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We establish some fixed point theorems for 𝛼-admissible mappings in the context of metric-like space via various auxiliary
functions. In particular, we prove the existence of a fixed point of the generalized Meir-Keeler type 𝛼 − 𝜙-contractive self-mapping
𝑓 defined on ametric-like space𝑋.The given results generalize, improve, and unify several fixed point theorems for the generalized
cyclic contractive mappings that have appeared recently in the literature.

1. Introduction and Preliminaries

Nonlinear functional analysis is one of the most dynamic
research fields in mathematics. In particular, fixed point
theory that has a wide application potential to several
quantitative sciences has attracted a number of authors. In
the recent decades, several new abstract spaces and new
contractive type mappings have been considered to develop
the fixed point theory and to increase application potential to
existing open problems. Among them, Samet et al. [1] proved
very interesting fixed point theorem by introducing the 𝛼-𝜓-
contractive self-mapping 𝑓 in the setting of complete metric
space (𝑋, 𝑑). In this notion, 𝜓 is a 𝑐-distance function (see,
e.g., [2–5]) and self-mapping is 𝛼-admissible. The notion of
mapping 𝛼-𝜓-contractive mappings has charmed a number
of authors (see, e.g., [1, 6–14]).

In this paper, we combine some of the notions to getmore
general results in the research field of fixed point theory. In
particular, we investigate the existence of a fixed point of 𝛼-
admissible mapping in the context of metric-like space via
implicit functions.

Throughout this paper, by R+, we denote the set of
all nonnegative numbers, while N is the set of all natural
numbers. In 1994, Matthews [15] introduced the following
notion of partial metric spaces.

Definition 1 (see [15]). A partial metric on a nonempty set 𝑋
is a function 𝑝 : 𝑋×𝑋 → [0,∞) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

(p
1
) 𝑥 = 𝑦 if and only if 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦);

(p
2
) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);

(p
3
) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(p
4
) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is a
nonempty set and 𝑝 is a partial metric on𝑋.

Remark 2. It is clear that if 𝑝(𝑥, 𝑦) = 0, then, from (𝑝
1
) and

(𝑝
2
), 𝑥 = 𝑦. But if 𝑥 = 𝑦, 𝑝(𝑥, 𝑦)may not be 0.
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Later, fixed point theory has developed rapidly on partial
metric spaces; see [16–23]. Further, in 2012, Amini-Harandi
[24] introduced the concept of a metric-like space.

Definition 3 (see [24]). A function 𝜎 : 𝑋 × 𝑋 → [0,∞),
where 𝑋 is a nonempty set, is said to be metric-like on 𝑋 if
the following conditions are satisfied, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝜎
1
) if 𝜎(𝑥, 𝑦) = 0, then 𝑥 = 𝑦;

(𝜎
2
) 𝜎(𝑥, 𝑦) = 𝜎(𝑦, 𝑥);

(𝜎
3
) 𝜎(𝑥, 𝑦) ≤ 𝜎(𝑥, 𝑧) + 𝜎(𝑧, 𝑦).

Then the pair (𝑋, 𝜎) is called a metric-like space.

Remark 4 (see [24]). (1) A metric-like on𝑋 satisfies all of the
conditions of a metric except that 𝜎(𝑥, 𝑥)may be positive for
𝑥 ∈ 𝑋.

(2) Every partial metric space is a metric-like space. But
the converse is not true.

Each metric-like 𝜎 on 𝑋 generates a topology 𝜏
𝜎
on 𝑋

whose base is the family of open 𝜎-balls {𝐵
𝜎
(𝑥, 𝛾) : 𝑥 ∈ 𝑋, 𝛾 >

0}, where 𝐵
𝜎
(𝑥, 𝛾) = {𝑦 ∈ 𝑋 : |𝜎(𝑥, 𝑦) − 𝜎(𝑥, 𝑥)| < 𝛾} for all

𝑥 ∈ 𝑋 and 𝛾 > 0. We recall some definitions on a metric-like
space as follows.

Definition 5 (see [24]). Let (𝑋, 𝜎) be ametric-like space.Then

(1) a sequence {𝑥
𝑛
} in a metric-like space (𝑋, 𝜎) con-

verges to 𝑥 ∈ 𝑋 if and only if 𝜎(𝑥, 𝑥) =

lim
𝑛→∞

𝜎(𝑥
𝑛
, 𝑥);

(2) a sequence {𝑥
𝑛
} in ametric-like space (𝑋, 𝜎) is called a

𝜎-Cauchy sequence if and only if lim
𝑚,𝑛→∞

𝜎(𝑥
𝑚
, 𝑥
𝑛
)

exists (and is finite);
(3) a metric-like space (𝑋, 𝜎) is said to be complete if

every 𝜎-Cauchy sequence {𝑥
𝑛
} in 𝑋 converges, with

respect to 𝜏
𝜎
, to a point 𝑥 ∈ 𝑋 such that

𝜎 (𝑥, 𝑥) = lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥) = lim

𝑚,𝑛→∞

𝜎 (𝑥
𝑚
, 𝑥
𝑛
) , (1)

(4) a mapping 𝑇 : 𝑋 → 𝑋 is continuous, if the following
limits exist (finite) and

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥) = lim

𝑚,𝑛→∞

𝜎 (𝑇𝑥, 𝑥) . (2)

Definition 6 (see [24]). Let (𝑋, 𝜎) be a metric-like space and
𝑈 be a subset of 𝑋. Then 𝑈 is a 𝜎-open subset of 𝑋 if, for all
𝑥 ∈ 𝑋, there exists 𝛾 > 0 such that 𝐵

𝜎
(𝑥, 𝛾) ⊂ 𝑈. Also, 𝑉 ⊂ 𝑋

is a 𝜎-closed subset of𝑋 if𝑋 \ 𝑉 is a 𝜎-open subset of𝑋.

Further, Karapınar and Salimi [25] proved the following
crucial properties in the setting of metric-like space (𝑋, 𝜎).

