which are Dirichlet type and Neumann type will
be solved directly by three-step block method. The proposed
method is the extended of block method proposed by Majid
et al. [13] which uses the method to solve second-order
ordinary differential equations.

The two-point second-order boundary value problem is
as follows:

𝑦
󸀠󸀠
= 𝑓 (𝑥, 𝑦, 𝑦

󸀠
) , 𝑎 ≤ 𝑥 ≤ 𝑏. (1)

Dirichlet boundary condition:

𝑦 (𝑎) = 𝛼, 𝑦 (𝑏) = 𝛽. (2)

Neumann boundary condition:

Type 1:

𝑦
󸀠

(𝑎) = 𝛼, 𝑦
󸀠

(𝑏) = 𝛽. (3)

Type 2:

𝑦 (𝑎) = 𝛼, 𝑦
󸀠

(𝑏) = 𝛽. (4)

The system of two-point second-order boundary value prob-
lem:

𝑦
󸀠󸀠

1
= 𝑓
1
(𝑥, 𝑦
1
, 𝑦
󸀠

1
, 𝑦
2
, 𝑦
󸀠

2
) ,

𝑦
󸀠󸀠

2
= 𝑓
2
(𝑥, 𝑦
1
, 𝑦
󸀠

1
, 𝑦
2
, 𝑦
󸀠

2
) , 𝑎 ≤ 𝑥 ≤ 𝑏.

(5)

Dirichlet-Dirichlet boundary condition:

𝑦
1
(𝑎) = 𝛼

1
, 𝑦

1
(𝑏) = 𝛽

1
,

𝑦
2
(𝑎) = 𝛼

2
, 𝑦

2
(𝑏) = 𝛽

2
.

(6)

Neumann-Dirichlet boundary condition:

𝑦
1
(𝑎) = 𝛼

1
, 𝑦

󸀠

1
(𝑏) = 𝛽

1
,

𝑦
2
(𝑎) = 𝛼

2
, 𝑦

2
(𝑏) = 𝛽

2
.

(7)

We have divided the interval [𝑎, 𝑏] into a series of blocks
with each block containing three points as shown in
Figure 1, where ℎ is the step size and 𝑟 is the ratio of the
step size. Three approximate solutions, 𝑦

𝑛+1
, 𝑦
𝑛+2

, and 𝑦
𝑛+3

are simultaneously computed using the same back values by

integrating (1) once and twice over the intervals [𝑥
𝑛
, 𝑥
𝑛+1
],

[𝑥
𝑛
, 𝑥
𝑛+2
], and [𝑥

𝑛
, 𝑥
𝑛+3
], respectively. Consider

𝑦
󸀠

𝑛+1
= 𝑦
󸀠

𝑛
+ ∫

𝑥
𝑛+1

𝑥
𝑛

𝑓 (𝑥, 𝑦, 𝑦
󸀠
) 𝑑𝑥,

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ𝑦
󸀠

𝑛
+ ∫

𝑥
𝑛+1

𝑥
𝑛

(𝑥
𝑛+1

− 𝑥)𝑓 (𝑥, 𝑦, 𝑦
󸀠
) 𝑑𝑥,

𝑦
󸀠

𝑛+2
= 𝑦
󸀠

𝑛
+ ∫

𝑥
𝑛+2

𝑥
𝑛

𝑓 (𝑥, 𝑦, 𝑦
󸀠
) 𝑑𝑥,

𝑦
𝑛+2

= 𝑦
𝑛
+ 2ℎ𝑦

󸀠

𝑛
+ ∫

𝑥
𝑛+2

𝑥
𝑛

(𝑥
𝑛+2

− 𝑥)𝑓 (𝑥, 𝑦, 𝑦
󸀠
) 𝑑𝑥,

𝑦
󸀠

𝑛+3
= 𝑦
󸀠

𝑛
+ ∫

𝑥
𝑛+3

𝑥
𝑛

𝑓 (𝑥, 𝑦, 𝑦
󸀠
) 𝑑𝑥,

𝑦
𝑛+3

= 𝑦
𝑛
+ 3ℎ𝑦

󸀠

𝑛
+ ∫

𝑥
𝑛+3

𝑥
𝑛

(𝑥
𝑛+3

− 𝑥)𝑓 (𝑥, 𝑦, 𝑦
󸀠
) 𝑑𝑥.

