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The aim of this work is to investigate a class of boundary Cauchy problems with infinite delay. We give some sufficient conditions
ensuring the uniqueness, existence, and regularity of solutions. For illustration, we apply the result to an age dependent population
equation, which covers some special cases considered in some recent papers.

1. Introduction

Consider the following problem:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑎) = −

𝜕

𝜕𝑎
𝑢 (𝑡, 𝑎) − 𝜇 (𝑡, 𝑎) 𝑢 (𝑡, 𝑎) , 𝑡 ≥ 0, 𝑎 ≥ 0,

𝑢 (𝑡, 0) = 𝑓 (𝑡) , 𝑡 ≥ 0,

𝑢 (0, 𝑎) = 𝜑 (𝑎) , 𝑎 ≥ 0,

(1)

where 𝑢(𝑡, 𝑎) represents the density of the population of age
𝑎 at time 𝑡, 𝜇 is the death rate, and 𝑓(𝑡) is the number of
newborns at time 𝑡. Suchmodels were introduced by Lotka in
1925 and have been studied by many authors. For a detailed
discussion, we refer the reader to [1, 2].

The problem (1) can be transformed into the following
abstract boundary Cauchy problem:

𝑑

𝑑𝑡
𝑢 (𝑡) = A𝑢 (𝑡) + Φ (𝑡) 𝑢 (𝑡) , 𝑡 ≥ 0,

𝐿𝑢 (𝑡) = 𝑓 (𝑡) ∈ 𝜕X, 𝑡 ≥ 0,

𝑢 (0) = 𝑥 ∈ X,

(2)

where A is an unbounded operator on a Banach space (X,
‖⋅‖) of functions on [0,∞)with domain𝐷(A),𝑢(𝑡) = 𝑢(𝑡, ⋅) ∈
𝐷(A) for each 𝑡 ≥ 0, 𝐿 : 𝐷(A) → 𝜕X is the operator defined

by 𝐿(V(⋅)) = V(0) for V(⋅) ∈ 𝐷(A), and 𝜕X := {V(0); V(⋅) ∈ X}
is a “boundary space.” For each 𝑡 ≥ 0,Φ(𝑡) is a bounded linear
operator fromX to X.

Equation (2) can be further transformed into a Cauchy
problem. To do this, suppose that the domain 𝐷 ≡ 𝐷(A)
of A and 𝜕X are Banach spaces such that 𝐷 is dense and
continuously embedded in X. A ∈ 𝐵(𝐷,X) and 𝐿 ∈

𝐵(𝐷, 𝜕X). We make the following hypothesis.

(S1) 𝐴 := A|ker(𝐿) generates a 𝐶0-semigroup 𝑇(⋅) on X

where ker(𝐿) denotes the kernel of 𝐿.

(S2) 𝐿 is a surjection from𝐷 to 𝜕X.𝐿|ker(𝜆−A) has a contin-
uous inverse for any 𝜆 ∈ 𝜌(𝐴) (the resolvent set of𝐴).

If assumptions (S1) and (S2) hold, then the operator 𝑃𝜆 :=
(𝐿|ker(𝜆−A))

−1 is continuous from 𝜕X to X, and for all𝑦 ∈ 𝜕X
the operator 𝑃𝜆 satisfies

(𝜆 −A) 𝑃𝜆𝑦 = 0, 𝐿𝑃𝜆𝑦 = 𝑦. (3)

At least formally, we can rewrite (2) as

𝑑

𝑑𝑡
𝑢 (𝑡)=𝐴 (𝑢 (𝑡) − 𝑃𝜆𝑓 (𝑡)) + 𝜆𝑃𝜆𝑓 (𝑡) +Φ (𝑡) 𝑢 (𝑡) , 𝑡 ≥ 0,

𝑢 (0) = 𝑥 ∈ X.

(4)
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It is easy to see that (4) is a form of the following abstract
Cauchy problem:

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) + 𝐶𝐺1 (𝑡, 𝑢 (𝑡))) + 𝐺2 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 0,

𝑢 (0) = 𝑥 ∈ 𝑋,

(5)

where 𝐴 is the infinitesimal generator of a 𝐶0-semigroup on
a general Banach space 𝑋, 𝐶 is a bounded linear operator
satisfying certain conditions, and 𝐺1, 𝐺2 : R

+
× 𝑋 → 𝑋.

In this way, the problem of solving (1) or (2) is trans-
formed to that of solving (5). Equations of the form like
(5) were considered in [3–5]. An important tool used is the
multiplicative perturbation which was first studied by Desch
and Schappacher [3] in 1989 for 𝐶0-semigroup. In recent
years, this type of perturbations has been further developed
and applied by many authors (cf., e.g., Engel and Nagel [6],
Piskarëv and Shaw [7]). In this paper, our proof will also be
based on an application of the multiplicative perturbation
theorem.

Equation (2) has been considered in [8, 9] for the cases
𝑓(𝑡) = ∫

∞

0
𝛽(𝑡, 𝑎)𝑢(𝑡, 𝑎)𝑑𝑎 and 𝑓(𝑡) = ∫∞

0
∫
∞

−𝑟
𝛽(𝑎, 𝛿)𝑢(𝑡 +

𝛿, 𝑎)𝑑𝛿 𝑑𝑎, respectively. Suppose that B is a linear space
of functions from (−∞, 0] to X. Then these two cases can
be viewed as a function from B to X. That says that 𝑓(𝑡)
depends on the “history” of 𝑢. Thus, for such functions 𝑓, (2)
becomes a retarded Cauchy problem.

The following abstract retardedCauchy problemhas been
considered by many authors (see [10–13] and the references
therein):

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐹 (𝑡, 𝑢𝑡) , 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P,

(6)

where 𝐴 generates a 𝐶0-semigroup 𝑇(⋅) on 𝑋, P is a linear
space of functions from (−∞, 0] to 𝑋 satisfying some axiom
which will be described later, 𝐹 is a function from [0,∞)×P
to 𝑋, and, for a solution function 𝑢 : R → 𝑋 and for every
𝑡 ≥ 0, the function 𝑢𝑡 : (−∞, 0] → 𝑋, defined by

𝑢𝑡 (𝜃) = 𝑢 (𝑡 + 𝜃) , for 𝜃 ∈ (−∞, 0] , (7)

is required to belong toP.
The theory of partial differential equations with infinite

delay has attracted widespread attention. In [14–16], the vari-
ation-of-constant formula

𝑢 (𝑡) = 𝑇 (𝑡) 𝜑 (0) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢𝑠) 𝑑𝑠, 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P

(8)

is used to study existence of solutions, regularity, existence
of periodic solution, and stability for (6) when the delay is
finite. In [10], a similar argument is used to solve (6) when
an operator 𝐴 (not necessarily densely defined) satisfies the
Hille-Yosida condition (maybe nondensely defined) and the
delay is infinite. For a detailed discussion about infinite delay
equations, we refer the reader to [13].

The main purpose of this paper is to consider the fol-
lowing more general boundary Cauchy problem with infinite
delay:

𝑑

𝑑𝑡
𝑢 (𝑡) = A𝑢 (𝑡) + 𝐺1 (𝑡, 𝑢𝑡) , 𝑡 ≥ 0,

𝐿𝑢 (𝑡) = 𝐺2 (𝑡, 𝑢𝑡) , 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P,

(9)

where 𝐺1 is a function from R+
× P to X and 𝐺2 is a

function from R+
×P to 𝜕X. 𝐺1 and 𝐺2 may be nonlinear.

This abstract boundary delay problem has been studied by
Piazzera [8] in some special cases. The case without delay
also has been studied in [9]. Similar to the way that (2) is
transformed into the form of (5), we can transform (9) into
the following generalized retarded abstract Cauchy problem
with delay:

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) + 𝐶𝐹1 (𝑡, 𝑢𝑡)) + 𝐹2 (𝑡, 𝑢𝑡) , 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P,

(10)

where 𝐹1, 𝐹2 are functions from R+
× P to 𝑋. It is a

generalization of (5) (and hence of (2)) as well as of (6).
In Section 2, we show the uniqueness and existence of

solution of (10). It will be solved by using a variation-
of-constant formula similar to (8). The obtained result
(Theorem 7) can be viewed as a partial generalization of [8, 9].

Then we apply Theorem 7 in Section 3 to investigate an
age dependent population equation for the situation that the
birth process depends on the past of the population, as the
following system describes:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑎) = −

𝜕

𝜕𝑎
𝑢 (𝑡, 𝑎) + 𝑓1 (𝑡, ∫

∞

0

𝑢 (𝑡 − 𝜏, 𝜉) 𝑑𝜉, 𝑎) ,

𝑡 ≥ 0, 𝑎 ≥ 0,

𝑢 (𝑡, 0) = ∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) 𝑢 (𝑡 + 𝜃, 𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (𝑡) , 𝑡 ≥ 0,

𝑢 (𝑡, 𝜃) = 𝜔 (𝑡, 𝜃) , 𝑡 ≤ 0, 𝜃 ∈ R
+
.

(11)

This equation contains as particular cases those equations
that are considered in the recent papers [8, 9].

Finally, we study in Section 4 regularity of mild solutions
of (10). The property about equilibrium will be studied. The
precise definition of equilibriumwill be specified later. In [10],
it is shown that the equilibrium of the solution semigroup
associated with (6) is locally exponentially stable when its
linearized solution around this equilibrium is exponentially
bounded. We extend this result to a special case of (10).

2. Solutions to (10)
Let (𝑋, ‖ ⋅ ‖) be a Banach space. Throughout this paper, (𝐴,
𝐷(𝐴)) is the infinitesimal generator of 𝐶0-semigroup 𝑇(⋅) on
𝑋with domain𝐷(𝐴) and ‖𝑇(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡 for some𝑀 ≥ 1,𝜔 ∈
R, and 𝑡 ≥ 0. In this paper, we assume that the phase space
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(P, ‖ ⋅ ‖P) is a Banach space consisting of some functions
from (−∞, 0] to 𝑋 and satisfies the following axioms, which
were introduced first by Hale and Kato in [17].

(A1) There exist a positive constant𝐻 and functions𝑀1(⋅),
𝑀2(⋅) : R

+
→ R+, with𝑀1 continuous and𝑀2 lo-

cally bounded, such that, for any 𝜎 ∈ R and 𝑎 ≥ 0, if
𝑥 : (−∞, 𝜎 + 𝑎] → 𝑋, 𝑥𝜎 ∈ P and 𝑥(⋅) is continuous
on [𝜎, 𝜎+𝑎], then for every 𝑡 ∈ [𝜎, 𝜎+𝑎] the following
conditions hold:

(i) 𝑥𝑡 ∈ P,
(ii) ‖𝑥(𝑡)‖ ≤ 𝐻‖𝑥𝑡‖P,
(iii) ‖𝑥𝑡‖P ≤ 𝑀1(𝑡 − 𝜎)sup𝜎≤𝑠≤𝑡‖𝑥(𝑠)‖ + 𝑀2(𝑡 −

𝜎)‖𝑥𝜎‖P.

(A2) For each function 𝑥(⋅) in (A1), 𝑡 󳨃→ 𝑥𝑡 is a P-valued
continuous function on [𝜎, 𝜎 + 𝑎].

The objective of this section is devoted to investigate well-
posedness results for the Cauchy problem:
𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) + 𝐶𝐹1 (𝑡, 𝑢𝑡)) + 𝐹2 (𝑡, 𝑢𝑡) , 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P.

(12)

Definition 1. Let 𝐴 generate a 𝐶0-semigroup 𝑇(⋅) on 𝑋. One
says that𝐶 ∈ 𝐵(𝑋) satisfies condition (𝑀) with respect to𝑇(⋅)
if there is a continuous, nondecreasing function𝜎𝐶 : [0,∞)→
[0,∞) with 𝜎𝐶(0) = 0 such that ∫𝑡

0
𝑇(𝑡 − 𝑠)𝐶ℎ(𝑠)𝑑𝑠 ∈ 𝐷(𝐴)

and
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶ℎ (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜎𝐶 (𝑡) sup

0≤𝑠≤𝑡

‖ℎ (𝑠)‖ , (13)

for each ℎ ∈ 𝐶([0, 𝑡], 𝑋) and 𝑡 ≥ 0.

The following are important examples of operators that
satisfy the condition in Definition 1:

(a) 𝐶 is a bounded linear operator from 𝑋 to (𝐷(𝐴),
‖ ⋅ ‖𝐷(𝐴)), the Banach space 𝐷(𝐴) endowed with the
graph norm ‖𝑥‖𝐷(𝐴) := ‖𝑥‖ + ‖𝐴𝑥‖.