Lemma 7 (see [25]). Let (𝑋, 𝜎) be a metric-like space. Then

(A) if 𝜎(𝑥, 𝑦) = 0, 𝜎(𝑥, 𝑥) = 𝜎(𝑦, 𝑦) = 0;
(B) if {𝑥

𝑛
} is a sequence such that lim

𝑛→∞
𝜎(𝑥
𝑛
, 𝑥
𝑛+1

) = 0,

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝜎 (𝑥
𝑛+1

, 𝑥
𝑛+1

) = 0; (3)

(C) if 𝑥 ̸= 𝑦, 𝜎(𝑥, 𝑦) > 0;
(D) 𝜎(𝑥, 𝑥) ≤ (2/𝑛)∑

𝑛

𝑖=1
𝜎(𝑥, 𝑥

𝑖
) holds for all 𝑥, 𝑥

𝑖
∈ 𝑋,

where 1 ≤ 𝑖 ≤ 𝑛.

Lemma 8. Let (𝑋, 𝜎) be a metric-like space and {𝑥
𝑛
} be a

sequence in 𝑋 such that 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞ and 𝜎(𝑥, 𝑥) = 0.

Then lim
𝑛→∞

𝜎(𝑥
𝑛
, 𝑦) = 𝜎(𝑥, 𝑦) for all 𝑦 ∈ 𝑋.

We recall the notion of cyclic map which was introduced
by Kirk et al. [26]. A mapping 𝑓 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is called
cyclic if 𝑓(𝐴) ⊂ 𝐵 and 𝑓(𝐵) ⊂ 𝐴. Kirk et al. [26] proved the
analog of the Banach contractionmapping principle via cyclic
mappings.

Theorem 9 (see [26]). Let 𝐴 and 𝐵 be two nonempty closed
subsets of a complete metric space (𝑋, 𝑑), and suppose 𝑓 : 𝐴 ∪

𝐵 → 𝐴 ∪ 𝐵 satisfies the following:

(i) 𝑓 is a cyclic map,
(ii) 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘 ⋅ 𝑑(𝑥, 𝑦) for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, and

𝑘 ∈ (0, 1).

Then𝐴∩𝐵 is nonempty and𝑓 has a unique fixed point in𝐴∩𝐵.

Furthermore, Kirk et al. [26] also introduced the follow-
ing notion of the cyclic representation.

Definition 10 (see [26]). Let𝑋 be a nonempty set,𝑚 ∈ N, and
𝑓 : 𝑋 → 𝑋 an operator. Then 𝑋 = ∪

𝑚

𝑖=1
𝐴
𝑖
is called a cyclic

representation of𝑋 with respect to 𝑓 if

(1) 𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are nonempty subsets of𝑋;

(2) 𝑓(𝐴
1
) ⊂ 𝐴

2
, 𝑓(𝐴

2
) ⊂ 𝐴

3
, . . . , 𝑓(𝐴

𝑚−1
) ⊂ 𝐴

𝑚
, and

𝑓(𝐴
𝑚
) ⊂ 𝐴

1
.

By using the notion in the definition above, Kirk et al. [26]
proved the following theorem.

Theorem 11 (see [26]). Let (𝑋, 𝑑) be a complete metric space,
𝑚 ∈ N, 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
be closed nonempty subsets of 𝑋, and

𝑋 = ∪
𝑚

𝑖=1
𝐴
𝑖
. Suppose that 𝑓 satisfies the following condition:

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥 ∈ 𝐴
𝑖
, 𝑦 ∈ 𝐴

𝑖+1
,

𝑖 ∈ {1, 2, . . . , 𝑚} ,

(4)

where 𝜓 : R+ → R+ is upper semicontinuous from the right
and 0 ≤ 𝜓(𝑡) < 𝑡 for 𝑡 > 0.Then𝑓 has a fixed point 𝑧 ∈ ∩𝑛

𝑖=1
𝐴
𝑖
.

In 2012, Karapınar et al. [22] investigated the existence
and uniqueness of a fixed point for cyclic generalized 𝜙-𝜓-
contractive type mappings 𝑓 : 𝑋 → 𝑋 in the context of
partial metric space. Very recently, Karapınar and Salimi [25]
improved the results in [22] by introducing the notion of
cyclic generalized 𝜙-𝜓-contractive mapping 𝑓 : 𝑋 → 𝑋. In
this paper [25], the authors proved fixed theorems for such a
mapping in the setting of a metric-like space 𝑋 with a cyclic
representation of𝑋 with respect to 𝑓.

Definition 12 (see [25]). Let (𝑋, 𝜎) be a metric-like space,
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
be 𝜎-closed nonempty subsets of 𝑋, and
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𝑌 = ∪
𝑚

𝑖=1
𝐴
𝑖
. One says that 𝑇 : 𝑌 → 𝑌 is called a generalized

cyclic 𝜙-𝜓-contractive mapping if

(1) 𝑌 = ∪
𝑚

𝑖=1
𝐴
𝑖
is a cyclic representation of𝑌with respect

to 𝑇;
(2) One considers

𝜓 (𝑡) − 𝜓 (𝑠) + 𝜙 (𝑡) > 0 ∀𝑡 > 0, 𝑠 = 𝑡, or 𝑠 = 0,

𝜓 (𝜎 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑀
𝜎
(𝑥, 𝑦)) − 𝜙 (𝑀

𝜎
(𝑥, 𝑦)) ,

𝑀
𝜎
(𝑥, 𝑦) = max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) ,

𝜎 (𝑥, 𝑇𝑦) + 𝜎 (𝑦, 𝑇𝑥)

4

} ,

(5)

for all 𝑥 ∈ 𝐴
𝑖
and 𝑦 ∈ 𝐴

𝑖+1
, 𝑖 = 1, 2, . . . , 𝑚, where 𝜓 : R+ →

R+ is nondecreasing and continuous and 𝜙 : R+ → R+ is
lower semicontinuous.