(8)

The method is derived by replacing the function 𝑓(𝑥, 𝑦, 𝑦󸀠)
in (8) with Lagrange interpolation polynomial where five
interpolating points are involved and will be implemented
using the variable step size strategy. The choices of the next
step size will be restricted to half, double, or the same as the
current step size.When the next step size is doubled, the ratio
𝑟 is 0.5 and while the step size remains constant, 𝑟 is 1. If step
fails, the current step size is half the previous step size and
the ratio 𝑟 is 2. Then the approximate solutions in the block
will be recalculated. The corrector formulae for 𝑟 = 1 are as
follows:

𝑦
󸀠

𝑛+1
= 𝑦
󸀠

𝑛
+

ℎ

720

× (−19𝑓
𝑛−1

+ 346𝑓
𝑛
+ 456𝑓

𝑛+1
− 74𝑓

𝑛+2
+ 11𝑓

𝑛+3
)

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ𝑦
󸀠

𝑛
+

ℎ
2

1440

× (−21𝑓
𝑛−1

+ 472𝑓
𝑛
+ 330𝑓

𝑛+1
− 72𝑓

𝑛+2
+ 11𝑓

𝑛+3
)

𝑦
󸀠

𝑛+2
= 𝑦
󸀠

𝑛
+
ℎ

90
(−𝑓
𝑛−1

+ 34𝑓
𝑛
+ 114𝑓

𝑛+1
+ 34𝑓

𝑛+2
− 𝑓
𝑛+3
)

𝑦
𝑛+2

= 𝑦
𝑛
+ 2ℎ𝑦

󸀠

𝑛
+
ℎ
2

90
(−3𝑓
𝑛−1

+ 68𝑓
𝑛
+ 114𝑓

𝑛+1
+ 𝑓
𝑛+3
)

𝑦
󸀠

𝑛+3
= 𝑦
󸀠

𝑛
+
3ℎ

80
(−𝑓
𝑛−1

+ 14𝑓
𝑛
+ 24𝑓

𝑛+1
+ 34𝑓

𝑛+2
+ 9𝑓
𝑛+3
)

𝑦
𝑛+3

= 𝑦
𝑛
+ 3ℎ𝑦

󸀠

𝑛

+
3ℎ
2

160
(−3𝑓
𝑛−1

+ 64𝑓
𝑛
+ 126𝑓

𝑛+1
+ 48𝑓

𝑛+2
+ 5𝑓
𝑛+3
) .

(9)

3. Analysis of the Method

In this section we will discuss the order, consistency, stability,
and convergence of the three-step Adam’smethod.The three-
step Adam’s method belongs to the class of linear multistep
method (LMM):

𝑘

∑

𝑗=0

𝛼
𝑗
𝑦
𝑛+𝑗
− ℎ

𝑘

∑

𝑗=0

𝛽
𝑗
𝑦
󸀠

𝑛+𝑗
− ℎ
2

𝑘

∑

𝑗=0

𝛾
𝑗
𝑦
󸀠󸀠

𝑛+𝑗
= 𝐶
𝑝+2
ℎ
𝑝+2
𝑦
𝑝+2
. (10)
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3.1. Order of the Method

Definition 1 (Fatunla [14] and Lambert [15]). The linear
multistep method is said to be of order 𝑝 if

𝐶
0
= 𝐶
1
= 𝐶
2
= ⋅ ⋅ ⋅ = 𝐶

𝑝+1
= 0, 𝐶

𝑝+2
̸= 0, (11)

where 𝐶
0
= ∑
𝑘

𝑗=0
𝛼
𝑗
,

𝐶
1
=

𝑘

∑

𝑗=0

𝑗𝛼
𝑗
−

𝑘

∑

𝑗=0

𝛽
𝑗

...

𝐶
𝑝
=
1

𝑝!

𝑘

∑

𝑗=0

𝑗
𝑝
𝛼
𝑗
−

1

(𝑝 − 1)!