(b) 𝐶 is a bounded linear operator from𝑋 to 𝐹(𝐴), where
𝐹(𝐴) denotes the Favard space of 𝐴 given by 𝐹(𝐴) =
{𝑥 ∈ 𝑋; lim sup𝑡→0+ ‖𝑇(𝑡)𝑥 − 𝑥‖ < ∞} and endowed
with the norm ‖𝑥‖𝐹(𝐴) := lim sup𝑡→0+ ‖𝑇(𝑡)𝑥 − 𝑥‖ +

‖𝑥‖.

These conclusions can be found in [3, 4].
In the rest of this paper, we suppose that 𝐶 satisfies con-

dition (𝑀) with respect to 𝑇(⋅) and the function 𝜎𝐶 satisfies
the corresponding properties. Next, we make the hypotheses
about 𝐹𝑖 for 𝑖 = 1, 2.

(H1) 𝐹 ∈ 𝐶([0,∞) × P, 𝑋) is continuous and satisfies a
Lipschitz condition; that is, there is a constant 𝐿 > 0
such that

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝜓1) − 𝐹 (𝑡, 𝜓2)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝜓1 − 𝜓2
󵄩󵄩󵄩󵄩P, (14)

for 𝜓1, 𝜓2 ∈ P and 𝑡 ∈ R+.

Definition 2. Let 𝑇 > 0. A continuous function 𝑢 :

(−∞,𝑇] → 𝑋 is called a mild solution of (12) on [0, 𝑇] if
𝑢 satisfies the following conditions:

(i) 𝑢(𝑡) = 𝑇(𝑡)𝜑(0) + 𝐴∫𝑡
0
𝑇(𝑡 − 𝑠)𝐶𝐹1(𝑠, 𝑢𝑠)𝑑𝑠 + ∫

𝑡

0
𝑇(𝑡 −

𝑠)𝐹2(𝑠, 𝑢𝑠)𝑑𝑠 for 𝑡 ∈ [0, 𝑇],
(ii) 𝑢(𝑡) = 𝜑(𝑡) for 𝑡 ∈ (−∞, 0].

Definition 3. Let𝑇 > 0. A continuous function 𝑢 : (−∞,𝑇)→
𝑋 is called a classical solution of (12) on [0, 𝑇] if 𝑢 satisfies the
following conditions:

(i) 𝑢(𝑡) + 𝐶𝐹1(𝑡, 𝑢𝑡) ∈ 𝐷(𝐴) for 𝑡 ∈ [0, 𝑇],
(ii) 𝑢|[0,𝑇] ∈ 𝐶

1
([0, 𝑇], 𝑋) and satisfies (12),

(iii) 𝑢(𝑡) = 𝜑(𝑡) for 𝑡 ∈ (−∞, 0].
First, we show the uniqueness and existence of mild solutions
to (12).

Theorem 4. Suppose that 𝐹1 and 𝐹2 satisfy hypothesis (H1).
Then (12) has a unique mild solution on [0, 𝑇] for each 𝑇 > 0.

Proof. By assumptions on 𝐹1 and 𝐹2, there is a constant 𝐿 > 0
independent of 𝑡 ∈ [0, 𝑇] such that

2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐹𝑖 (𝑡, 𝜙1) − 𝐹𝑖 (𝑡, 𝜙2)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝜙1 − 𝜙2
󵄩󵄩󵄩󵄩P, (15)

for 𝑡 ∈ [0, 𝑇] and 𝜙1, 𝜙2 ∈ P. Moreover, we define the fol-
lowing real number:

𝑀
󸀠󸀠

𝑇 = 𝐿𝑀
󸀠

𝑇𝑀𝑒
|𝜔|𝑇
, (16)

where 𝑀󸀠
𝑇 = max{𝑀󸀠

1,𝑀
󸀠
2}, 𝑀

󸀠
𝑖 = sup0≤𝑠≤𝑇𝑀𝑖(𝑠), 𝑖 = 1, 2,

and𝑀1(⋅) and𝑀2(⋅) are the functions defined in hypothesis
(A1). Note that𝑀󸀠󸀠

𝑇 is independent of 𝑡 ∈ [0, 𝑇]. Let [0, 𝑟] ⊂
[0, 𝑇] and let

𝑍 (𝑟) := {𝑦 : (−∞, 𝑟] 󳨀→ 𝑋; 𝑦0 ∈ P, 𝑦
󵄨󵄨󵄨󵄨[0,𝑟] ∈ 𝐶 ([0, 𝑟] , 𝑋)}

(17)

be a Banach space equipped with the norm
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑍
𝑟

:=
󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩P +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝐶([0,𝑟],𝑋). (18)

Let
𝑍𝜑 (𝑟) := {𝑦 ∈ 𝑍 (𝑟) ; 𝑦0 = 𝜑} . (19)

Then 𝑍𝜑(𝑟) is a closed subset of 𝑍(𝑟).
Note that it follows from (A2) and (H1) that 𝐹𝑖(𝑠, V𝑠),

𝑖 = 1, 2, are continuous in 𝑠 on [0, 𝑟]. Then, since 𝐶, satisfies
condition (𝑀), we have 𝐴∫𝑡

0
𝑇(𝑡 − 𝑠)𝐶𝐹1(𝑠, V𝑠)𝑑𝑠 ∈ 𝐶([0, 𝑟],

𝑋) (see the proof of Theorem 2.2 in [7]). Thus we can define
𝑆
𝜑
𝑟 : 𝑍𝜑(𝑟) → 𝑍𝜑(𝑟) by

(𝑆
𝜑

𝑟 V) (𝑡)

:=

{{{{{

{{{{{

{

𝑇 (𝑡) 𝜑 (0) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐹1 (𝑠, V𝑠) 𝑑𝑠

+∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹2 (𝑠, V𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑟] ,

𝜑 (𝑡) , 𝑡 ∈ (−∞, 0] .

(20)
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Note that the closed set 𝑍𝜑(𝑟) and the operator 𝑆𝜑𝑟 are
dependent on 𝑟 and 𝜑. From the definition of 𝑆𝜑𝑟 , one can
see that the fixed point of 𝑆𝜑𝑟 is a mild solution of (12) on
[0, 𝑟]. Furthermore, if 𝑟 = 𝑇 and 𝑆𝜑

𝑇
has a unique fixed point,

then the fixed point is the unique solution to (12) from the
definition of 𝑆𝜑

𝑇
and the proof is completed. So, it is sufficient

to show that 𝑆𝜑
𝑇
has a unique fixed point in𝑍𝜑(𝑇).The unique

fixed point will be found step by step. First, we show that there
is an 𝑟 ∈ (0, 𝑇] such that 𝑆𝜑𝑟 has a unique fixed point. This
fact will be shown by finding an 𝑟 ∈ (0, 𝑇] such that 𝑆𝜑𝑟 is a
contraction. Suppose that V1, V2 ∈ 𝑍𝜑(𝑟). For 𝑡 ∈ [0, 𝑟], by the
definition of 𝑆𝜑𝑟 , assumption of 𝐶 and hypotheses (A1) and
(A2), it follows that
󵄩󵄩󵄩󵄩(𝑆

𝜑

𝑟 V1 − 𝑆
𝜑

𝑟 V2) (𝑡)
󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝐹1 (𝑠, (V1)𝑠) − 𝐹1 (𝑠, (V2)𝑠)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑇 (𝑡 − 𝑠) (𝐹2 (𝑠, (V1)𝑠) − 𝐹2 (𝑠, (V2)𝑠)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜎𝐶 (𝑡) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 (𝑠, (V1)𝑠) − 𝐹1 (𝑠, (V2)𝑠)
󵄩󵄩󵄩󵄩

+𝑀𝑡
|𝜔|𝑡
∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹2 (𝑠, (V1)𝑠) − 𝐹2 (𝑠, (V2)𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝜎𝐶 (𝑡) 𝐿𝑀
󸀠

𝑇

󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩𝑍
𝑟

+𝑀𝑒
|𝜔|𝑡
𝐿𝑀

󸀠

𝑇𝑡
󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩𝑍
𝑟

≤ (𝜎𝐶 (𝑟) + 𝑟)𝑀
󸀠󸀠

𝑇

󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩𝑍
𝑟

.

(21)

So, by the assumption on 𝜎𝐶, there exist𝑁 ∈ N and 𝑟 ∈ (0, 𝑇]
such that 𝑁𝑟 = 𝑇 and (𝜎𝐶(𝑡) + 𝑡)𝑀

󸀠󸀠
𝑇 < 1 for each 𝑡 ∈ [0, 𝑟].

On the other hand, (𝑆𝜑𝑟 V1 − 𝑆
𝜑
𝑟 V2)(𝑡) = 𝜑(𝑡) − 𝜑(𝑡) = 0 for

all 𝑡 ≤ 0. It follows that 𝑆𝜑𝑟 is a contraction on 𝑍𝜑(𝑟). Hence
𝑆
𝜑
𝑟 has a unique fixed point 𝑢1 ∈ 𝑍𝜑(𝑟) by the contraction
mapping principle.

If 𝑟 = 𝑇, then the proof is completed. Next, if 2𝑟 ≤ 𝑇,
then the previous argument will be repeated. Let us define
the function 𝜍 : (−∞, 0] by

𝜍 (𝑡) = (𝑢
1
)
𝑟
(𝑡) = {

𝑢
1
(𝑡 + 𝑟) , 𝑡 ∈ [−𝑟, 0] ,

𝜑 (𝑡 + 𝑟) , 𝑡 ∈ (−∞, −𝑟] .
(22)

Since 𝑢1 ∈ 𝑍𝜑(𝑟) implies 𝑢1 : (−∞, 𝑟] → 𝑋 with 𝑢1 ∈
𝐶([0, 𝑟], 𝑋) and (𝑢1)0 = 𝜑, it follows from the hypotheses
(A1)(i) that 𝜍 = (𝑢1)𝑟 ∈ P.

Now, we can define the closed set𝑍𝜍(𝑟) of𝑍(𝑟) and define
the operator from 𝑍𝜍(𝑟) to 𝑍𝜍(𝑟) by

(𝑆
𝜍

𝑟V) (𝑡)

=

{{{{{

{{{{{

{

𝑇 (𝑡) 𝜍 (0) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐹1 (𝑠 + 𝑟, V𝑠) 𝑑𝑠

+∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹2 (𝑠 + 𝑟, V𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑟] ,

𝜍 (𝑡) , 𝑡 ∈ (−∞, 0] ,

(23)

for each V ∈ 𝑍𝜍(𝑟) and 𝑡 ∈ [0, 𝑟]. Repeating the previous argu-
ment, 𝑆𝜍𝑟 has a unique fixed point 𝑢2 in 𝑍𝜍(𝑟). Define 𝑤 :

(−∞, 2𝑟] by

𝑤 (𝑡) =

{{

{{

{

𝜑 (𝑡) , −∞ ≤ 𝑡 ≤ 0

𝑢
1
(𝑡) , 0 ≤ 𝑡 ≤ 𝑟,

𝑢
2
(ℎ) , 𝑟 ≤ 𝑟 + ℎ = 𝑡 ≤ 2𝑟.

(24)

Then, we show that 𝑤 is a fixed point of 𝑆𝜑2𝑟 on 𝑍𝜑(2𝑟). If 0 ≤
𝑡 ≤ 𝑟, then 𝑤(𝑡) = 𝑢1(𝑡) = 𝑆𝜑𝑟 (𝑢

1
)(𝑡), so that it follows from

(20) that

𝑤 (𝑡) = 𝑇 (𝑡) 𝜑 (0) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐹1 (𝑠, 𝑤𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹2 (𝑠, 𝑤𝑠) 𝑑𝑠.

(25)

In particular, for 𝑡 = 𝑟, it becomes

𝜍 (0) = 𝑢
1
(𝑟) = 𝑤 (𝑟)

= 𝑇 (𝑟) 𝜑 (0) + 𝐴∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝐶𝐹1 (𝑠, 𝑤𝑠) 𝑑𝑠

+ ∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝐹2 (𝑠, 𝑤𝑠) 𝑑𝑠.

(26)

If 𝑟 ≤ 𝑡 ≤ 2𝑟, let 𝑡 = 𝑟 + ℎ; then by (26) one has

𝑤 (𝑡) = 𝑢
2
(ℎ) = (𝑆

𝜍

𝑟𝑢
2
) (ℎ)

= 𝑇 (ℎ) 𝜍 (0) + 𝐴∫

ℎ

0

𝑇 (ℎ − 𝑠) 𝐶𝐹1 (𝑠 + 𝑟, (𝑢
2
)
𝑠
) 𝑑𝑠

+ ∫

ℎ

0

𝑇 (ℎ − 𝑠) 𝐹2 (𝑟 + 𝑠, (𝑢
2
)
𝑠
) 𝑑𝑠

= 𝑇 (𝑟 + ℎ) 𝜑 (0) + 𝐴∫

𝑟

0

𝑇 (𝑟 + ℎ − 𝑠) 𝐶𝐹1 (𝑠, 𝑤𝑠) 𝑑𝑠

+ ∫

𝑟

0

𝑇 (𝑟 + ℎ − 𝑠) 𝐹2 (𝑠, 𝑤𝑠) 𝑑𝑠

+ 𝐴∫

ℎ+𝑟

𝑟

𝑇 (ℎ + 𝑟 − 𝑠) 𝐶𝐹1 (𝑠, 𝑤𝑠) 𝑑𝑠

+ ∫

ℎ+𝑟

𝑟

𝑇 (𝑟 + ℎ − 𝑠) 𝐹2 (𝑠, (𝑤)𝑠) 𝑑𝑠

= 𝑇 (𝑡) 𝜑 (0) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐹1 (𝑠, 𝑤𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹2 (𝑠, 𝑤𝑠) 𝑑𝑠.