Theorem 13 (see [25]). Let (𝑋, 𝜎) be a metric-like space,
𝐴
1
, 𝐴
2
, . . . , be 𝜎-closed nonempty subsets of 𝑋, and 𝑌 =

∪
𝑚

𝑖=1
𝐴
𝑖
. If 𝑇 : 𝑌 → 𝑌 is a generalized cyclic 𝜙-𝜓-contractive

mapping, then 𝑇 has a fixed point ] ∈ ∩𝑛
𝑖=1
𝐴
𝑖
.

In this study, we also discuss the notion of 𝛼-admissible
mappings. The following definition was introduced in [1].

Definition 14 (see [1]). For a nonempty set𝑋, let 𝑇 : 𝑋 → 𝑋

and 𝛼 : 𝑋 × 𝑋 → [0,∞) be mappings. One says that 𝑓 is
𝛼-admissible, if, for all 𝑥, 𝑦 ∈ 𝑋, one has

𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (6)

Recall that Samet et al. [1] introduced the following
concepts.

Definition 15 (see [1]). Let (𝑋, 𝑑) be a metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. One says that 𝑇 is an 𝛼-𝜓
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →

[0,∞) and a certain 𝜓 such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (7)

It is evident that amapping satisfying the Banach contrac-
tion is a 𝛼-𝜓 contractive mapping equipped with 𝛼(𝑥, 𝑦) = 1

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡, 𝑘 ∈ (0, 1).
The notion of transitivity of mapping 𝛼 : 𝑋 × 𝑋 →

[0, +∞) was introduced in [13, 14] as follows.

Definition 16 (see [13, 14]). Let𝑁 ∈ N. One says that 𝛼 is𝑁-
transitive (on𝑋) if

𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑁+1
∈ 𝑋 : 𝛼 (𝑥

𝑖
, 𝑥
𝑖+1
) ≥ 1, (8)

for all 𝑖 ∈ {0, 1, . . . , 𝑁} ⇒ 𝛼(𝑥
0
, 𝑥
𝑁+1

) ≥ 1.
In particular, one says that𝛼 is transitive if it is 1-transitive;

that is,

𝑥, 𝑦, 𝑧 ∈ 𝑋 : 𝛼 (𝑥, 𝑦) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1 ⇒ 𝛼 (𝑥, 𝑧) ≥ 1.

(9)

As consequences of Definition 16, one obtains the follow-
ing remarks.

Remark 17 (see [13, 14]). (1) Any function 𝛼 : 𝑋 × 𝑋 →

[0, +∞) is 0-transitive.
(2) If 𝛼 is𝑁-transitive, then it is 𝑘𝑁-transitive for all 𝑘 ∈

N.
(3) If 𝛼 is transitive, then it is𝑁-transitive for all𝑁 ∈ N.
(4) If 𝛼 is𝑁-transitive, then it is not necessarily transitive

for all𝑁 ∈ N.

In this paper, we investigate the existence and uniqueness
of a fixed point of several 𝛼-admissible mappings in the
context of metric-like space. In particular, we establish
fixed point theorem for the generalized cyclic Meir-Keeler
type 𝜙-𝛼-contractive mappings, the generalized (𝜑, 𝜙, 𝜓, 𝜉)-
𝛼-contractive mappings, and the generalized weaker Meir-
Keeler type (𝜙, 𝜑)-𝛼-contractive mappings. Our results gen-
eralize or improve many recent fixed point theorems for the
generalized cyclic contractive mappings in the literature.

2. Fixed Point Theorem via the 𝛼-Admissible
Meir-Keeler Type Mappings

In this section, first of all, we will introduce the notion of
the generalizedMeir-Keeler type 𝛼−𝜙-contractivemappings.
Later, we investigate the existence and uniqueness of such
mappings in the context of metric-like spaces. We start with
recalling the notion of the Meir-Keeler type mappings.

A function 𝛾 : [0,∞) → [0,∞) is said to be a Meir-
Keeler type mapping (see [27]), if, for each 𝜂 ∈ [0,∞), there
exists 𝛿 > 0 such that, for 𝑡 ∈ [0,∞) with 𝜂 ≤ 𝑡 < 𝜂 + 𝛿, we
have 𝛾(𝑡) < 𝜂.

LetΦ be the class of all function𝜙 : R+5 → R+ satisfying
the following conditions:

(𝜙
1
) 𝜙 is an increasing and continuous function in each
coordinate;

(𝜙
2
) for 𝑡 > 0, 𝜙(𝑡, 𝑡, 𝑡, 2𝑡, 2𝑡) < 𝑡, 𝜙(𝑡, 0, 0, 𝑡, 𝑡) < 𝑡, and
𝜙(0, 0, 𝑡, 𝑡, 0) < 𝑡;

(𝜙
3
) 𝜙(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 0 if and only if 𝑡

1
= 𝑡
2
= 𝑡
3
= 𝑡
4
=

𝑡
5
= 0.

We will introduce the notion of the generalized Meir-
Keeler type 𝛼 − 𝜙-contractive mappings in metric-like spaces
as follows.

Definition 18. Let (𝑋, 𝜎) be a metric-like space and let 𝛼 :

𝑋 × 𝑋 → [0,∞). One says that 𝑇 : 𝑋 → 𝑋 is called a
generalizedMeir-Keeler type 𝛼−𝜙-contractivemapping if for
each 𝜂 > 0 there exists 𝛿 > 0 such that

𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝛼 (𝑥, 𝑦) 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(10)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 ∈ Φ.
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Remark 19. Note that if 𝑇 is a generalized Meir-Keeler type
𝛼−𝜙-contractive mapping, then we have, for all 𝑥, 𝑦 ∈ 𝑋 and
𝜙 ∈ Φ,

𝛼 (𝑥, 𝑦) 𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) ,

𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥)) .

(11)

In what follows, we state themain fixed point theorem for
a generalized Meir-Keeler type 𝛼 − 𝜙-contractive mapping in
the setting of complete metric-like space.