𝑘

∑

𝑗=0

𝑗
𝑝−1
𝛽
𝑗
−

1

(𝑝 − 2)!

𝑘

∑

𝑗=0

𝑗
𝑝−2
𝛾
𝑗
,

𝑝 = 2, 3, . . . ,

(12)

where 𝐶
𝑝+2

is the error constant.
Rewrite (9) as (10) with 𝑘 being 4 in matrix form:

[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 −1 1 0 0 0

0 0 0 0 0 0

0 −1 0 1 0 0

0 0 0 0 0 0

0 −1 0 0 1 0

]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑦
𝑛

𝑦
𝑛+1

𝑦
𝑛+2

𝑦
𝑛+3

𝑦
𝑛+4

𝑦
𝑛+5

]
]
]
]
]
]
]

]

= ℎ

[
[
[
[
[
[
[
[
[
[
[

[

0 1 −1 0 0 0

0 1 0 0 0 0

0 1 0 −1 0 0

0 2 0 0 0 0

0 1 0 0 −1 0

0 3 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑦
󸀠

𝑛

𝑦
󸀠

𝑛+1

𝑦
󸀠

𝑛+2

𝑦
󸀠

𝑛+3

𝑦
󸀠

𝑛+4

𝑦
󸀠

𝑛+5

]
]
]
]
]
]
]
]
]
]
]
]

]

+ ℎ
2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−19

720

346

720

456

720

−74

720

11

720
0

−21

1440

472

1440

330

1440

−72

1440

11

1440
0

−1

90

34

90

114

90

34

90

−1

90
0

−3

90

68

90

114

90
0

1

90
0

−3

80

42

80

72

80

102

80

27

80
0

−9

160

192

160

378

160

144

160

15

160
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑓
𝑛

𝑓
𝑛+1

𝑓
𝑛+2

𝑓
𝑛+3

𝑓
𝑛+4

𝑓
𝑛+5

]
]
]
]
]
]
]

]

.

(13)

From Definition 1, we obtain

𝐶
0
= 𝐶
1
= ⋅ ⋅ ⋅ = 𝐶

6
= 0,

𝐶
7
= [

−11

1440

−1

10080
0

−1

126

−3

160

−9

560
]

𝑇

̸= 0.

(14)

Therefore, the order of three-step Adam’s
method is five; (𝑝 = 5) with error constant
[−11/1440 −1/10080 0 −1/126 −3/160 −9/560]

𝑇.

3.2. Consistency of the Method

Definition 2 (Lambert [15]). The linear multistep method is
said to be consistent if it has order 𝑝 ≥ 1.

Since the order of three-step Adam’s method is 𝑝 = 5 > 1,
therefore, the method is consistent according to Definition 2.

3.3. Stability of the Method

Definition 3 (Lambert [15]). A linear multistep method
is zero-stable provided the roots 𝜉

𝑗
, 𝑗 = 0(1)𝑘 of the

first characteristics polynomial 𝜌(𝜉) specified as 𝜌(𝜉) =

det | ∑𝑘
𝑗=0
𝐴
(𝑗)
𝜉
(𝑘−𝑗)

| = 0 satisfies |𝜉
𝑗
| ≤ 1 and for those roots

with |𝜉
𝑗
| = 1 the multiplicity must not exceed two.

Rewrite (9) in matrix form as follows:

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑦
󸀠

𝑛+1

𝑦
𝑛+1

𝑦
󸀠

𝑛+2

𝑦
𝑛+2

𝑦
󸀠

𝑛+3

𝑦
𝑛+3

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑦
󸀠

𝑛−2

𝑦
𝑛−2

𝑦
󸀠

𝑛−1

𝑦
𝑛−1

𝑦
󸀠

𝑛

𝑦
𝑛

]
]
]
]
]
]
]

]

+ ℎ

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
−19

720

346

720

456

720

−74

720

11

720

0 0 0 0 0 0

0
−1

90

34

90

114

90

34

90

−1

90

0 0 0 0 0 0

0
−3

80

42

80

72

80

102

80

27

80

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[

[

𝑓
𝑛−2

𝑓
𝑛−1

𝑓
𝑛

𝑓
𝑛+1

𝑓
𝑛+2

𝑓
𝑛+3

]
]
]
]
]
]
]
]
]
]
]

]
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+ ℎ
2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0
−21

1440

472

1440

330

1440

−72

1440

11

1440

0 0 0 0 0 0

0
−3

90

68

90

114

90
0

1

90

0 0 0 0 0 0

0
−9

160

192

160

378

160

144

160

15

160

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑓
𝑛

𝑓
𝑛+1

𝑓
𝑛+2

𝑓
𝑛+3

𝑓
𝑛+4

𝑓
𝑛+5

]
]
]
]
]
]
]

]

.