(27)

Hence 𝑤 is a fixed point of 𝑆𝜑2𝑟 in 𝑍𝜑(2𝑟). Since 𝑢
1 and 𝑢2 are

the unique points in 𝑍𝜑(𝑟) and 𝑍𝜍(𝑟), respectively, it follows
that𝑤 is the unique fixed point in𝑍𝜑(2𝑟). This argument can
be repeated until𝑁𝑟 = 𝑇. At the end, we can find the unique
fixed point of 𝑆𝜑

𝑇
on 𝑍𝜑(𝑇).
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Next, we want to give a sufficient condition for the exis-
tence of classical solution to (12). To do this, we need the dif-
ferentiability of mild solutions. We give the following more
restrictive conditions.

(B) If (𝜙𝑛) is a Cauchy sequence inP and if (𝜙𝑛) converges
compactly to 𝜙 on (−∞, 0] (i.e., for each compact
subset 𝐸 of R−, 𝑓𝑛|𝐸 is convergent uniformly to 𝜙|𝐸),
then 𝜙 ∈ P and ‖𝜙𝑛 − 𝜙‖P → 0, as 𝑛 → ∞.

(C) For a sequence (𝜙𝑛) inP, if ‖𝜙𝑛‖P → 0 as 𝑛 → ∞,
then ‖𝜙𝑛(𝜃)‖ → 0, as 𝑛 → ∞, for each 𝜃 ∈ (−∞, 0].

(H2) 𝐹 : R×P → 𝑋 is continuously differentiable and the
derivatives 𝐷1𝐹, 𝐷2𝐹 satisfy the following Lipschitz
conditions: there is a constant 𝐿 > 0 such that
󵄩󵄩󵄩󵄩𝐷1𝐹 (𝑡, 𝜓1) − 𝐷1𝐹 (𝑡, 𝜓2)

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P,

󵄩󵄩󵄩󵄩𝐷2𝐹 (𝑡, 𝜓1) − 𝐷2𝐹 (𝑡, 𝜓2)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝜓1 − 𝜓2
󵄩󵄩󵄩󵄩P,

(28)

for 𝑡 ∈ [0,∞) and 𝜓1, 𝜓2 ∈ P, where 𝐷𝑖 denotes the
derivative with respect to the 𝑖th variable.

The following lemmas are needed.

Lemma 5 (see [13]). Let P satisfy axiom (B) and let 𝑓 :

[0, 𝑎] → P, 𝑎 > 0, be a continuous function such that 𝑓(𝑡)(𝜃)
is continuous for (𝑡, 𝜃) ∈ [0, 𝑎] × (−∞, 0]. Then

[∫

𝑎

0

𝑓 (𝑡) 𝑑𝑡] (𝜃) = ∫

𝑎

0

𝑓 (𝑡) (𝜃) 𝑑𝑡, (29)

for 𝜃 ∈ (−∞, 0].

Lemma 6 (see [18]). Let P satisfy axiom (C) and let 𝑓 :

[0, 𝑎] → P, 𝑎 > 0, be a continuous function. Then for all
𝜃 ∈ (−∞, 𝑎], the function 𝑓(⋅)(𝜃) is continuous and

[∫

𝑎

0

𝑓 (𝑡) 𝑑𝑡] (𝜃) = ∫

𝑎

0

𝑓 (𝑡) (𝜃) 𝑑𝑡 (30)

for 𝜃 ∈ (−∞, 0].

Theorem 7. Let P satisfy axiom (B) or (C). Assume that 𝐹1
and 𝐹2 satisfy assumptions (H1) and (H2). In addition, assume
that 𝜑 ∈ P is continuously differentiable with 𝜑󸀠 ∈ P, 𝜑(0) +
𝐶𝐹1(0, 𝜑) ∈ 𝐷(𝐴), and 𝜑󸀠(0) = 𝐴(𝜑(0)+𝐶𝐹1(0, 𝜑))+𝐹2(0, 𝜑).
If 𝑢(⋅, 𝜑) is the unique mild solution of (12) on [0, 𝑇], then 𝑢 is
continuously differentiable on [0, 𝑇]. Furthermore, 𝑢(⋅, 𝜑) is a
classical solution of (12) on [0, 𝑇].

Proof. Consider the following equation:

𝑦 (𝑡) = 𝑇 (𝑡) [𝐴 (𝜑 (0) + 𝐶𝐹1 (0, 𝜑)) + 𝐹2 (0, 𝜑)]

+ 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝐷1𝐹1 (𝑠, 𝑢𝑠) + 𝐷2𝐹1 (𝑠, 𝑢𝑠) 𝑦𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) (𝐷1𝐹2 (𝑠, 𝑢𝑠) + 𝐷2𝐹2 (𝑠, 𝑢𝑠) 𝑦𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] ,

𝑦0 = 𝜑
󸀠
∈ P.

(31)

A similar argument as in the proof of Theorem 4 shows that
there is a unique solution 𝑦 to (31) on [0, 𝑇]. Define the
function 𝑧 by

𝑧 (𝑡) =

{{{

{{{

{

𝜑 (0) + ∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

𝜑 (𝑡) , 𝑡 ∈ (−∞, 0] .

(32)

We first show that if there is an 𝑟 > 0 such that 𝑢 = 𝑧 on
[0, 𝑟], then 𝑢 is a classical solution of (12) on [0, 𝑟]. In fact, in
this case, 𝑢 is a differentiable mild solution. Denote 𝐺𝑖(𝑠) =
𝐹𝑖(𝑠, 𝑢𝑠) for 𝑖 = 1, 2. It is easy to see that 𝐺𝑖 is continuously
differentiable. Using integration by parts, we can write

𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺1 (𝑠) 𝑑𝑠

= −𝐴∫

𝑡−𝑠

0

𝑇 (𝑟) 𝐶𝐺1 (𝑠) 𝑑𝑟
󵄨󵄨󵄨󵄨
𝑠=𝑡

𝑠=0

+ 𝐴∫

𝑡

0

∫

𝑡−𝑠

0

𝑇 (𝑟) 𝐶𝐺
󸀠

1 (𝑠) 𝑑𝑟 𝑑𝑠

= ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺
󸀠

1 (𝑠) 𝑑𝑠 − 𝐶𝐺1 (𝑡) + 𝑇 (𝑡) 𝐶𝐺1 (0) .

(33)

So, from the definition of mild solution, it follows that 𝑢(𝑡) +
𝐶𝐺1(𝑡) = 𝑇(𝑡)(𝜑(0)+𝐶𝐺1(0))+∫

𝑡

0
𝑇(𝑡−𝑠)𝐶𝐺

󸀠
1(𝑠)𝑑𝑠+∫

𝑡

0
𝑇(𝑡−

𝑠)𝐺2(𝑠)𝑑𝑠. Furthermore, by the assumption, 𝜑(0) + 𝐶𝐺1(0) ∈
𝐷(𝐴), and Definition 1, we see that 𝑢(𝑡) + 𝐶𝐺1(𝑡) ∈ 𝐷(𝐴) for
each 𝑡 ≥ 0. Hence,

𝐴 (𝑢 (𝑡) + 𝐶𝐺1 (𝑡))

= 𝐴[𝑇 (𝑡) (𝜑 (0) + 𝐶𝐺1 (0)) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺
󸀠

1 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺2 (𝑠) 𝑑𝑠]

= 𝑇 (𝑡) 𝐴 (𝜑 (0) + 𝐶𝐺1 (0)) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺
󸀠

1 (𝑠) 𝑑𝑠

+ 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺2 (𝑠) 𝑑𝑠

= 𝑇 (𝑡) 𝐴 (𝜑 (0) + 𝐶𝐺1 (0)) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺
󸀠

1 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺
󸀠

2 (𝑠) 𝑑𝑠 + 𝑇 (𝑡) 𝐺2 (0) − 𝐺2 (𝑡) .

(∗)

On the other hand, we see that

𝑢 (𝑡) = 𝐴[∫

𝑡

0

𝑇 (𝑟) 𝜑 (0) 𝑑𝑟 + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺1 (𝑠) 𝑑𝑠]

+ 𝜑 (0) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺2 (𝑠) 𝑑𝑠.

(34)
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So,

𝑢 (𝑡) − [𝜑 (0) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺2 (𝑠) 𝑑𝑠]

= 𝐴[∫

𝑡

0

𝑇 (𝑟) 𝜑 (0) 𝑑𝑟 + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺1 (𝑠) 𝑑𝑠] .

(35)

Differentiating both sides, we obtain

𝑢
󸀠
(𝑡) − 𝑇 (𝑡) 𝐺2 (0) − ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺
󸀠

2 (𝑠) 𝑑𝑠

= 𝑇 (𝑡) 𝐴 (𝜑 (0) + 𝐺1 (0)) + 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶𝐺
󸀠

1 (𝑠) 𝑑𝑠.

(∗∗)

Finally, comparing (∗) with (∗∗), we see that 𝑢 is a classical
solution on [0, 𝑟].

Next, we show that there does exist an 𝑟 > 0 such that
𝑢 = 𝑧 on [0, 𝑟]. Recall the integrated semigroup 𝑆(⋅) generated
by 𝐴; that is, 𝑆(𝑡)𝑥 = ∫𝑡

0
𝑇(𝑠)𝑥 𝑑𝑠 for each 𝑥 ∈ 𝑋. One can

obtain that

∫

𝑡

0

𝑇 (𝑠) [𝐴 (𝜑 (0) + 𝐶𝐹1 (0, 𝜑)) + 𝐹2 (0, 𝜑)] 𝑑𝑠

= ∫

𝑡

0

𝑇 (𝑠) 𝜑
󸀠
(0) 𝑑𝑠

= 𝑆 (𝑡) 𝜑
󸀠
(0) ,

∫

𝑡

0

∫

𝑠

0

𝑇 (𝑠 − 𝑟) 𝐶
2−𝑖
(𝐷1𝐹𝑖 (𝑟, 𝑢𝑟) + 𝐷2𝐹𝑖 (𝑟, 𝑢𝑟) 𝑦𝑟) 𝑑𝑟 𝑑𝑠

= ∫

𝑡

0

∫

𝑡

𝑟

𝑇 (𝑠 − 𝑟) 𝐶
2−𝑖
(𝐷1𝐹𝑖 (𝑟, 𝑢𝑟) + 𝐷2𝐹𝑖 (𝑟, 𝑢𝑟) 𝑦𝑟) 𝑑𝑠 𝑑𝑟

= ∫

𝑡

0

𝑆 (𝑡 − 𝑟) 𝐶
2−𝑖
(𝐷1𝐹𝑖 (𝑟, 𝑢𝑟) + 𝐷2𝐹𝑖 (𝑟, 𝑢𝑟) 𝑦𝑟) 𝑑𝑟,

(36)

for 𝑖 = 1, 2. Here 𝐶0 denotes the identity map. Therefore, by
the closedness of 𝐴 and the assumption on 𝐶, 𝑧 becomes

𝑧 (𝑡) = 𝜑 (0) + 𝑆 (𝑡) 𝜑
󸀠
(0)

+

2

∑

𝑖=1

𝐴
2−𝑖
∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖

× (𝐷1𝐹 (𝑠, 𝑢𝑠) + 𝐷2𝐹 (𝑠, 𝑢𝑠) 𝑦𝑠) 𝑑𝑠,

(37)

for 𝑡 ∈ [0, 𝑇], where𝐴0 denotes the identitymap. By Lemma 5
or Lemma 6, we obtain

𝑧𝑡 = 𝜑 + ∫

𝑡

0

𝑦𝑠 𝑑𝑠 for 𝑡 ∈ [0, 𝑇] . (38)

By the elementary properties of 𝑆(⋅),

𝑆 (𝑡) 𝜑
󸀠
(0) = 𝑇 (𝑡) (𝜑 (0) + 𝐶𝐹1 (0, 𝜑))

− (𝜑 (0) + 𝐶𝐹1 (0, 𝜑)) + 𝑆 (𝑡) 𝐹2 (0, 𝜑)

= 𝑇 (𝑡) 𝜑 (0) − 𝜑 (0) + 𝐴𝑆 (𝑡) 𝐶𝐹1 (0, 𝜑)

+ 𝑆 (𝑡) 𝐹2 (0, 𝜑)