Theorem20. Let (𝑋, 𝜎) be a completemetric-like space and let
𝑇 : 𝑋 → 𝑋 be a generalizedMeir-Keeler type𝛼−𝜙-contractive
mapping where 𝛼 is transitive. Suppose that

(i) 𝑇 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Our proof consists of four steps. In the first step, we
prove that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1, for all 𝑛 = 0, 1, . . .. Due to
assumption (ii) of the theorem, there exists 𝑥

0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. We will construct an iterative sequence {𝑥

𝑛
}

in𝑋 as follows:

𝑥
𝑛+1

= 𝑇𝑥
𝑛
= 𝑇
𝑛+1

𝑥
0

∀𝑛 ≥ 0. (12)

If we have 𝑥
𝑛0

= 𝑥
𝑛0+1

, for some 𝑛
0
, then the proof is

completed. Indeed, 𝑢 = 𝑥
𝑛0

is a fixed point of 𝑇. Hence,
throughout the proof, we presume that

𝑥
𝑛
̸= 𝑥
𝑛+1

∀𝑛. (13)

Since 𝑇 is 𝛼-admissible, we have

𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑇𝑥
0
) ≥ 1

⇒ 𝛼 (𝑇𝑥
0
, 𝑇𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1.

(14)

By elementary calculations, we derive that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . . (15)

In the second step, wewill prove that lim
𝑛→∞

𝜎(𝑥
𝑛
, 𝑥
𝑛+1

) = 0.
Notice that we have 𝜎(𝑥

𝑛
, 𝑥
𝑛+1

) > 0 for all 𝑛 = 0, 1, 2, . . . by
(13) and Lemma 7(C). Since 𝑇 is a generalized Meir-Keeler
type 𝛼 − 𝜙-contractive mapping, by taking 𝑥 = 𝑥

𝑛−1
and 𝑦 =

𝑥
𝑛
in (11), we have

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

)

= 𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) ≤ 𝛼 (𝑥

𝑛−1
, 𝑥
𝑛
) 𝜎 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜙 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

) , 𝜎 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

𝜎 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

))

≤ 𝜙 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝜎 (𝑥
𝑛−1

, 𝑥
𝑛+1

) , 𝜎 (𝑥
𝑛
, 𝑥
𝑛
))

≤ 𝜙 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
)

+ 𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)) .

(16)

We assert that {𝜎(𝑥
𝑛
, 𝑥
𝑛+1

)} is decreasing; that is,
𝜎(𝑥
𝑛
, 𝑥
𝑛+1

) < 𝜎(𝑥
𝑛−1

, 𝑥
𝑛
) for all 𝑛 ∈ N. Suppose, on the

contrary, that 𝜎(𝑥
𝑛0
, 𝑥
𝑛0+1

) ≥ 𝜎(𝑥
𝑛0−1

, 𝑥
𝑛0
) for some 𝑛

0
∈ N.

By taking 𝑥 = 𝑥
𝑛0−1

and 𝑦 = 𝑥
𝑛0
in (11) and (16), we have

𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)

= 𝜎 (𝑇𝑥
𝑛0−1

, 𝑇𝑥
𝑛0
) ≤ 𝛼 (𝑥

𝑛0−1
, 𝑥
𝑛0
) 𝜎 (𝑇𝑥

𝑛0−1
, 𝑇𝑥
𝑛0
)

≤ 𝜙 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

) , 𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

) , 𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

) ,

2𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

) , 2𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

))

< 𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

) ,

(17)

which is a contradiction. So the {𝜎(𝑥
𝑛
, 𝑥
𝑛+1

)} is decreasing,
and it must converge to some 𝛾 ≥ 0; that is,

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝛾. (18)

By condition (𝜙
1
), inequality (16) becomes

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

)

= 𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝜙 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

2𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 2𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
)) .

(19)

We next claim that 𝛾 = 0. If not, we assume that 𝛾 > 0. By
taking limit as 𝑛 → ∞ in (19), we have

𝛾 = lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = lim
𝑛→∞

𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝜙 (𝛾, 𝛾, 𝛾, 2𝛾, 2𝛾) < 𝛾,

(20)

which is a contradiction. Hence, we have 𝛾 = 0.
In the third step, we will prove that {𝑥

𝑛
} is a 𝜎-Cauchy

sequence. We will use the method of reductio ad absurdum.
Suppose, on the contrary, that {𝑥

𝑛
} is not a 𝜎-Cauchy

sequence. Hence, there exists 𝜖 > 0 and subsequences {𝑥
𝑛𝑘
}

and {𝑥
𝑚𝑘
} of {𝑥

𝑛
} with𝑚

𝑘
> 𝑛
𝑘
≥ 𝑘 satisfying

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≥ 𝜖, 𝜎 (𝑥

𝑚𝑘−1
, 𝑥
𝑛𝑘
) < 𝜖. (21)
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Since 𝛼 is transitive, from (15), we have 𝛼(𝑥
𝑛
, 𝑥
𝑛+𝑘

) ≥ 1 and
hence 𝛼(𝑥

𝑛
, 𝑥
𝑚
) ≥ 1. Consider the following:

𝜖 ≤ 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≤ 𝜎 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘−1

) + 𝜎 (𝑥
𝑚𝑘−1

, 𝑥
𝑛𝑘
)

< 𝜖 + 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘−1

) .

(22)

Letting 𝑘 → ∞, we obtain that

lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) = 𝜖. (23)

Also we have

𝜖 ≤ 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≤ 𝜎 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘
)

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘
) ≤ 𝜎 (𝑥

𝑚𝑘+1
, 𝑥
𝑚𝑘
) + 𝜎 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) .

(24)

We get

𝜖 ≤ 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
)

≤ 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘
) + 𝜎 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) .

(25)

Letting 𝑘 → ∞ in the inequality above, we find that

lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘
) = 𝜖. (26)

Analogously, we derive that

lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

) = 𝜖. (27)

Further, we have

𝜖 ≤ 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≤ 𝜎 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

)

+ 𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

) + 𝜎 (𝑥
𝑛𝑘+1

, 𝑥
𝑛𝑘
)

≤ 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘
)

+ 𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) + 𝜎 (𝑥
𝑛𝑘+1

, 𝑥
𝑛𝑘
) .