(15)

From (15), the first characteristic polynomial, 𝜌(𝜉) =

det |𝜉𝐴0 − 𝐴1| = 0, where

𝐴
0
=

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

,

𝐴
1
=

[
[
[
[
[
[
[

[

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

,

𝜌 (𝜉) = det

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[
[
[
[
[
[
[

[

𝜉 0 0 0 0 0

0 𝜉 0 0 0 0

0 0 𝜉 0 0 0

0 0 0 𝜉 0 0

0 0 0 0 𝜉 0

0 0 0 0 0 𝜉

]
]
]
]
]
]
]

]

−

[
[
[
[
[
[
[

[

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 = 𝜉
4

(𝜉 − 1)
2

𝜉 = 0, 0, 0, 0, 1, 1.

(16)

According to Definition 3, three-step Adam’s method is zero-
stable.

3.4. Convergence of the Method

Definition 4 (Lambert [15]). The linear multistep method is
convergent if and only if it is consistent and zero-stable.

Since the consistency and zero-stable of the method
have been established, then the three-step Adam’s method is
convergent.

4. Implementation of the Method

The three-step block method of Adam’s type (3SAM) will
be implemented for solving the boundary value problems
via multiple shooting techniques. The idea for shooting
technique is to form the initial condition from the bound-
ary condition with the guessing value. Multiple shooting

techniques are indeed a combination of several shooting
techniques by dividing the given interval 𝑎 ≤ 𝑥 ≤ 𝑏 into
𝑗th subinterval. For the Dirichlet boundary condition, the
missing initial condition is 𝑦󸀠(𝑎). Equations (1) and (2) can
be written as

𝑑
2
𝑦
𝑗

𝑑𝑥2
= 𝑓
𝑗
(𝑥, 𝑦
𝑗
, 𝑦
󸀠

𝑗
) , (17)

with initial conditions

𝑦
1
(𝑎) = 𝛼, 𝑦

󸀠

1
(𝑎) = 𝑠V

𝑦
2
(𝑥
1
) = 𝑦 (𝑥

1
, 𝑠V−1) , 𝑦

󸀠

2
(𝑥
1
) = 𝑦
󸀠
(𝑥
1
, 𝑠V−1)

...

𝑦
𝑗
(𝑥
𝑗−1
) = 𝑦
󸀠
(𝑥
𝑗−1
, 𝑠V−1) , 𝑦

󸀠

𝑗
(𝑥
𝑗−1
) = 𝑦
󸀠
(𝑥
𝑗−1
, 𝑠V−1) .

(18)

Therefore, we obtain the 𝑗th stop conditions
󵄨󵄨󵄨󵄨𝑦 (𝑎, 𝑠V) − 𝑦 (𝑥1, 𝑠V−1)

󵄨󵄨󵄨󵄨 ≤ 𝜀

󵄨󵄨󵄨󵄨𝑦 (𝑥2, 𝑠V) − 𝑦 (𝑥1, 𝑠V−1)
󵄨󵄨󵄨󵄨 ≤ 𝜀

...
󵄨󵄨󵄨󵄨󵄨
𝑦 (𝑥
𝑗
, 𝑠V) − 𝛽

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀.

(19)

The iteration is repeated until we reach the stop conditions,
the value of 𝑠V will be generated by three-step iterativemethod
as follows:

𝑇V = 𝑠V −
𝑦 (𝑏, 𝑠V) − 𝛽

𝑧 (𝑏, 𝑠V)

𝑈V = −
𝑦 (𝑏, 𝑇V) − 𝛽

𝑧 (𝑏, 𝑠V)

𝑠V+1 = 𝑇V −
𝑦 (𝑏, 𝑠V) − 𝛽

𝑧 (𝑏, 𝑠V)
−
𝑦 (𝑏, 𝑇V + 𝑈V) − 𝛽

𝑧 (𝑏, 𝑠V)
.