= 𝑇 (𝑡) 𝜑 (0) − 𝜑 (0) +

2

∑

𝑖=1

𝐴
2−𝑖
𝑆 (𝑡) 𝐶

2−𝑖
𝐹𝑖 (0, 𝜑) ,

(39)

for 𝑡 ∈ [0, 𝑇]. Moreover, using integration by parts and simple
computation, one can derive that

𝐴
2−𝑖
∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶
2−𝑖
𝐹𝑖 (𝑠, 𝑧𝑠) 𝑑𝑠

= 𝐴
2−𝑖
𝑆 (𝑡) 𝐶

2−𝑖
𝐹𝑖 (0, 𝜑)

+ 𝐴
2−𝑖
∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖
(𝐷1𝐹𝑖 (𝑠, 𝑧𝑠) + 𝐷2𝐹𝑖 (𝑠, 𝑧𝑠) 𝑦𝑠) 𝑑𝑠,

(40)

for 𝑡 ∈ [0, 𝑇] and 𝑖 = 1, 2. Consequently, by (36)–(40), 𝑧
satisfies

𝑧 (𝑡) = 𝑇 (𝑡) 𝜑 (0) +

2

∑

𝑖=1

𝐴
2−𝑖
𝑆 (𝑡) 𝐶

2−𝑖
𝐹𝑖 (0, 𝜑)

+

2

∑

𝑖=1

𝐴
2−𝑖
[∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖

× (𝐷1𝐹𝑖 (𝑠, 𝑢𝑠) + 𝐷2𝐹𝑖 (𝑠, 𝑢𝑠) 𝑦𝑠) 𝑑𝑠]

= 𝑇 (𝑡) 𝜑 (0)

+

2

∑

𝑖=1

𝐴
2−𝑖
[−∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖

× (𝐷1𝐹𝑖 (𝑠, 𝑧𝑠) + 𝐷2𝐹𝑖 (𝑠, 𝑧𝑠) 𝑦𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶
2−𝑖
𝐹𝑖 (𝑠, 𝑧𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖

× (𝐷1𝐹𝑖 (𝑠, 𝑢𝑠) + 𝐷2𝐹𝑖 (𝑠, 𝑢𝑠) 𝑦𝑠) 𝑑𝑠] ,

(41)
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for 𝑡 ∈ [0, 𝑇]. On the other hand, by hypotheses (H1) and
(H2), there exists 𝐿 > 0 such that

2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐹𝑖 (𝑡, 𝜙1) − 𝐹𝑖 (𝑡, 𝜙2)
󵄩󵄩󵄩󵄩 +

2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐷𝑖𝐹1 (𝑡, 𝜙1) − 𝐷𝑖𝐹1 (𝑡, 𝜙2)
󵄩󵄩󵄩󵄩

+

2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐷𝑖𝐹2 (𝑡, 𝜙1) − 𝐷𝑖𝐹2 (𝑡, 𝜙2)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝜙1 − 𝜙2
󵄩󵄩󵄩󵄩P,

(42)

for 𝜙1, 𝜙2 ∈ P. Moreover, we define the following real num-
ber:

𝑀
󸀠󸀠

𝑇 = 𝐿𝑀
󸀠

𝑇𝑀𝑒
|𝜔|𝑇
, (43)

where𝑀󸀠
𝑇 = sup0≤𝑠≤𝑇𝑀2(𝑠) and𝑀2(⋅) is the function defined

in hypothesis (A1).Therefore, by (41) and definition of 𝑢, one
can obtain that

‖𝑢 (𝑡) − 𝑧 (𝑡)‖

≤

2

∑

𝑖=1

[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
2−𝑖
∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶
2−𝑖
(𝐹𝑖 (𝑠, 𝑢𝑠) − 𝐹𝑖 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
2−𝑖
∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖
(𝐷1𝐹𝑖 (𝑠, 𝑢𝑠)

−𝐷1𝐹𝑖 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
2−𝑖
∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
2−𝑖

× (𝐷2𝐹𝑖 (𝑠, 𝑢𝑠) 𝑦𝑠 − 𝐷2𝐹𝑖 (𝑠, 𝑧𝑠) 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
] .

(44)

For 𝑖 = 1, by (13), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝐹1 (𝑠, 𝑢𝑠) − 𝐹1 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜎𝐶 (𝑡) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩(𝐹1 (𝑠, 𝑢𝑠) − 𝐹1 (𝑠, 𝑧𝑠))
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶 (𝐷1𝐹1 (𝑠, 𝑢𝑠) − 𝐷1𝐹1 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝐴∫

𝑡−𝑠

0

𝑇 (𝑟) 𝐶 (𝐷1𝐹1 (𝑠, 𝑢𝑠) − 𝐷1𝐹1 (𝑠, 𝑧𝑠)) 𝑑𝑟 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠) − 𝐼‖
󵄩󵄩󵄩󵄩𝐶 (𝐷1𝐹1 (𝑠, 𝑢𝑠) − 𝐷1𝐹1 (𝑠, 𝑧𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 2𝑡𝑀𝑒
|𝜔|𝑇 sup

0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐶 (𝐷1𝐹1 (𝑠, 𝑢𝑠) − 𝐷1𝐹1 (𝑠, 𝑧𝑠))
󵄩󵄩󵄩󵄩 ,

(45)

and similarly

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶 (𝐷2𝐹1 (𝑠, 𝑢𝑠) 𝑦𝑠 − 𝐷2𝐹1 (𝑠, 𝑧𝑠) 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2𝑡𝑀𝑒
|𝜔|𝑇 sup

0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐶 (𝐷2𝐹1 (𝑠, 𝑢𝑠) 𝑦𝑠 − 𝐷2𝐹1 (𝑠, 𝑧𝑠) 𝑦𝑠)
󵄩󵄩󵄩󵄩 .

(46)

Therefore
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝐹1 (𝑠, 𝑢𝑠) − 𝐹1 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶 (𝐷1𝐹1 (𝑠, 𝑢𝑠) − 𝐷1𝐹1 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶 (𝐷2𝐹1 (𝑠, 𝑢𝑠) 𝑦𝑠 − 𝐷2𝐹1 (𝑠, 𝑧𝑠) 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜎𝐶 (𝑡)𝑀
󸀠󸀠

𝑇 sup
0≤𝑠≤𝑡

‖𝑢 (𝑠) − 𝑧 (𝑠)‖

+ 2𝑡𝑀
󸀠󸀠

𝑇 ‖𝐶‖(1 + sup
0≤𝑠≤𝑇

󵄩󵄩󵄩󵄩𝑦𝑠
󵄩󵄩󵄩󵄩P) sup

0≤𝑠≤𝑡

‖𝑢 (𝑠) − 𝑧 (𝑠)‖

= 𝑀
󸀠󸀠

𝑇 [𝜎𝐶 (𝑡) + 2𝑡 ‖𝐶‖(1 + sup
0≤𝑠≤𝑇

󵄩󵄩󵄩󵄩𝑦𝑠
󵄩󵄩󵄩󵄩P)]

× sup
0≤𝑠≤𝑡

‖𝑢 (𝑠) − 𝑧 (𝑠)‖

= 𝐾 sup
0≤𝑠≤𝑡

‖𝑢 (𝑠) − 𝑧 (𝑠)‖ ,

(47)

where

𝐾 := 𝑀
󸀠󸀠

𝑇 [𝜎𝐶 (𝑟) + 2𝑟 ‖𝐶‖ (1 + max
0≤𝑠≤𝑇

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩P)] . (48)

By the assumption on 𝜎𝐶, we can choose 𝑁 ∈ N and 𝑟 > 0
such that𝑁𝑟 = 𝑇 and𝐾 < 1.

For 𝑖 = 2,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑇 (𝑡 − 𝑠) (𝐹2 (𝑠, 𝑢𝑠) − 𝐹2 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐷1𝐹2 (𝑠, 𝑢𝑠) − 𝐷1𝐹2 (𝑠, 𝑧𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐷2𝐹2 (𝑠, 𝑢𝑠) 𝑦𝑠 − 𝐷2𝐹2 (𝑠, 𝑧𝑠) 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (𝑀
󸀠󸀠

𝑇 +𝑀
󸀠󸀠

𝑇𝑇 +𝑀
󸀠󸀠

𝑇𝑇 × max
0≤𝑠≤𝑇

󵄩󵄩󵄩󵄩𝑦𝑠
󵄩󵄩󵄩󵄩P)

× ∫

𝑡

0

sup
0≤𝜁≤𝑠

󵄩󵄩󵄩󵄩𝑢 (𝜁) − 𝑧 (𝜁)
󵄩󵄩󵄩󵄩 𝑑𝑠.

(49)
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Consequently, from (44), (47), and (49), one can derive that

sup
0≤𝜁≤𝑡

󵄩󵄩󵄩󵄩𝑢 (𝜁) − 𝑧 (𝜁)
󵄩󵄩󵄩󵄩

≤
1

1 − 𝐾
(𝑀

󸀠󸀠

𝑇 +𝑀
󸀠󸀠

𝑇𝑇 +𝑀
󸀠󸀠

𝑇𝑇 × max
0≤𝑠≤𝑇

󵄩󵄩󵄩󵄩𝑦𝑠
󵄩󵄩󵄩󵄩P)

× ∫

𝑡

0

sup
0≤𝜁≤𝑠

󵄩󵄩󵄩󵄩𝑢 (𝜁) − 𝑧 (𝜁)
󵄩󵄩󵄩󵄩 𝑑𝑠,

(50)

for 0 ≤ 𝑡 ≤ 𝑟. By a standard argument and using Gronwall’s
inequality, we get 𝑢 = 𝑧 on [0, 𝑟]. So, we have derived that 𝑢 is
continuously differentiable on [0, 𝑟], and hence 𝑢 is a classical
solution of (12) on [0, 𝑟].

If 𝑟 = 𝑇, then the proof is completed. If 𝑟 ≤ 𝑡 = 𝑟+ℎ ≤ 2𝑟,
from the definition (Definition 2(i)) of 𝑢 we see that

𝑢 (𝑟 + ℎ)

= 𝑇 (𝑟 + ℎ) 𝜑 (0) + 𝐴∫

𝑟+ℎ

0

𝑇 (𝑟 + ℎ − 𝑠) 𝐶𝐹1 (𝑠, 𝑢𝑠) 𝑑𝑠

+ ∫

𝑟+ℎ

0

𝑇 (𝑟 + ℎ − 𝑠) 𝐹2 (𝑠, 𝑢𝑠) 𝑑𝑠

= 𝑇 (𝑟 + ℎ) 𝜑 (0) + 𝐴∫

𝑟

0

𝑇 (𝑟 + ℎ − 𝑠) 𝐶𝐹1 (𝑠, 𝑢𝑠) 𝑑𝑠

+ 𝐴∫

𝑟+ℎ

𝑟

𝑇 (𝑟 + ℎ − 𝑠) 𝐶𝐹1 (𝑠, 𝑢𝑠) 𝑑𝑠

+ ∫

𝑟

0

𝑇 (𝑟 + ℎ − 𝑠) 𝐹2 (𝑠, 𝑢𝑠) 𝑑𝑠

+ ∫

𝑟+ℎ

𝑟

𝑇 (𝑟 + ℎ − 𝑠) 𝐹2 (𝑠, 𝑢𝑠) 𝑑𝑠

= 𝑇 (ℎ) [𝑇 (𝑟) 𝜑 (0) + 𝐴∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝐶𝐹1 (𝑠, 𝑢𝑠) 𝑑𝑠

+∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝐹2 (𝑠, 𝑢𝑠) 𝑑𝑠]

+ 𝐴∫

𝑟+ℎ

𝑟

𝑇 (𝑟 + ℎ − 𝑠) 𝐶𝐹1 (𝑠, 𝑢𝑠) 𝑑𝑠

+ ∫

𝑟+ℎ

𝑟

𝑇 (𝑟 + ℎ − 𝑠) 𝐹2 (𝑠, 𝑢𝑠) 𝑑𝑠

= 𝑇 (ℎ) 𝑢 (𝑟) + 𝐴∫

ℎ

0

𝑇 (ℎ − 𝑠) 𝐶 (𝐹1 (𝑟 + 𝑠, 𝑢𝑟+𝑠)) 𝑑𝑠

+ ∫

ℎ

0

𝑇 (ℎ − 𝑠) 𝐹2 (𝑠 + 𝑟, 𝑢𝑟+𝑠) 𝑑𝑠.

(51)

It follows that 𝑢(𝑟 + ⋅) is a mild solution of

𝑑

𝑑𝑡
𝑥 (𝑡) = 𝐴 (𝑥 (𝑡) + 𝐶𝐹1 (𝑟 + 𝑡, 𝑥𝑡)) + 𝐹2 (𝑟 + 𝑡, 𝑥𝑡) ,

𝑡 ∈ [0, 𝑟] ,

𝑥0 = 𝑢𝑟 ∈ P.