(28)

Letting 𝑘 → ∞ in the above inequality, we get that

lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

) = 𝜖. (29)

Notice also that

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

)

= 𝜎 (𝑇𝑥
𝑚𝑘
, 𝑇𝑥
𝑛𝑘
) ≤ 𝛼 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) 𝜎 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
)

≤ 𝜙 (𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) , 𝜎 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

) , 𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) ,

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

) , 𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

)) .

(30)

Letting 𝑘 → ∞ in the above inequality and taking the
property (𝜙

2
) into account, we get that

𝜖 = lim
𝑛→∞

𝜎 (𝑥
𝑞𝑛+1

, 𝑥
𝑝𝑛+1

) ≤ 𝜙 (𝜖, 0, 0, 𝜖, 𝜖) < 𝜖, (31)

which is a contradiction. Thus, {𝑥
𝑛
} is a 𝜎-Cauchy sequence.

In the fourth and last step, we will prove that 𝑇 has a fixed
point 𝑢 ∈ 𝑋. Owing to the fact that (𝑋, 𝜎) is complete, there
exists 𝑢 ∈ 𝑋 such that lim

𝑛→∞
𝑥
𝑛
= 𝑢; equivalently,

𝜎 (𝑢, 𝑢) = lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑢) = lim

𝑚,𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (32)

Since 𝑇 is continuous, we obtain from (32) that

lim
𝑛→∞

𝜎 (𝑇𝑥
𝑛
, 𝑇𝑢) = lim

𝑛→∞

𝜎 (𝑥
𝑛
, 𝑢) = 𝜎 (𝑢, 𝑢) = 0. (33)

Due to Lemma 8, we also have

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑇𝑢) = 𝜎 (𝑢, 𝑇𝑢) . (34)

Combining (32)–(34) and Lemma 7(A), we get immediately
that 𝑢 is a fixed point of 𝑇; that is, 𝑇𝑢 = 𝑢.

In the next theorem the continuity of 𝑇 is not required.

Theorem 21. Let (𝑋, 𝜎) be a complete metric-like space and let
𝑇 : 𝑋 → 𝑋 be a generalizedMeir-Keeler type𝛼−𝜙-contractive
mapping, where 𝛼 is transitive. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 20, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, for all 𝑛 ≥ 0, converges

to 𝑢 where 𝑢 ∈ 𝑋. It is enough to show that 𝑢 ∈ 𝑋 is the
fixed point of 𝑇. Suppose, on the contrary, that 𝜎(𝑇𝑢, 𝑢) =
𝑡 > 0. From (15) and condition (iii), there exists a subsequence
{𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘. Applying (11),

for all 𝑘, we get that

𝜎 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢)

= 𝜎 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢) ≤ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢) 𝜎 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝜙 (𝜎 (𝑥
𝑛(𝑘)

, 𝑢) , 𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) , 𝜎 (𝑢, 𝑇𝑢) ,

𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢) , 𝜎 (𝑢, 𝑇𝑥
𝑛(𝑘)

))

= 𝜙 (𝜎 (𝑥
𝑛(𝑘)

, 𝑢) , 𝜎 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) , 𝜎 (𝑢, 𝑇𝑢) ,

𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢) , 𝜎 (𝑢, 𝑥
𝑛(𝑘)+1

)) .

(35)

Letting 𝑘 → ∞ in the above equality and taking (34) into
account, we get that

𝑡 ≤ 𝜙 (0, 0, 𝑡, 𝑡, 0) . (36)

By (𝜙
2
) we get that

𝑡 ≤ 𝜙 (0, 0, 𝑡, 𝑡, 0) < 𝑡, (37)

which is a contradiction. Thus we get 𝜎(𝑢, 𝑇𝑢) = 0, and, by
Lemma 7(A), we have 𝑢 = 𝑇𝑢.
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For the uniqueness, we need an additional condition.

(U) For all 𝑥, 𝑦 ∈ Fix (𝑇), we have 𝛼(𝑥, 𝑦) ≥ 1, where
Fix (𝑇) denotes the set of fixed points of 𝑇.

In what follows we will show that 𝑢 is a unique fixed point of
𝑇.

Theorem 22. Adding condition (𝑈) to the hypotheses of
Theorem 20 (resp., Theorem 21), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Proof. Wewill use the reductio ad absurdum. Let V be another
fixed point of 𝑇 with V ̸= 𝑢 and hence 𝜎(𝑢, V) = 𝑡 > 0. By
hypothesis (𝑈),

1 ≤ 𝛼 (𝑢, V) = 𝛼 (𝑇𝑢, 𝑇V) . (38)

Due to inequality (11) we have

𝛼 (𝑢, V) 𝜎 (𝑇𝑢, 𝑇𝑦) ≤ 𝜙 (𝜎 (𝑢, V) , 𝜎 (𝑢, 𝑇𝑢) , 𝜎 (V, 𝑇V) ,

𝜎 (𝑢, 𝑇V) , 𝜎 (V, 𝑇𝑢)) .
(39)

Taking property (𝜙
2
) into account, we get that

𝑡 ≤ (𝑡, 0, 0, 𝑡, 𝑡) < 𝑡, (40)

which is a contradiction. Hence, 𝜎(𝑢, V) = 0. It follows from
Lemma 7(A) that 𝑢 = V. Thus we proved that 𝑢 is the unique
fixed point of 𝑇.

3. Fixed Point Theorem via
Auxiliary Functions

In the section, we will discuss the notion of generalized
(𝜑, 𝜙, 𝜓, 𝜉)-𝛼-contractive mappings and prove fixed point
theorems for these mappings in complete metric-like spaces.
We denote by Ψ the class of functions 𝜓 : R+ → R+

satisfying the following conditions:

(𝜓
1
) 𝜓 is continuous and nondecreasing;

(𝜓
2
) 𝜓(𝑡) > 0 for all 𝑡 > 0 and 𝜓(0) = 0.