(20)

Detail for the three-step iterative method can be refered to in
Yun [16].

Themissing initial condition for the Neumann boundary
condition is 𝑦(𝑎), therefore the first initial condition is
𝑦
1
(𝑎) = 𝑠V, 𝑦

󸀠

1
(𝑎) = 𝛼. The stop condition and the three-

step iterative method implementation depend to the value of
𝑦
󸀠
(𝑏, 𝑠V).

5. Numerical Result

In this section, four problems are tested to study the accu-
racy and the efficiency of the developed codes. The results
obtained by the proposed method are compared to the
existing method. The following notations are used in the
tables:

3SAM: Three-step Adam’s method variable step size
via multiple shooting techniques adapted with three-
step iterative method;
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Table 1: Comparison of the numerical result for solving Problem 1.

3SAM

TOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
TS 4 6 11 22 45

MAXE 3.40e − 4 5.26e − 6 8.17e − 8 2.36e − 10 6.06e − 12
TFC 127 184 319 616 1237
Time 0.000139 0.000151 0.000216 0.000307 0.000470

2P1BVS

TOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
TS 11 16 26 32 57

MAXE 7.66e − 5 2.47e − 6 3.55e − 8 1.16e − 8 1.07e − 10
TFC 265 377 593 737 1321
Time 0.000141 0.000162 0.000227 0.000275 0.000444

bpv4c

ABSTOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
RELTOL 1.00 1e − 2 1e − 4 1e − 6 1e − 8

MP 15 15 19 69 233
MAXE 6.70e − 4 3.35e − 5 3.14e − 6 1.27e − 8 1.25e − 10
TFC 157 187 374 1568 5043
Time 0.0313 0.0469 0.0313 0.0938 0.1563

MLAM

h 1/15 1/31 1/63 1/127 1/255
TS 15 31 63 127 255

MAXE 2.46e − 4 3.94e − 5 4.94e − 6 6.17e − 7 5.00e − 8
Time 0.109 0.235 0.328 0.687 1.953

Table 2: Comparison of the numerical result for solving Problem 2.

3SAM

TOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
TS 4 6 10 18 37

MAXE 8.55e − 5 8.37e − 6 9.68e − 7 1.05e − 7 1.09e − 8
TFC 41 61 98 173 341
Time 0.000082 0.000101 0.000131 0.000229 0.000388

2P1BVS

TOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
TS 12 16 23 36 59

MAXE 1.72e − 5 1.33e − 5 2.55e − 7 6.20e − 9 1.72e − 10
TFC 65 89 129 205 341
Time 0.000090 0.000109 0.000141 0.000218 0.000315

bpv4c

ABSTOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
RELTOL 1.00 1e − 2 1e − 4 1e − 6 1e − 8

MP 15 15 29 43 160
MAXE 3.60e − 3 4.16e − 4 3.17e − 7 6.14e − 9 2.50e − 11
TFC 228 254 491 689 2745
Time 0.0156 0.0313 0.0313 0.0469 0.1406

COLHW
h 1/16 1/32 1/64 1/128 1/256
TS 16 32 64 128 256

MAXE 5.95e − 4 1.55e − 4 3.98e − 5 1.01e − 5 2.53e − 6

2P1BVS: two-point block method with variable step
size proposed by Phang et al. [17];

bvp4c: MATLAB solver proposed by Kierzenka and
Shampine [18];

MLAM: multilevel augmentation method proposed
by Chen [19];

COLHW: collocation method with Haar wavelets
proposed by Siraj-ul-Islam et al. [20];

SCM: sinc-collocation method proposed by
Mohamed [21];
LRBFM: local radial basis function method proposed
by Mehdi and Ahmad [22];
TOL: tolerance;
TS: total number of steps;
MAXE: maximum error;
TFC: total function call;



6 Abstract and Applied Analysis

Table 3: Comparison of the numerical result for solving Problem 3.