(52)

Repeating the previous argument, we can show that 𝑢(𝑟+ ⋅) is
differentiable on [0, 𝑟]. Hence, 𝑢 is a classical solution of (12)
on [0, 2𝑟]. This argument can be repeated until 𝑁𝑟 = 𝑇. At
the end, one can show that 𝑢 is a classical solution of (12) on
[0, 𝑇].

3. Application to Age Dependent
Population Equations

In this section, the results in the previous section will be
applied to age dependent population equations.

Theorem 8 (see [13]). Let (𝑋, ‖ ⋅ ‖𝑋) be a Banach space and
let 𝛾 > 0 be a fixed number. Suppose thatP denotes the space
P := {𝜙 : (−∞, 0] → 𝑋; lim𝜃→−∞𝑒

𝛾𝜃
𝜙(𝜃) ∈ 𝑋} endowed

with the norm ‖𝜙‖P := sup0≥𝜃𝑒
𝛾𝜃
‖𝜙(𝜃)‖𝑋; then P satisfies

assumptions (A1), (A2), (B), and (C).

Let 𝑋 = 𝐿
1
(R+

,R) with 𝐿1 norm ‖ ⋅ ‖, and let P be the
phase space {𝜙 : (−∞, 0] → 𝑋; lim𝜃→−∞𝑒

𝛾𝜃
𝜙(𝜃) ∈ 𝑋}

endowed with the norm ‖𝜙‖P := sup0≥𝜃𝑒
𝛾𝜃
‖𝜙(𝜃)‖ for a fixed

𝛾 > 0. Let us consider the following system:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑎) = −

𝜕

𝜕𝑎
𝑢 (𝑡, 𝑎) + 𝑓1 (𝑡, ∫

∞

0

𝑢 (𝑡 − 𝜏, 𝜉) 𝑑𝜉, 𝑎) ,

𝑡 ≥ 0, 𝑎 ≥ 0,

𝑢 (𝑡, 0) = ∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) 𝑢 (𝑡 + 𝜃, 𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (𝑡) , 𝑡 ≥ 0,

𝑢 (𝑡, 𝜃) = 𝜔 (𝑡, 𝜃) , 𝑡 ≤ 0, 𝜃 ∈ R
+
,

(53)

where 𝐺 : (−∞, 0] × R+
→ R, 𝑓1, : R

+
× R × R+

→ R,
𝑓2 : R

+
→ R, and 𝜏 ≥ 0 is a fixed real number.

Remark 9. The linear cases for 𝑓1 and 𝑓2 have been consid-
ered by many authors. In [8], Piazzera considers the case that
𝑓1 : R

+
× R+

→ R is defined by 𝑓1(𝑡, 𝑎) = 𝜇(𝑎)𝑢(𝑡, 𝑎),
𝑓2 ≡ 0, and 𝑢(𝑡, 0) = ∫

∞

0
∫
0

−𝑟
𝛽(𝜃, 𝑎)𝑢(𝑡 + 𝜃, 𝑎)𝑑𝜃 𝑑𝑎, where

𝜇 ∈ 𝐿
∞
loc(R

+
,R+

) and 𝛽 ∈ 𝐿∞([−𝑟, 0] × R+
,R+

). In [9], the
authors consider the case that 𝑓1(𝑡, 𝑎) = 𝜇(𝑡, 𝑎)𝑢(𝑡, 𝑎) and
𝑢(𝑡, 0) = ∫

∞

0
𝛽(𝑡, 𝑎)𝑢(𝑡, 𝑎)𝑑𝑎, where 𝜇 ∈ 𝐿∞(R+

× R+
,R+

),
𝛽(⋅, 𝑎) ∈ 𝐶

1
(R+

,R+
), and 𝛽(𝑡, ⋅) ∈ 𝐿1(R+

,R+
).

In the first step, we rewrite (53) in operator theoretic form
on the Banach space𝑋. We define the operator

A𝜑 = −𝜑
󸀠
, (54)
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with domain 𝐷(A) := 𝑊1,1
(R+

,R). The boundary operator
𝐿 : 𝑊

1,1
(R+

,R) → R is defined by 𝐿𝜙 = 𝜙(0). Then 𝐴𝜑 :=
(A|Ker(𝐿))𝜑 = −𝜑

󸀠 with domain {𝜙 ∈ 𝑊1,1
| 𝜙(0) = 0} gener-

ates a𝐶0-semigroup𝑇(⋅) on𝑋. Before doing the next step, we
give the following definition and theorem which characterize
the condition (𝑀) in some special cases.

Definition 10. Let𝐵 generate a𝐶0-semigroup 𝑆(⋅) on aBanach
space (𝑌, ‖ ⋅ ‖𝑌). The Favard class Fav(𝐵) is the space {𝑥 | 𝑥 ∈
𝑌, lim sup𝑡→0+(1/𝑡)‖𝑆(𝑡)𝑥 − 𝑥‖𝑌 < ∞}.

It is known that Fav(𝐵) becomes a Banach space if we
define ‖𝑥‖Fav(𝐵) := ‖𝑥‖𝑌 + lim sup𝑡→0+(1/𝑡)‖𝑆(𝑡)𝑥 − 𝑥‖𝑌 for
𝑥 ∈ Fav(𝐵).The following theorem, which gives an important
example of operators satisfying condition (𝑀), can be found
in [3, 7].

Theorem 11. Let 𝐵 generate a 𝐶0-semigroup 𝑆(⋅) on a Banach
space 𝑌. If 𝐶 ∈ 𝐵(𝑌, Fav(𝐵)), then 𝐶 satisfies condition (𝑀)
with respect to 𝑆(⋅).

Theorem 12 (see [3]). Let 𝜆 > 0. Then 𝜆 ∈ 𝜎(𝐴) and 𝑃𝜆 :=
(𝐿|Ker(𝜆−A))

−1 is given by 𝑥 󳨃→ 𝑒
−𝜆𝜃
𝑥 for 𝑥 ∈ R and 𝜃 ≥ 0.

Moreover, 𝑃𝜆 is a bounded linear operator from R to Fav(𝐴).

According to Theorem 12, we know that A, 𝑋, and 𝐿
satisfy assumptions (S1) and (S2). Now, we suppose that 𝜆 > 0
in the rest of this section.

For rewriting (53), we define the function

𝑄ℎ : [0,∞) ×P 󳨀→ 𝑋

(𝑡, 𝜑) 󳨃󳨀→ ℎ (𝑡, 𝜑) 𝜒[0,1],

(55)

where 𝜒[0,1] denotes the characterization function and ℎ :

[0,∞) ×P → R, and define the linear functional:

𝑄 : 𝑋 󳨀→ R

𝜙 󳨃󳨀→ ∫

1

0

𝜙 (𝑡) 𝑑𝑡.

(56)

It is easy to see that𝑄 ∈ 𝐵(𝑋,R) and𝑄(𝑄ℎ(𝑡, 𝜑)) = ℎ(𝑡, 𝜑) for
𝑡 ∈ [0, 𝑇]. Furthermore, by Theorem 12, it follows that 𝑃𝜆𝑄 ∈
𝐵(𝑋, Fav(𝐴)). So, 𝑃𝜆𝑄 satisfies condition (𝑀) with respect to
𝑇(⋅) byTheorem 11. We introduce the following notations:

(i) 𝑢(𝑡)(⋅) := 𝑢(𝑡, ⋅), 𝜑(𝑡)(⋅) := 𝜔(𝑡, ⋅), V(𝑡)(⋅) := V(𝑡, ⋅), and
𝐶 := 𝑃𝜆𝑄;

(ii) 𝐺1 : R+
× P → 𝑋 is defined by 𝐺1(𝑡, V)(⋅) :=

𝑓1(𝑡, ∫
∞

0
V(−𝜏)(𝜉)𝑑𝜉, ⋅) (V ∈ P); here we assume that

𝑓1(𝑡, ∫
∞

0
𝜓(𝑎)𝑑𝑎, ⋅) ∈ 𝑋 for each 𝜓 ∈ 𝑋 and 𝑡 ≥ 0;

(iii) 𝐺2 : R
+
×P → R is defined by

𝐺2 (𝑡, V) := ∫
∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) V (𝜃) (𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (𝑡)

(V ∈ P) ,

(57)

where 𝐺 : R−
× R+

→ R and 𝑓2 : R
+
→ R are the

functions in (53);

(iv) 𝐹1(𝑡, V) := 𝑄𝐺
2

(𝑡, V) (V ∈ P) and 𝐹2(𝑡, V) :=

𝜆𝑃𝜆𝐺2(𝑡, V) + 𝐺1(𝑡, V).

Using these notations, we can rewrite (53) as

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) − 𝐶𝐹1 (𝑡, 𝑢𝑡)) + 𝐹2 (𝑡, 𝑢𝑡) , 𝑡 ∈ R

+
,

𝑢0 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ R
−
.

(58)

Indeed, condition 𝑢0(𝑡) = 𝜑(𝑡), 𝑡 ∈ R−, means 𝑢(𝑡, 𝜃) =
𝜔(𝑡, 𝜃), 𝑡 ∈ R−, 𝜃 ∈ R+. To see that the differential equation in
(58) is equivalent to the first two lines of (53), we first suppose
that 𝑢(⋅) is a solution of (58). By the definition of 𝐶 and the
definition of 𝑃𝜆 in Theorem 12, we see that

𝜕

𝜕𝑡
𝑢 (𝑡, ⋅) =

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) − 𝐶𝐹1 (𝑡, 𝑢𝑡)) + 𝐹2 (𝑡, 𝑢𝑡)

= 𝐴 (𝑢 (𝑡) − 𝐶𝐹1 (𝑡, 𝑢𝑡)) + 𝜆𝑃𝜆𝐺2 (𝑡, 𝑢𝑡) + 𝐺1 (𝑡, 𝑢𝑡)

= A𝑢 (𝑡) − 𝑃𝜆𝑄𝑄𝐺
2

(𝑡, 𝑢𝑡)

+ 𝜆𝑃𝜆𝐺2 (𝑡, 𝑢𝑡) + 𝐺1 (𝑡, 𝑢𝑡)

= A𝑢 (𝑡) + (𝜆 −A) 𝑃𝜆𝐺2 (𝑡, 𝑢𝑡) + 𝐺1 (𝑡, 𝑢𝑡)

= A𝑢 (𝑡) + 𝐺1 (𝑡, 𝑢𝑡) ,

(59)

which is the equation in the first line of (53). Moreover,
condition 𝑢(𝑡) − 𝐶𝐹1(𝑡, 𝑢𝑡) ∈ 𝐷(𝐴)means that

(𝑢 (𝑡)) (0) − (𝐶𝐹1 (𝑡, 𝑢𝑡)) (0)

= (𝑢 (𝑡)) (0) − 𝑃𝜆𝐺2 (𝑡, 𝑢𝑡) (0)

= (𝑢 (𝑡)) (0) − 𝑒
−𝜆0
𝐺2 (𝑡, 𝑢𝑡) = 0,

(60)

and so (𝑢(𝑡))(0) = 𝐺2(𝑡, 𝑢𝑡), that is, the second line of (53).
Hence (𝑢(⋅))(⋅) is a solution of (53).

Conversely, it is easy to see that (𝑢(⋅))(⋅) = 𝑢(⋅, ⋅) is a
solution of (58) wherever 𝑢(⋅, ⋅) is a solution of (53).

In the rest of this section, we suppose that the following
conditions on the functions 𝑓1, 𝑓2, 𝜔, and 𝐺 hold.

(I) Suppose that a function 𝑓1 : R
+
× R × R+

→ R

satisfies the following conditions:

(a) For each (𝑡, 𝑠) ∈ R+
×R, the function𝑓1(𝑡, 𝑠, ⋅) ∈

𝑋. 𝑓1 is continuously differentiable with respect
to the first and second variables.

(b) There are 𝐿 > 0 and 𝜌 ∈ 𝑋 such that
󵄨󵄨󵄨󵄨𝑓1 (𝑡, 𝑥1, 𝑎) − 𝑓1 (𝑡, 𝑥2, 𝑎)

󵄨󵄨󵄨󵄨

+

2

∑

𝑖=1

󵄨󵄨󵄨󵄨𝐷𝑖𝑓1 (𝑡, 𝑥1, 𝑎) − 𝐷𝑖𝑓1 (𝑡, 𝑥2, 𝑎)
󵄨󵄨󵄨󵄨

≤ 𝐿
󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨 𝜌 (𝑎) ,

(61)

for 𝑡 ∈ R+, 𝑎 ≥ 0, and 𝑥1, 𝑥2 ∈ R.
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(II) 𝑓2 is differentiable. There is a function 𝑔 : R+
→ R+

such that |𝐺(𝑡, 𝑎)| ≤ 𝑔(𝑡) for all 𝑎 ≥ 0 and 𝑡 ≤ 0, and
𝑔(⋅)𝑒

−𝛾⋅ is integrable on (−∞, 0].