Let Φ
𝜓
be the class of all function 𝜙 : R+

5

→ R+

satisfying the following conditions:

(𝜙
1
) 𝜙 is an increasing and continuous function in each
coordinate;

(𝜙
2
) for 𝑡 > 0, 𝜙(𝜓(𝑡), 𝜓(𝑡), 𝜓(𝑡), 𝜓(2𝑡), 𝜓(2𝑡)) ≤ 𝜓(𝑡),
𝜙(𝑡, 0, 0, 𝑡, 𝑡) ≤ 𝑡, and 𝜙(0, 0, 𝑡, 𝑡, 0) ≤ 𝑡, where 𝜓 ∈ Ψ;

(𝜙
3
) 𝜙(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 0 if and only if 𝑡

1
= 𝑡
2
= 𝑡
3
= 𝑡
4
=

𝑡
5
= 0.

We use the following notations to specify the collection of
the given functions:

Ξ = {𝜉 : R
+

→ R
+

: 𝜉 is lower continuous} ,

Θ = {𝜑 : R
+

→ R
+

: 𝜑 is continuous} .
(41)

We now state the new notion of generalized (𝜑, 𝜙, 𝜓, 𝜉)-
𝛼-contractive mappings in metric-like spaces is as follows.

Definition 23. Let (𝑋, 𝜎) be ametric-like space and let 𝛼 : 𝑋×
𝑋 → R+. One says that 𝑇 is called a generalized (𝜑, 𝜙, 𝜓, 𝜉)-
𝛼-contractive mapping if 𝑇 is 𝛼-admissible and satisfies the
following inequality:

𝛼 (𝑥, 𝑦) 𝜑 (𝜎 (𝑇𝑥, 𝑇𝑦))

≤ 𝜙 (𝜓 (𝜎 (𝑥, 𝑦)) , 𝜓 (𝜎 (𝑥, 𝑇𝑥)) , 𝜓 (𝜎 (𝑦, 𝑇𝑦)) ,

𝜓 (𝜎 (𝑥, 𝑇𝑦)) , 𝜓 (𝜎 (𝑦, 𝑇𝑥)))

− 𝜉(max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) ,

𝜎 (𝑥, 𝑇𝑦) + 𝜎 (𝑦, 𝑇𝑥)

4

}) ,

(42)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ, 𝜙 ∈ Φ
𝜓
, 𝜑 ∈ Θ, and 𝜉 ∈ Ξ.

One now states the main fixed point of this section as
follows.

Theorem 24. Let (𝑋, 𝜎) be a complete metric-like space and
let 𝑇 : 𝑋 → 𝑋 be a (𝜑, 𝜙, 𝜓, 𝜉)-𝛼-contractive mapping where
𝛼 is transitive. Suppose that

(i) 𝑇 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. As in the proof of Theorem 20, we construct an
iterative sequence {𝑥

𝑛
} in𝑋 as follows:

𝑥
𝑛+1

= 𝑇𝑥
𝑛
= 𝑇
𝑛+1

𝑥
0

∀𝑛 ≥ 0. (43)

If we have 𝑥
𝑛0

= 𝑥
𝑛0+1

, for some 𝑛
0
, then the proof is

completed. Indeed, 𝑢 = 𝑥
𝑛0
is a fixed point of 𝑇. Hence, from

now on, we assume that

𝑥
𝑛
̸= 𝑥
𝑛+1

∀𝑛. (44)

Moreover, due to Lemmas 7(C) and (D), we have

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) > 0. (45)

Again, as in the proof ofTheorem 20, since 𝑇 is 𝛼-admissible,
we deduce that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . . (46)
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Owing to the fact that 𝑇 is a generalized (𝜑, 𝜙, 𝜓, 𝜉)-𝛼-
contraction, by taking 𝑥 = 𝑥

𝑛−1
and 𝑦 = 𝑥

𝑛
in (42), we have

𝜑 (𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

))

= 𝜑 (𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)) ≤ 𝛼 (𝑥

𝑛−1
, 𝑥
𝑛
) 𝜑 (𝜎 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
))

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
)) , 𝜓 (𝜎 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

)) ,

𝜓 (𝜎 (𝑥
𝑛
, 𝑇𝑥
𝑛
)) ,

𝜓 (𝜎 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
)) , 𝜓 (𝜎 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

)))

− 𝜉(max{𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

) , 𝜎 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

𝜎 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

4

})

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
)) , 𝜓 (𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
)) , 𝜓 (𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)) ,

𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛+1

)) , 𝜓 (𝜎 (𝑥
𝑛
, 𝑥
𝑛
)))

− 𝜉(max{𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝜎 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝜎 (𝑥
𝑛
, 𝑥
𝑛
)

4

})

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
)) , 𝜓 (𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)) ,

𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)) ,

𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)))

− 𝜉(max{𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)

2

}) .

(47)

As a first step, we prove that

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (48)

For this goal, we show that {𝜎(𝑥
𝑛
, 𝑥
𝑛+1

)} is decreasing; that
is, 𝜎(𝑥

𝑛
, 𝑥
𝑛+1

) < 𝜎(𝑥
𝑛−1

, 𝑥
𝑛
) for all 𝑛 ∈ N. Suppose, on the

contrary, that 𝜎(𝑥
𝑛0
, 𝑥
𝑛0+1

) ≥ 𝜎(𝑥
𝑛0−1

, 𝑥
𝑛0
) for some 𝑛

0
∈ N.

By substituting 𝑥 = 𝑥
𝑛0−1

and 𝑦 = 𝑥
𝑛0
in (42) and (47), we

have

𝜑 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

))

= 𝜑 (𝜎 (𝑇𝑥
𝑛0−1

, 𝑇𝑥
𝑛0
))

≤ 𝛼 (𝑥
𝑛0−1

, 𝑥
𝑛0
) 𝜑 (𝜎 (𝑇𝑥

𝑛0−1
, 𝑇𝑥
𝑛0
))

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)) , 𝜓 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)) ,

𝜓 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)) ,

𝜓 (2𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)) , 𝜓 (2𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)))

− 𝜉 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

))

≤ 𝜓 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)) − 𝜉 (𝜎 (𝑥
𝑛0
, 𝑥
𝑛0+1

)) .