3SAM

TOL 1e − 2 1e − 4 1e − 6 1e − 8 1e − 10
TS 4 5 7 13 24

MAXE 3.79e − 04 7.14e − 06 3.57e − 08 8.38e − 10 2.01e − 11
TFC 114 153 231 366 672
Time 0.000203 0.000231 0.000286 0.000396 0.000412

SCM TS 10 20 30 40 —
MAXE 4.06e − 1 1.70e − 6 8.14e − 8 6.40e − 9 —

LRBFM TS 21 41 61 — —
MAXE 2.10e − 4 2.37e − 4 2.01e − 5 — —

TIME: execution time in seconds;
RELTOL: the tolerance use to measure the error
relative use by bvp4c;
ABSTOL: the absolute error tolerances use by bvp4c;
MP: total mesh point use by bvp4c;
—: no data in the references;
1𝑒 − 2: 1 × 10−2.

Problem 1 (nonlinear Dirichlet boundary value problem).
Consider

𝑦
󸀠󸀠
= −𝑦
2
+ sin2 (𝜋𝑥) − 𝜋2 sin (𝜋𝑥) , 0 ≤ 𝑥 ≤ 1. (21)

Dirichlet boundary condition: 𝑦(0) = 0, 𝑦(1) = 0;
exact solution: 𝑦 = sin(𝜋𝑥);
source: Chen [19].

Problem 2 (nonlinear Neumann boundary value problem).
Consider

𝑦
󸀠󸀠
= 2𝑦
3
, 0 ≤ 𝑥 ≤ 1. (22)

Neumann boundary condition:

𝑦
󸀠

(0) = −1, 𝑦
󸀠

(1) = −
1

4
. (23)

Exact solution: 𝑦 = 1/(1 + 𝑥);
source: Siraj-ul-Islam et al. [20].

Problem 3 (nonlinear system of boundary value problem).
Consider

𝑦
󸀠󸀠

1
= − 𝑥𝑦

󸀠

1
− cos (𝜋𝑥) 𝑦󸀠

2
+ sin (𝑥)

+ (𝑥
2
− 𝑥 + 2) cos (𝑥) + (1 − 2𝑥) cos (𝜋𝑥)

𝑦
󸀠󸀠

2
= − 𝑥𝑦

󸀠
− 𝑥(𝑦

󸀠

2
)
2

− 2 + 𝑥 sin (𝑥)

+ (𝑥
2
− 𝑥) cos (𝑥) + 𝑥(1 − 2𝑥)2.

(24)

Two Dirichlet boundary condition:

𝑦
1
(0) = 0, 𝑦

1
(1) = 0, 𝑦

2
(0) = 0, 𝑦

2
(1) = 0.

(25)

Exact solution: 𝑦
1
= (𝑥 − 1) sin(𝑥), 𝑦

2
= 𝑥 − 𝑥

2;
source: Mehdi and Ahmad [22].

Problem 4 (nonlinear system of boundary value problem).
The equations governing the free convective boundary-layer
flow above a heated impermeable horizontal surface are

𝑓
󸀠󸀠
+ 𝑚ℎ + (

𝑚 − 2

3
) 𝜂ℎ
󸀠
= 0

ℎ
󸀠󸀠
+ (

𝑚 + 1

3
)𝑓ℎ
󸀠
− 𝑚𝑓
󸀠
ℎ = 0.

(26)

Mixed boundary condition:

𝑓 (0) = 0, 𝑓
󸀠
󳨀→ 0 as 𝜂 󳨀→ ∞

ℎ (0) = 1, ℎ 󳨀→ 0 as 𝜂 󳨀→ ∞.

(27)

Source: Merkin and Zhang [23].

Problems 1–3 are solved by 3SAM with tolerances 1𝑒 − 2,
1𝑒 − 4, 1𝑒 − 6, 1𝑒 − 8, and 1𝑒 − 10. In Problem 1, we solved
the boundary value problem subject to the Dirichlet type
boundary conditions by 3SAM and compared our result with
2P1BVS, MLAM, and bvp4c. In Problem 2, 3SAM solved
the boundary value problem subject to the Neumann type
boundary conditions and compared our result to 2P1BVS,
COLHW, and bvp4c. In Problem 3, 3SAM solved the system
of boundary value problem subject to two boundary condi-
tions and compared our result to SCM and LRBFM. 3SAM,
2P1BVS, and bvp4c are implemented by variable step size
strategy and controlled by the tolerances while MLAM and
COLHW used constant step size.