(III) (a) 𝜔 ∈ 𝐶
1
(R−

× R+
,R), 𝑡 󳨃→ 𝜔(𝑡, ⋅) ∈ P,

𝑡 󳨃→ (𝜕/𝜕𝑡)𝜔(𝑡, ⋅) is continuous in 𝑋 and
lim𝑡→−∞𝑒

𝛾𝑡
∫
∞

0
|(𝜕/𝜕𝑡)𝜔(𝑡, 𝑥)|𝑑𝑥 < ∞.

(b) 𝜔 satisfies

𝜔 (0, 0) = ∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) 𝜔 (𝜃, 𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (0) ,

𝜕

𝜕𝑡
𝜔 (0, 𝑎) = −

𝜕

𝜕𝑎
𝜔 (0, 𝑎) + 𝑓1 (0, ∫

∞

0

𝜔 (−𝜏, 𝜉) 𝑑𝜉, 𝑎) ,

(62)

for 𝑎 ∈ R+.
Now, we are going to verify that all assumptions of

Theorem 7 are satisfied.

Lemma 13. 𝐹1 satisfies hypotheses (H1) and (H2).

Proof. From the definition of 𝐹1 and assumption (II), it
follows that
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝜓1) − 𝐹1 (𝑡, 𝜓2)

󵄩󵄩󵄩󵄩

= ∫

∞

0

󵄨󵄨󵄨󵄨𝐺2 (𝑡, 𝜓1) (𝜒[0,1] (𝑠)) − 𝐺2 (𝑡, 𝜓2) (𝜒[0,1] (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

=
󵄨󵄨󵄨󵄨𝐺2 (𝑡, 𝜓1) − 𝐺2 (𝑡, 𝜓2)

󵄨󵄨󵄨󵄨

≤ ∫

∞

0

∫

0

−∞

󵄨󵄨󵄨󵄨𝐺 (𝜃, 𝑎) 𝜓1 (𝜃) (𝑎) − 𝐺 (𝜃, 𝑎) 𝜓2 (𝜃) (𝑎)
󵄨󵄨󵄨󵄨 𝑑𝜃 𝑑𝑎

≤ ∫

0

−∞

∫

∞

0

󵄨󵄨󵄨󵄨󵄨
𝐺 (𝜃, 𝑎) 𝑒

−𝛾𝜃󵄨󵄨󵄨󵄨󵄨
𝑒
𝛾𝜃 󵄨󵄨󵄨󵄨𝜓1 (𝜃) (𝑎) − 𝜓2 (𝜃) (𝑎)

󵄨󵄨󵄨󵄨 𝑑𝑎 𝑑𝜃

≤ ∫

0

−∞

𝑔 (𝜃) 𝑒
−𝛾𝜃
𝑒
𝛾𝜃 󵄩󵄩󵄩󵄩𝜓1 (𝜃) − 𝜓2 (𝜃)

󵄩󵄩󵄩󵄩 𝑑𝜃

(use assumption (II)) ,

≤ ∫

0

−∞

𝑔 (𝜃) 𝑒
−𝛾𝜃
𝑑𝜃
󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P,

(63)

for 𝜓1, 𝜓2 ∈ P. Obviously, ‖𝐷1𝐹1(𝑡, 𝜓1) − 𝐷1𝐹1(𝑡, 𝜓2)‖ = 0.
Since

V 󳨃󳨀→ ∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) V (𝜃) (𝑎) 𝑑𝜃 𝑑𝑎 (64)

is a linear transformation, it follows that

󵄩󵄩󵄩󵄩𝐷2𝐹1 (𝑡, 𝜓1) − 𝐷2𝐹1 (𝑡, 𝜓2)
󵄩󵄩󵄩󵄩 = 0. (65)

Consequently, 𝐹1 satisfies hypotheses (H1) and (H2).

Lemma 14. The function 𝐺1 satisfies hypotheses (H1) and
(H2).

Proof. Suppose that 𝜙1, 𝜙2 ∈ 𝑋 and 𝑡 ≥ 0. From assumption
(I)(a), it follows that 𝐺1 is differentiable with respect to the
first variable. By assumption (I)(b) and the definition of norm
‖ ⋅ ‖P, it follows that

󵄩󵄩󵄩󵄩𝐺1 (𝑡, 𝜙1) − 𝐺1 (𝑡, 𝜙2)
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷1𝐺1 (𝑡, 𝜙1) − 𝐷1𝐺1 (𝑡, 𝜙2)

󵄩󵄩󵄩󵄩

≤ 𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

0

𝜙1 (−𝜏) (𝜉) 𝑑𝜉 − ∫

∞

0

𝜙2 (−𝜏) (𝜉) 𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
×
󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜙1 (−𝜏) − 𝜙2 (−𝜏)

󵄩󵄩󵄩󵄩

≤ 𝐿𝑒
𝛾𝜏 󵄩󵄩󵄩󵄩𝜌

󵄩󵄩󵄩󵄩 ×
󵄩󵄩󵄩󵄩𝜙1 − 𝜙2

󵄩󵄩󵄩󵄩P.

(66)

So, hypotheses (H1) and (H2) hold.
Let 𝜙 ∈ P be a fixed element ofP. DefineL𝑡,𝜙 : P → 𝑋

by

L𝑡,𝜙𝜓 := 𝐺1 (𝑡, 𝜙) (⋅) ∫

∞

0

𝜓 (−𝜏) (𝜉) 𝑑𝜉, (67)

for 𝜓 ∈ P. Obviously, L𝑡,𝜙 is well defined and linear. We
show that 𝐷2𝐺1(𝑡, 𝜙) = L𝑡,𝜙. Let 𝜓 ∈ P with ‖𝜙 − 𝜓‖P ̸= 0.
Because of assumption (I)((a) and (b)) and the Mean Value
Theorem, for each pair (𝑡, 𝑎) ∈ R+

× R+, there exists 𝜍𝑡,𝑎
between ∫∞

0
𝜙(−𝜏)(𝜉)𝑑𝜉 and ∫∞

0
𝜓(−𝜏)(𝜉)𝑑𝜉 such that

󵄩󵄩󵄩󵄩󵄩
𝐺1 (𝑡, 𝜓) − 𝐺1 (𝑡, 𝜙) −L𝑡,𝜙 (𝜓 − 𝜙)

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩P

=
1

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩P

× [

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓1 (𝑡, ∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉, 𝑎)

− 𝑓1 (𝑡, ∫

∞

0

𝜓 (−𝜏) (𝜉) 𝑑𝜉, 𝑎)

− 𝐷2𝑓1 (𝑡, ∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉, 𝑎)

×(∫

∞

0

𝜓 (−𝜏) (𝜉) 𝑑𝜉 − ∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
]

=
1

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩P

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝐷2𝑓1 (𝑡, 𝜍𝑡,𝑎, 𝑎) − 𝐷2𝑓1 (𝑡, ∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉, 𝑎)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉 − ∫

∞

0

𝜓 (−𝜏) (𝜉) 𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩P

[∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜍𝑡,𝑎 − ∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜌 (𝑎) 𝑑𝑎]

× 𝐿𝑒
𝛾𝜏󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩P
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≤ 𝐿𝑒
𝛾𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

0

𝜓 (−𝜏) (𝜉) 𝑑𝜉 − ∫

∞

0

𝜙 (−𝜏) (𝜉) 𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
×
󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩

= 𝐿𝑒
𝛾𝜏 󵄩󵄩󵄩󵄩𝜓 (−𝜏) − 𝜙 (−𝜏)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩 ≤ 𝐿𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜓 − 𝜙
󵄩󵄩󵄩󵄩P
󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩 .

(68)

Hence ‖𝐺1(𝑡, 𝜙) − 𝐺1(𝑡, 𝜓) −L𝑡,𝜙(𝜙 − 𝜓)‖/‖𝜙 − 𝜓‖P → 0 as
‖𝜙 − 𝜓‖P → 0. So, we obtain that 𝐷2𝐺1(𝑡, 𝜙) = L𝑡,𝜙. More-
over, from assumption (I)(b) and the definition ofP, it is easy
to see that

󵄩󵄩󵄩󵄩𝐷2𝐺1 (𝑡, 𝜙1) − 𝐷2𝐺1 (𝑡, 𝜙2)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
L𝑡,𝜙

1
, −L𝑡,𝜙

2

󵄩󵄩󵄩󵄩󵄩

≤ 𝐿𝑒
𝛾𝜏 󵄩󵄩󵄩󵄩𝜌

󵄩󵄩󵄩󵄩 ×
󵄩󵄩󵄩󵄩𝜙1 − 𝜙2

󵄩󵄩󵄩󵄩P.

(69)

Consequently, 𝐺1 satisfies hypothesis (H2).

Lemma 15. 𝐹2 satisfies hypotheses (H1) and (H2).

Proof. In view of Lemma 14, it suffices to show that the oper-
ator 𝜆𝑃𝜆𝐺2 satisfies hypotheses (H1) and (H2). Suppose that
𝑡 ≥ 0 and 𝜓1, 𝜓2 ∈ P. Using the estimate in the proof of
Lemma 13, we see that

󵄩󵄩󵄩󵄩𝜆𝑃𝜆𝐺2 (𝑡, 𝜓1) − 𝜆𝑃𝜆𝐺2 (𝑡, 𝜓2)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝜆𝑒

−𝜆⋅
𝐺2 (𝑡, 𝜓1) − 𝜆𝑒

−𝜆⋅
[𝐺2 (𝑡, 𝜓2)]

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝜆𝑒

−𝜆⋅󵄩󵄩󵄩󵄩󵄩
×
󵄨󵄨󵄨󵄨𝐺2 (𝑡, 𝜓1) − 𝐺2 (𝑡, 𝜓2)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝐺2 (𝑡, 𝜓1) − 𝐺2 (𝑡, 𝜓2)

󵄨󵄨󵄨󵄨

≤ ∫

0

−∞

𝑔 (𝜃) 𝑒
−𝛾𝜃
𝑑𝜃
󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P.

(70)

Next, from the definition of 𝐺2, it is easy to see that

󵄩󵄩󵄩󵄩𝐷1 (𝜆𝑃𝜆𝐺2 (𝑡, 𝜓1)) − 𝐷1 (𝜆𝑃𝜆𝐺2 (𝑡, 𝜓2))
󵄩󵄩󵄩󵄩 = 0. (71)

Since

V 󳨃󳨀→ ∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) V (𝜃) (𝑎) 𝑑𝜃 𝑑𝑎 (72)

is a linear transformation, it follows that ‖𝐷2(𝜆𝑃𝜆𝐺2(𝑡, 𝜓1)) −

𝐷2(𝜆𝑃𝜆𝐺2(𝑡, 𝜓2))‖ = 0. So, 𝜆𝑃𝜆𝐺2 satisfies hypotheses (H1)
and (H2). The proof is completed.

Lemma 16. 𝜑 ∈ P is continuously differentiable with 𝜑󸀠 ∈ P,
𝜑(0) − 𝐶𝐹1(0, 𝜑) ∈ 𝐷(𝐴), and 𝜑󸀠(0) = 𝐴(𝜑(0) − 𝐶𝐹1(0, 𝜑)) +
𝐹2(0, 𝜑).

Proof. Let 𝑡 ≥ 0. By the assumption of (III)(a) and the Mean
ValueTheorem,we know that there is an 𝜉𝑠 between 𝑡 and 𝑡+ℎ
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜙 (𝑡 + ℎ) − 𝜙 (𝑡)

ℎ
− 𝜙

󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= ∫

∞

0

|𝜔 (𝑡 + ℎ, 𝑠) − 𝜔 (𝑡, 𝑠) − (𝜕/𝜕𝑡) 𝜔 (𝑡, 𝑠) ℎ|

|ℎ|
𝑑𝑠

= ∫

∞

0

󵄨󵄨󵄨󵄨[(𝜕/𝜕𝑡) 𝜔 (𝜉𝑠, 𝑠) − (𝜕/𝜕𝑡) 𝜔 (𝑡, 𝑠)] ℎ
󵄨󵄨󵄨󵄨

|ℎ|
𝑑𝑠

= ∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝜔 (𝜉𝑠, 𝑠) −

𝜕

𝜕𝑡
𝜔 (𝑡, 𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠.

(73)

The continuity of 𝑡 󳨃→ (𝜕/𝜕𝑡)𝜔(𝑡, ⋅)𝑑𝑥 in 𝑋 implies that the
last term goes to 0 as ℎ → 0. So one can see that 𝜑 is
continuously differentiable in 𝑋 with 𝜑󸀠(𝑡)(⋅) = (𝜕/𝜕𝑡)𝜔(𝑡, ⋅).
Moreover, 𝜙󸀠 ∈ P by assumption (III)(a) and the definition
ofP. Next, from assumption (III)(b), one can derive that

𝜑 (0) − 𝐶𝐹1 (0, 𝜑)

= 𝜔 (0, 𝑠)−𝑒
−𝜆𝑠
[∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) 𝜔 (𝜃, 𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (0)] .