(49)

Regarding the condition 𝜑(𝑡) − 𝜓(𝑡) + 𝜉(𝑡) > 0 for all 𝑡 > 0

and by using inequality (49), we derive that 𝜎(𝑥
𝑛0
, 𝑥
𝑛0+1

) = 0,
which contradicts to (45). Hence, we deduce that

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) ∀𝑛 ∈ N. (50)

From the arguments above, we also have, for each 𝑛 ∈ N,

𝜑 (𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

)) = 𝜑 (𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
))

≤ 𝜓 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜉 (𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
)) .

(51)

It follows from (50) that the sequence {𝜎(𝑥
𝑛
, 𝑥
𝑛+1

)} is mono-
tone decreasing. Hence, it should be convergent to some 𝜂 ≥
0; that is,

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝜂. (52)

Letting 𝑛 → ∞ in (51) and by using the continuities of𝜓 and
𝜑 and the lower semicontinuity of 𝜉, we have

𝜑 (𝜂) ≤ 𝜓 (𝜂) − 𝜉 (𝜂) , (53)

which implies that 𝜂 = 0.
As in the proof of Theorem 20, we will use the same

techniques, method of reductio ad absurdum, to prove that
{𝑥
𝑛
} is a 𝜎-Cauchy sequence. Suppose, on the contrary, that

{𝑥
𝑛
} is not a 𝜎-Cauchy sequence. Hence, there exists 𝜖 > 0

and subsequences {𝑥
𝑛𝑘
} and {𝑥

𝑚𝑘
} of {𝑥

𝑛
} with 𝑚

𝑘
> 𝑛
𝑘
≥ 𝑘

satisfying

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≥ 𝜖, 𝜎 (𝑥

𝑚𝑘−1
, 𝑥
𝑛𝑘
) < 𝜖. (54)

By repeating the related lines in the proof of Theorem 20, we
find the following limits:

lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) = lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘
)

= lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

)

= lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

) = 𝜖.

(55)
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By assumption of the theorem, we have

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

)

= 𝜎 (𝑇𝑥
𝑚𝑘
, 𝑇𝑥
𝑛𝑘
) ≤ 𝛼 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) 𝜎 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
)

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)) , 𝜓 (𝜎 (𝑥

𝑛𝑘
, 𝑇𝑥
𝑛𝑘
)) ,

𝜓 (𝜎 (𝑥
𝑚𝑘
, 𝑇𝑥
𝑚𝑘
)) ,

𝜓 (𝜎 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑚𝑘
)) , 𝜓 (𝜎 (𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
)))

− 𝜉(max{𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) , 𝜎 (𝑥

𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) ,

𝜎 (𝑥
𝑚𝑘
, 𝑇𝑥
𝑚𝑘
) ,

𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎 (𝑥
𝑚𝑘
, 𝑇𝑥
𝑛𝑘
)

4

})

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)) , 𝜓 (𝜎 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

)) ,

𝜓 (𝜎 (𝑥
𝑚𝑘
, 𝑇𝑥
𝑚𝑘
)) ,

𝜓 (𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

)) , 𝜓 (𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

)))

− 𝜉(max{𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) , 𝜎 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) ,

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

) ,

𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

)

4

}) .

(56)

Letting 𝑛 → ∞ in (56), we find that

𝜑 (𝜖) ≤ 𝜙 (𝜓 (𝜖) , 0, 0, 𝜓 (𝜖) , 𝜓 (𝜖)) − 𝜉 (𝜖) ≤ 𝜓 (𝜖) − 𝜉 (𝜖) ,

(57)

which implies that 𝜖 = 0. This is a contradiction. Therefore,
the sequence {𝑥

𝑛
} is a 𝜎-Cauchy sequence.

As a last step, we will prove that𝑇 has a fixed point 𝑢 ∈ 𝑋.
Owing to the fact that (𝑋, 𝜎) is complete, there exists 𝑢 ∈ 𝑋

such that lim
𝑛→∞

𝑥
𝑛
= 𝑢, equivalently,

𝜎 (𝑢, 𝑢) = lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑢) = lim

𝑚,𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (58)

Since 𝑇 is continuous, we obtain from (58) that

lim
𝑛→∞

𝜎 (𝑇𝑥
𝑛
, 𝑇𝑢) = lim

𝑛→∞

= 𝜎 (𝑥
𝑛
, 𝑢) = 𝜎 (𝑢, 𝑢) = 0. (59)

Due to Lemma 8, we also have

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑇𝑢) = 𝜎 (𝑢, 𝑇𝑢) . (60)

On account of (58)–(60) and Lemma 7(A), we derive that 𝑢
is a fixed point of 𝑇; that is, 𝑇𝑢 = 𝑢.

Theorem25. Let (𝑋, 𝜎) be a completemetric-like space and let
𝑇 : 𝑋 → 𝑋 be a (𝜑, 𝜙, 𝜓, 𝜉)-𝛼-contractive mapping where 𝛼 is
transitive. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.
Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 24, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, for all 𝑛 ≥ 0, converges

to 𝑢 where 𝑢 ∈ 𝑋. It is enough to show that 𝑢 ∈ 𝑋 is the
fixed point of𝑇. Suppose, on the contrary, that 𝜎(𝑇𝑢, 𝑢) = 𝑡 >
0. From (46) and condition (iii), there exists a subsequence
{𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘. Applying

(42), for all 𝑘, we get that

𝜎 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢)

= 𝜎 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢) ≤ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢) 𝜎 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝜙 (𝜓 (𝜎 (𝑥
𝑛(𝑘)

, 𝑢)) , 𝜓 (𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

)) , 𝜓 (𝜎 (𝑢, 𝑇𝑢)) ,

𝜓 (𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢)) , 𝜓 (𝜎 (𝑢, 𝑇𝑥
𝑛(𝑘)