Tables 1–3 showed the comparison of the numerical result
for solving Problems 1–3.We have observed that the accuracy
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Figure 2: Approximate solution of the value ℎ against 𝜂 for selected
values of𝑚.

for 3SAM is better as the total number of steps was increased
for all problems tested. Firstly, we will discuss the block
method (3SAM and 2P1BVS) implemented in variable step
size strategy.The total number of steps and the total function
call taken by 3SAM is less than 2P1BVS in all problems tested;
this is expected because 3SAM can obtain the solution at
three points simultaneously while 2P1BVS obtains two points
simultaneously per step. We also noticed that the maximum
error for 2P1BVS is comparable to or better than 3SAM but
the accuracy for 3SAM is still within the tolerance. This
is because the total step size of 3SAM is less than 2P1BVS
therefore the step size used by 3SAM is larger than 2P1BVS.
For example, in Table 1 the maximum error for 3SAM is
3.40𝑒 − 4 with 4 steps and the maximum error for 2P1BVS
is 7.66𝑒 − 5 with 11 steps.

Next we discuss the comparison between 3SAM and
bvp4c. The bvp4c is a MATLAB solver which uses the
collocation formula and a mesh of points to divide the
interval of integration into subintervals. If the solution does
not satisfy the tolerance, the solver adapts the mesh and
repeats the process. In Problems 1-2, we choose the initial
mesh point as 15. The total function call taken by 3SAM is
less than bvp4c in all problems tested. We also noticed that
themaximum error for 3SAM is comparable to or better than
bvp4c when the tolerance is larger. For the tolerance getting
smaller, the accuracy for bvp4c is comparable to or better than
3SAM but the accuracy for 3SAM is still within the tolerance.
For example, in Table 2 the maximum error for 3SAM is
1.09𝑒−8with 341 total functions call and themaximum error
for bvp4c is 2.50𝑒 − 11 with 2745 total functions call. The
accuracy of 3SAM is still within the tolerance and compared
to the bvp4c and 3SAM is cheaper in terms of total function
call and execution time.

Finally we discuss the comparison between 3SAM with
the method implemented using constant step size. The total
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Figure 3: Approximate solution of the value𝑓󸀠 against 𝜂 for selected
values of𝑚.

number of steps taken by 3SAM is less thanMLAM,COLHW,
SCM, and LRBFM. This is expected because the 3SAM is
using the variable step size strategy while MLAM, COLHW,
SCM, andLRBFMare using the constant step size.Wenoticed
that as the tolerance was getting smaller, 3SAM has obtained
better accuracy compared to MLAM, COLHW, SCM, and
LRBFM. For example, in Table 3 the maximum error for
3SAM is 3.57𝑒 − 8 with 7 steps, SCM has obtained the
maximum error 8.14𝑒 − 8 with 30 steps and LRBFM has
obtained the maximum error 2.01𝑒 − 5 with 61 steps. We also
noticed that 3SAMhas superiority in terms of execution time
compared to MLAM.

In Problem 4, 3SAM solved the system of boundary value
problem subject to the Neumann-Dirichlet type boundary
conditions which is a free convective boundary-layer flow in
a porous medium above a heated horizontal impermeable
surface or below a cooled horizontal impermeable surface
where wall temperature is a power function of distance from
the origin. Figures 2-3 display the approximate solution of the
value ℎ and 𝑓󸀠 for selected values𝑚 in solving Problem 4.

6. Conclusion

In this paper, we have shown that the proposed three-
step block method of Adam’s type using variable step size
with multiple shooting technique is suitable for solving
nonlinear second-order two-point boundary value problems
ofDirichlet type,Neumann type, andmixed type of boundary
conditions. The numerical results showed that the proposed
block method has superiority in terms of accuracy, total
function call, total steps, and execution time.
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