(74)

Hence, by (III)(a), this implies that 𝜑(0) − 𝐶𝐹1(0, 𝜑) ∈ 𝐷(𝐴).
Finally, by using assumption (III)(b) one can derive that

(𝐴 (𝜑 (0) − 𝐶𝐹1 (0, 𝜑)) + 𝐹2 (0, 𝜑)) (𝑠)

= −
𝜕

𝜕𝑠
[𝜔 (0, 𝑠) − 𝑒

−𝜆𝑠
(∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎)

× 𝜔 (𝜃, 𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (0) )]

+ 𝜆𝑒
−𝜆𝑠
[∫

∞

0

∫

0

−∞

𝐺 (𝜃, 𝑎) 𝜔 (𝜃, 𝑎) 𝑑𝜃 𝑑𝑎 + 𝑓2 (0)]

+ 𝑓1 (0, ∫

∞

0

𝑤 (−𝜏, 𝜉) 𝑑𝜉, 𝑠)

= −
𝜕

𝜕𝑠
𝜔 (0, 𝑠) + 𝑓1 (0, ∫

∞

0

𝑤 (−𝜏, 𝜉) 𝑑𝜉, 𝑠)

=
𝜕

𝜕𝑡
𝜔 (0, 𝑠) = 𝜑

󸀠
(0) (𝑠) .

(75)

The proof is completed.

Consequently, in view of Lemmas 13–16, we can apply
Theorem 7 to obtain the following theorem.

Theorem 17. Under assumptions (I)–(III), (58) admits a
unique classical solution.
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4. Solution Semigroups and Regularity

In this section, the regularity of the mild solution for

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) + 𝐶𝐹1 (𝑢𝑡)) + 𝐹2 (𝑢𝑡) , 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P

(76)

will be found. Throughout this section, we suppose that 𝐹1
and 𝐹2 satisfy the following condition:

(H3) 𝐹 : P → 𝑋 satisfies a Lipschitz condition; that is,
there is a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝐹 (𝜓1) − 𝐹 (𝜓2)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝜓1 − 𝜓2
󵄩󵄩󵄩󵄩P, (77)

for 𝜓1, 𝜓2 ∈ P.

By Theorem 4, we know that (76) has a unique mild solution
𝑢(⋅, 𝜑) on [0,∞) for each 𝜑 ∈ P. Hence, we can define the
nonlinear operator 𝑈(𝑡) onP by

𝑈 (𝑡) 𝜑 = 𝑢𝑡 (⋅, 𝜑) = 𝑢 (𝑡 + ⋅, 𝜑) , (78)

for each 𝜑 ∈ P and 𝑡 ≥ 0.

Theorem 18. Under hypotheses (𝐴1) and (𝐻3), 𝑈(⋅) is a
nonlinear strongly continuous semigroup onP; that is,

(i) 𝑈(0) = 𝐼, where 𝐼 denotes the identity map,
(ii) 𝑈(𝑡 + 𝑠) = 𝑈(𝑡)𝑈(𝑠) for each 𝑡, 𝑠 ≥ 0,
(iii) 𝑡 󳨃→ 𝑈(𝑡)𝜑 is a continuous function.

Furthermore,

(iv) for each 𝑡 ≥ 0, 𝜑 󳨃→ 𝑈(𝑡)𝜑 is a continuous function,
(v) for each 𝑡 ≥ 0 and 𝜃 ∈ (−∞, 0], the following trans-

lation property holds:

(𝑈 (𝑡) 𝜑) (𝜃) = {
(𝑈 (𝑡 + 𝜃) 𝜑) (0) , 𝑡 + 𝜃 ≥ 0,

𝜑 (𝑡 + 𝜃) , 𝑡 + 𝜃 ≤ 0,
(79)

(vi) there exist constants𝑁1 and𝑁2 such that
󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜓1 − 𝑈 (𝑡) 𝜓2

󵄩󵄩󵄩󵄩P ≤ 𝑁1𝑒
𝑁
2
𝑡󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P,
(80)

for 𝜓1, 𝜓2 ∈ P and 𝑡 ≥ 0.

Proof. (i), (ii), and (v) are easy to see from the definition of
𝑈(⋅). (iii) is obtained from hypothesis (A2) and the definition
of𝑈(𝑡)𝜑. (iv) follows from (vi). Hence it remains to show (vi).
By assumption (H3) on 𝐹1 and 𝐹2, there is a constant 𝐿 > 0
such that

2

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝐹𝑖 (𝜓1) − 𝐹𝑖 (𝜓2)

󵄩󵄩󵄩󵄩) ≤ 𝐿
󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P, (81)

for 𝜓1, 𝜓2 ∈ P. Moreover, we define the following real
number:

𝑀
󸀠󸀠

𝑡 = 𝐿𝑀
󸀠

𝑡𝑀𝑒
|𝜔|𝑡
, (82)

where 𝑀󸀠
𝑡 = sup0≤𝑠≤𝑡 max{𝑀1(𝑠),𝑀2(𝑠)} and 𝑀1(⋅) and

𝑀2(⋅) are the functions defined in (A1). Let𝜓1, 𝜓2 ∈ P. Use V1
and V2 to denote𝑈(⋅)𝜓1 and𝑈(⋅)𝜓2, respectively. By assump-
tion (13) on 𝐶 and hypotheses (A1) and (H3), it follows that
󵄩󵄩󵄩󵄩V1 (𝑡) − V2 (𝑡)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇 (𝑡) 𝜓1 (0) − 𝑇 (𝑡) 𝜓2 (0)

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝐹1 ((V1)𝑠) − 𝐹1 ((V2)𝑠)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑇 (𝑡 − 𝑠) (𝐹2 ((V1)𝑠) − 𝐹2 ((V2)𝑠)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐻𝑀𝑒
|𝜔|𝑡󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

+ 𝜎𝐶 (𝑡) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 ((V1)𝑠) − 𝐹1 ((V2)𝑠)
󵄩󵄩󵄩󵄩

+𝑀𝑒
|𝜔|𝑡
∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹2 ((V1)𝑠) − 𝐹2 ((V2)𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝐻𝑀𝑒
𝜔𝑡󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

+ 𝜎𝐶 (𝑡) 𝐿 sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩(V1)𝑠 − (V2)𝑠
󵄩󵄩󵄩󵄩P

+𝑀𝑒
|𝜔|𝑡
𝐿∫

𝑡

0

sup
0≤𝜁≤𝑠

󵄩󵄩󵄩󵄩󵄩
(V1)𝜁 − (V2)𝜁

󵄩󵄩󵄩󵄩󵄩P
𝑑𝑠,

(83)

and so
󵄩󵄩󵄩󵄩(V1)𝑡 − (V2)𝑡

󵄩󵄩󵄩󵄩P

≤ 𝑀1 (𝑡) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩V1 (𝑠) − V2 (𝑠)
󵄩󵄩󵄩󵄩 + 𝑀2 (𝑡)

󵄩󵄩󵄩󵄩(V1)0 − (V2)0
󵄩󵄩󵄩󵄩P

≤ 𝑀1 (𝑡) [𝐻𝑀𝑒
𝜔𝑡󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

+ 𝜎𝐶 (𝑡) 𝐿 sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩(V1)𝑠 − (V2)𝑠
󵄩󵄩󵄩󵄩P

+𝑀𝑒
|𝜔|𝑡
𝐿∫

𝑡

0

sup
0≤𝜁≤𝑠

󵄩󵄩󵄩󵄩󵄩
(V1)𝜁 − (V2)𝜁

󵄩󵄩󵄩󵄩󵄩P
𝑑𝑠]

+𝑀2 (𝑡)
󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

≤ (𝐻 + 1)𝑀
󸀠

𝑡𝑀𝑒
𝜔𝑡󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

+ 𝜎𝐶 (𝑡)𝑀
󸀠

𝑡𝐿 sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩(V1)𝑠 − (V2)𝑠
󵄩󵄩󵄩󵄩P

+𝑀
󸀠󸀠

𝑡 ∫

𝑡

0

sup
0≤𝜁

≤ 𝑠
󵄩󵄩󵄩󵄩󵄩
(V1)𝜁 − (V2)𝜁

󵄩󵄩󵄩󵄩󵄩P
𝑑𝑠,

(84)
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for 𝑡 ∈ [0, 𝑇]. We can choose 𝜀 so small that𝐾 := 𝜎𝐶(𝜀)𝐿𝑀
󸀠
𝜀 <

1 and it follows that

sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩(V1)𝑠 − (V2)𝑠
󵄩󵄩󵄩󵄩P

≤
1

1 − 𝐾
(𝐻 + 1)𝑀

󸀠

𝜀𝑀𝑒
|𝜔|𝜀󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

+
1

1 − 𝐾
𝑀

󸀠󸀠

𝜀 ∫

𝑡

0

sup
0≤𝜁≤𝑠

󵄩󵄩󵄩󵄩󵄩
(V1)𝜁 − (V2)𝜁

󵄩󵄩󵄩󵄩󵄩P
𝑑𝑠,

(85)

for 0 ≤ 𝑡 ≤ 𝜀. By Gronwall’s inequality, it follows that

sup
0≤𝑠≤𝜀

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜓1 − 𝑈 (𝑡) 𝜓2
󵄩󵄩󵄩󵄩P = sup

0≤𝑠≤𝜀

󵄩󵄩󵄩󵄩(V1)𝑠 − (V2)𝑠
󵄩󵄩󵄩󵄩P

≤ 𝐾
󸀠󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P,

(86)

where

𝐾
󸀠
=

1

1 − 𝐾
(𝐻 + 1)𝑀

󸀠

𝜀𝑀𝑒
|𝜔|𝜀
𝑒
[(1/(1−𝐾))𝑀

󸀠󸀠

𝜀
]𝜀
. (87)

Since, by (ii) and (86),

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜓1 − 𝑈 (𝑡) 𝜓2
󵄩󵄩󵄩󵄩P

=
󵄩󵄩󵄩󵄩𝑈 (𝜀) (𝑈 (𝑡 − 𝜀) 𝜓1) − 𝑈 (𝜀) (𝑈 (𝑡 − 𝜀) 𝜓2)

󵄩󵄩󵄩󵄩P

≤ 𝐾
󸀠󵄩󵄩󵄩󵄩(𝑈 (𝑡 − 𝜀) 𝜓1) − (𝑈 (𝑡 − 𝜀) 𝜓2)

󵄩󵄩󵄩󵄩P

≤ (𝐾
󸀠
)
𝑛󵄩󵄩󵄩󵄩(𝑈 (𝑡 − 𝑛𝜀) 𝜓1) − (𝑈 (𝑡 − 𝑛𝜀) 𝜓2)

󵄩󵄩󵄩󵄩P

≤ 𝐾
󸀠
(𝐾

󸀠
)
𝑛󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

= 𝐾
󸀠
𝑒
𝑛 ln𝐾󸀠󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P

≤ 𝐾
󸀠
𝑒
𝜔
1
𝑡󵄩󵄩󵄩󵄩𝜓1 − 𝜓2

󵄩󵄩󵄩󵄩P,

(88)

for 𝑛𝜀 ≤ 𝑡 ≤ (𝑛+1)𝜀, where𝜔1 = 𝜀
−1 ln𝐾󸀠, then 𝑁1 := 𝐾

󸀠 and
𝑁2 := 𝜔1 are desired constants. The proof is completed.

Now, we will focus on the stability near an equilibrium of
the nonlinear semigroup 𝑈(⋅) on P. The following assump-
tion is needed.

(H4) 𝐹 : P → 𝑋 is continuously Fréchet differentiable
with respect to (P, ‖ ⋅ ‖P) and 𝐹(0) = 0.

Suppose that 𝐹1 and 𝐹2 satisfy hypothesis (H4) with 𝐹󸀠1(0) =
𝐿1 and 𝐹

󸀠
2(0) = 𝐿2 being linear operators on P. Then, by

Theorem 4, the equation

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑢 (𝑡) + 𝐶𝐿1 (𝑢𝑡)) + 𝐿2 (𝑢𝑡) , 𝑡 ≥ 0,

𝑢0 = 𝜑 ∈ P

(89)

has a unique mild solution. Let𝑉(⋅) denote the solution sem-
igroup on P associated with (89). Then 𝑉(⋅) is a 𝐶0-semi-
group.

Theorem 19. Suppose that 𝐹1 and 𝐹2 satisfy hypotheses (H3)
and (H4) with 𝐹󸀠1(0) = 𝐿1 and 𝐹

󸀠
2(0) = 𝐿2. Then the Fréchet

derivative at 0 of the nonlinear semigroup𝑈(⋅), associated with
(76), is equal to the semigroup 𝑉(⋅) associated with (89).

Proof. First, we show that, for any𝑇 > 0,𝑈(𝑡) is differentiable
with respect toP for each 𝑡 ∈ [0, 𝑇]. First, since 𝑉(⋅) is a 𝐶0-
semigroup, there exists a constant𝑀𝑉 such that ‖𝑇(𝑡)‖ ≤ 𝑀𝑉

for 𝑡 ∈ [0, 𝑇]. Fix a 𝑡 ∈ [0, 𝑇] and let 𝜀 > 0 be arbitrary. Since
the uniqueness of solution and assumption 𝐹(0) = 0 imply
𝑈(𝑡)0 = 0, it is sufficient to find a 𝛿 > 0 such that

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜑 − 𝑉 (𝑡) 𝜑
󵄩󵄩󵄩󵄩P ≤ 𝜀

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P, (90)

for each ‖𝜑‖P < 𝛿. By assumptions of 𝐹1 and 𝐹2, there is a
constant 𝐿 > 1 such that

2

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝐹𝑖 (𝜙1) − 𝐹𝑖 (𝜙2)

󵄩󵄩󵄩󵄩) ≤ 𝐿
󵄩󵄩󵄩󵄩𝜙1 − 𝜙2

󵄩󵄩󵄩󵄩P, (91)

for 𝜙1, 𝜙2 ∈ P. Moreover, we define the following real num-
ber:

𝑀
󸀠󸀠

𝑡 = 𝐿𝑀
󸀠

1𝑀𝑒
|𝜔|𝑡
, (92)

where𝑀󸀠
1 = sup0≤𝑠≤𝑇𝑀1(⋅) and𝑀1(⋅) is the function defined

in (A1). Let 𝑢 and V denote themild solutions of (76) and (89),
respectively. Let 𝑟 > 0. For all 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑟, we have

󵄩󵄩󵄩󵄩𝑈 (𝜏) 𝜑 − 𝑉 (𝜏) 𝜑
󵄩󵄩󵄩󵄩P

≤ 𝑀1 (𝜏) sup
0≤𝑠≤𝜏

‖𝑢 (𝑠) − V (𝑠)‖ ≤ 𝑀󸀠

1 sup
0≤𝑠≤𝑡

‖𝑢 (𝑠) − V (𝑠)‖

≤ 𝑀
󸀠

1 sup
0≤𝑠≤𝑡

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴∫

𝑠

0

𝑇 (𝑡 − 𝜍)

×𝐶 [𝐹1 (𝑈 (𝜍) 𝜑) − 𝐿1 (𝑉 (𝜍) 𝜑)] 𝑑𝜍

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑠

0

𝑇 (𝑡 − 𝜍)

× (𝐹2 (𝑈 (𝜍) 𝜑) − 𝐿2 (𝑉 (𝜍) 𝜑)) 𝑑𝜍

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
}

≤ 𝑀
󸀠

1𝜎𝐶 (𝑡) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 (𝑈 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩

+𝑀
󸀠

1𝑀𝑒
|𝜔|𝑡
∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹2 (𝑈 (𝑠) 𝜑) − 𝐿2 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀
󸀠

1𝜎𝐶 (𝑡) sup
0≤𝑠≤𝑡

{
󵄩󵄩󵄩󵄩𝐹1 (𝑈 (𝑠) 𝜑) − 𝐹1 (𝑉 (𝑠) 𝜑)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)

󵄩󵄩󵄩󵄩}

+ 𝑀
󸀠

1𝑀𝑒
|𝜔|𝑡
(∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹2 (𝑈 (𝑠) 𝜑) − 𝐹2 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩 𝑑𝑠

+∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹2 (𝑉 (𝑠) 𝜑) − 𝐿2 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩 𝑑𝑠)
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≤ 𝑀
󸀠󸀠

𝑟 (𝜎𝐶 (𝑟) + 𝑟) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑈 (𝑠) 𝜑 − 𝑉 (𝑠) 𝜑
󵄩󵄩󵄩󵄩P

+𝑀
󸀠󸀠

𝑟 [𝜎𝐶 (𝑟) sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩

+∫

𝑡

0

sup
0≤𝜂≤𝑠

󵄩󵄩󵄩󵄩𝐹2 (𝑉 (𝜂) 𝜑) − 𝐿2 (𝑉 (𝜂) 𝜑)
󵄩󵄩󵄩󵄩 𝑑𝑠] .

(93)

We can choose 𝑟 so small that𝐾 := 𝑀󸀠󸀠
𝑟 (𝜎𝐶(𝑟)+𝑟) < 1. Hence,

the last inequality implies that

sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑈 (𝑠) 𝜑 − 𝑉 (𝑠) 𝜑
󵄩󵄩󵄩󵄩P

≤
𝑀

󸀠󸀠
𝑟

1 − 𝐾
𝜎𝐶 (𝑟) sup

0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩

+
𝑀

󸀠󸀠
𝑟

1 − 𝐾
∫

𝑡

0

sup
0≤𝜂≤𝑠

󵄩󵄩󵄩󵄩𝐹2 (𝑉 (𝜂) 𝜑) − 𝐿2 (𝑉 (𝜂) 𝜑)
󵄩󵄩󵄩󵄩 𝑑𝑠,

(94)

for 𝑡 ∈ [0, 𝑟].
Since 𝐹1 is differentiable at 0 and 𝐹1(0) = 0 with Fréchet

derivative 𝐿1, from the definition of Fréchet derivative and
linearity of𝑉(𝑠), for each 𝜀󸀠 > 0, there exists a 𝛿 > 0 such that

󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐹1 (𝑉 (𝑠) 0) − 𝐿1 ((𝑉 (𝑠) 𝜑 − 𝑉 (𝑠) 0))

󵄩󵄩󵄩󵄩

≤ 𝜀
󸀠󵄩󵄩󵄩󵄩𝑉 (𝑠) 𝜑 − 𝑉 (𝑠) 0

󵄩󵄩󵄩󵄩P = 𝜀
󸀠
𝑀𝑉
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P,

(95)

for ‖𝜑‖P < 𝛿 and 𝑠 ∈ [0, 𝑡], and so

sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩 ≤ 𝜀

󸀠
𝑀𝑉
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P, (96)

for 𝑡 ∈ [0, 𝑟]. Let 𝜀󸀠 = (2𝑀󸀠󸀠
𝑟 )

−1
(1/(1 + 𝜎𝐶(𝑟)))((1 − 𝐾)𝜀/𝑀𝑉).

Then for given 𝜀 there exists a 𝛿 > 0 such that

sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝐹1 (𝑉 (𝑠) 𝜑) − 𝐿1 (𝑉 (𝑠) 𝜑)
󵄩󵄩󵄩󵄩

≤ (2𝑀
󸀠󸀠

𝑟 )
−1 1

1 + 𝜎𝐶 (𝑟)
(1 − 𝐾) 𝜀

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P,

(97)

for ‖𝜑‖P < 𝛿 and 𝑡 ∈ [0, 𝑟]. Similarly,

∫

𝑡

0

sup
0≤𝜂≤𝑠

󵄩󵄩󵄩󵄩𝐹2 (𝑉 (𝜂) 𝜑) − 𝐿2 (𝑉 (𝜂) 𝜑)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ (2𝑀
󸀠󸀠

𝑟 )
−1
(1 − 𝐾) 𝜀

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P,

(98)

for ‖𝜑‖P < 𝛿 and 𝑡 ∈ [0, 𝑟]. Consequently, ‖𝑈(𝑡)𝜑 − 𝑉(𝑡)𝜑‖P
≤ 𝜀‖𝜑‖P for ‖𝜑‖P < 𝛿 and 𝑡 ∈ [0, 𝑟]; that is, 𝜑 󳨃→ 𝑈(𝑡)𝜑 is
Fréchet differentiable for 𝑡 ∈ [0, 𝑟].

If 𝑟 ≤ 𝑡 = 𝑟 + ℎ ≤ 2𝑟, then, by (ii) and (iv) of Theorem 18,
it follows that

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜑 − 𝑉 (𝑡) 𝜑
󵄩󵄩󵄩󵄩P

=
󵄩󵄩󵄩󵄩𝑈 (𝑟)𝑈 (ℎ) 𝜑 − 𝑈 (𝑟) 𝑉 (ℎ) 𝜑

+𝑈 (𝑟) 𝑉 (ℎ) 𝜑 − 𝑉 (𝑟) 𝑉 (ℎ) 𝜑
󵄩󵄩󵄩󵄩P

≤
󵄩󵄩󵄩󵄩𝑈 (𝑟)𝑈 (ℎ) 𝜑 − 𝑈 (𝑟) 𝑉 (ℎ) 𝜑

󵄩󵄩󵄩󵄩P

+
󵄩󵄩󵄩󵄩𝑈 (𝑟) 𝑉 (ℎ) 𝜑 − 𝑉 (𝑟) 𝑉 (ℎ) 𝜑

󵄩󵄩󵄩󵄩P

≤ 𝑁1𝑒
𝑁
2
𝑟󵄩󵄩󵄩󵄩𝑈 (ℎ) 𝜑 − 𝑉 (ℎ) 𝜑

󵄩󵄩󵄩󵄩P + 𝜀
󵄩󵄩󵄩󵄩𝑉 (ℎ) 𝜑

󵄩󵄩󵄩󵄩P

≤ 𝑁1𝑒
𝑁
2
𝑟
𝜀
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P + 𝜀𝑀𝑉

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P,

(99)

for 𝜑 ∈ P with ‖𝜑‖P < 𝛿. Thus, for given 𝜀1 > 0, letting
𝜀 = (𝑁1𝑒

𝑁
2
𝑟
+𝑀𝑉)

−1
𝜀1, we have shown that

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜑 − 𝑉 (𝑡) 𝜑
󵄩󵄩󵄩󵄩P ≤ 𝜀1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P, (100)

for ‖𝜑‖P < 𝛿. So, themapping 𝜑 󳨃→ 𝑈(𝑡)𝜑 is Fréchet differen-
tiable for 𝑡 ∈ [0, 2𝑟] and the Fréchet derivative equals the
map 𝜑 󳨃→ 𝑉(𝑡)𝜑. Repeating this argument, we can get the
conclusion.

Definition 20 (see [19]). Let 𝑈(⋅) be a strongly continuous
semigroup on a Banach space (𝑊, ‖ ⋅ ‖𝑊). A point 𝑤 ∈ 𝑊

is called an equilibrium of 𝑈(⋅) if 𝑈(𝑡)𝑤 = 𝑤 for all 𝑡 ≥ 0. An
equilibrium 𝑤 ∈ 𝑊 is said to be exponentially stable if there
exist 𝛿 > 0, ] > 0, and𝑁 > 1 such that

‖𝑈 (𝑡) 𝑥 − 𝑤‖𝑊 ≤ 𝑁𝑒
−]𝑡
‖𝑥 − 𝑤‖𝑊, (101)

for 𝑡 ≥ 0 and ‖𝑥 − 𝑤‖𝑊 ≤ 𝛿.

When𝑈(⋅) is a linear semigroup, this definition reduces to
the usual definition of exponential stability of𝐶0-semigroups:
‖𝑈(𝑡)‖ ≤ 𝑁𝑒

−]𝑡.

Theorem21 (see [19]). Let𝑈(⋅) be a nonlinear strongly contin-
uous semigroup in a Banach space𝑊. Assume that 𝑤 ∈ 𝑊 is
an equilibrium of 𝑈(⋅) such that 𝑈(𝑡) is Fréchet differentiable
at 𝑤 for each 𝑡 ≥ 0, with 𝑉(𝑡) the Fréchet derivative at 𝑤 of
U(t).Then,𝑉(⋅) is a strongly continuous semigroup of bounded
linear operators on𝑊. Moreover, if𝑉(⋅) is exponentially stable,
then 𝑤 is an exponentially stable equilibrium of 𝑈(⋅).

Since (H4) implies that 0 is an equilibrium of the semi-
group 𝑈(⋅) in Theorem 19, by Theorem 21, we have the
following consequence.

Theorem 22. Suppose that 𝐹1 and 𝐹2 satisfy hypotheses (H3)
and (H4). If𝑉(⋅) is exponentially stable onP, that is, there exist
constants 𝛽 ≤ 1 and 𝜔1 > 0 such that ‖𝑉(𝑡)𝜑‖P ≤ 𝛽𝑒

−𝜔
1
𝑡
‖𝜑‖P

for 𝑡 ≥ 0 and 𝜑 ∈ P, then zero is an exponentially stable equi-
librium of 𝑈(⋅) on P; that is, there exist 𝛿 > 0, ] > 0, and
𝑁 > 1 such that

󵄩󵄩󵄩󵄩𝑈 (𝑡) 𝜑
󵄩󵄩󵄩󵄩P ≤ 𝑁𝑒

−]𝑡󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P, (102)

for 𝑡 ≥ 0 and ‖𝜑‖P ≤ 𝛿.
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Remark 23. Theorems 19 and 22 for the special case that 𝐶 =
0 and 𝐴 satisfies the Hille-Yosida condition can be found in
[10].
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