)))

− 𝜉(max{𝜎 (𝑥
𝑛(𝑘)

, 𝑢) , 𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) , 𝜎 (𝑢, 𝑇𝑢) ,

𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢) + 𝜎 (𝑢, 𝑇𝑥
𝑛(𝑘)

)

4

})

= 𝜙 (𝜓 (𝜎 (𝑥
𝑛(𝑘)

, 𝑢)) , 𝜓 (𝜎 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

)) , 𝜓 (𝜎 (𝑢, 𝑇𝑢)) ,

𝜓 (𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢)) , 𝜓 (𝜎 (𝑢, 𝑥
𝑛(𝑘)+1

)))

− 𝜉(max{𝜎 (𝑥
𝑛(𝑘)

, 𝑢) , 𝜎 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) , 𝜎 (𝑢, 𝑇𝑢) ,

𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢) + 𝜎 (𝑢, 𝑥
𝑛(𝑘)+1

)

4

}) .

(61)

Letting 𝑘 → ∞ in the above equality and taking (60) into
account, we get that

𝑡 ≤ 𝜙 (0, 0, 𝑡, 𝑡, 0) − 𝜉 (𝑡) ≤ 𝜙 (0, 0, 𝑡, 𝑡, 0) . (62)

By (𝜓
2
) we get that

𝑡 ≤ 𝜙 (0, 0, 𝑡, 𝑡, 0) < 𝑡, (63)

which is a contradiction. Thus we get 𝜎(𝑢, 𝑇𝑢) = 0, and, by
Lemma 7(A), we have 𝑢 = 𝑇𝑢.

In the next theorem we will show that 𝑢 is a unique fixed
point of 𝑇.

Theorem 26. Adding condition (𝑈) to the hypotheses of
Theorem 24 (resp., Theorem 25), one obtains that 𝑢 is the
unique fixed point of 𝑇.
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Proof. Wewill use the reductio ad absurdum. Let V be another
fixed point of 𝑇 with V ̸= 𝑢 and hence 𝜎(𝑢, V) = 𝑡 > 0. By
hypothesis (𝑈),

1 ≤ 𝛼 (𝑢, V) = 𝛼 (𝑇𝑢, 𝑇V) . (64)

Due to inequality (42) we have

𝛼 (𝑢, V) 𝜎 (𝑇𝑢, 𝑇V)

≤ 𝜙 (𝜓 (𝜎 (𝑢, V)) , 𝜓 (𝜎 (𝑢, 𝑇𝑢)) , 𝜓 (𝜎 (V, 𝑇V)) ,

𝜓 (𝜎 (𝑢, 𝑇V)) , 𝜓 (𝜎 (V, 𝑇𝑢)))

− 𝜉 (max {𝜎 (𝑢, V) , 𝜎 (𝑢, 𝑇𝑢) , 𝜎 (V, 𝑇V) ,

𝜎 (𝑢, 𝑇V) + 𝜎 (V, 𝑇𝑢)
4

}) .

(65)

Taking property (𝜙
2
) into account, we get that

𝑡 ≤ (𝑡, 0, 0, 𝑡, 𝑡) − 𝜉 (𝑡) < 𝑡 − 𝜉 (𝑡) (66)

which is a contradiction. Hence, 𝜎(𝑢, V) = 0. By Lemma 7(A)
we get that 𝑢 = V. Thus we proved that 𝑢 is the unique fixed
point of 𝑇.

4. Fixed Point Theorems via the Weaker
Meir-Keeler Function 𝜇

In the section, we will investigate the existence and unique-
ness of a fixed point of certain mappings by using the Meir-
Keeler function. Now, we recall the notion of the weaker
Meir-Keeler function 𝜇 : [0,∞) → [0,∞).

Definition 27 (see [28]). One calls 𝜇 : [0,∞) → [0,∞) a
weaker Meir-Keeler function if, for each 𝜂 > 0, there exists
𝛿 > 0 such that, for 𝑡 ∈ [0,∞) with 𝜂 ≤ 𝑡 < 𝜂 + 𝛿, there exists
𝑛
0
∈ N such that 𝜇𝑛0(𝑡) < 𝜂.

One denotes by M the class of nondecreasing functions
𝜇 : [0,∞) → [0,∞) satisfying the following conditions:

(𝜇
1
) 𝜇 : [0,∞) → [0,∞) is a weaker Meir-Keeler
function;

(𝜇
2
) 𝜇(𝑡) > 0 for 𝑡 > 0 and 𝜇(0) = 0;

(𝜇
3
) for all 𝑡 > 0, {𝜇𝑛(𝑡)}

𝑛∈N is decreasing;
(𝜇
4
) if lim

𝑛→∞
𝑡
𝑛
= 𝛾, then lim

𝑛→∞
𝜇(𝑡
𝑛
) ≤ 𝛾.

And one denotes byΘ the class of functions𝜑 : [0,∞) →

[0,∞) satisfying the following conditions:

(𝜑
1
) 𝜑 is continuous;

(𝜑
2
) 𝜑(𝑡) > 0 for 𝑡 > 0 and 𝜑(0) = 0.

We state the notion of the generalizedweakerMeir-Keeler
type (𝜇, 𝜑)-𝛼-contractive mappings in metric-like spaces as
follows.

Definition 28. Let (𝑋, 𝜎) be a metric-like space, and let 𝛼 :

𝑋×𝑋 → R+. One says that𝑇 : 𝑌 → 𝑌 is called a generalized
weaker Meir-Keeler type 𝛼-(𝜇, 𝜑)-contractive mapping if 𝑇 is
𝛼-admissible and satisfies

𝛼 (𝑥, 𝑦) 𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝜇 (𝑀 (𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) , (67)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜇 ∈ M, 𝜑 ∈ Θ, and

𝑀(𝑥, 𝑦) = max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑓𝑥) , 𝜎 (𝑦, 𝑓𝑦) ,

𝜎 (𝑥, 𝑓𝑦) + 𝜎 (𝑦, 𝑓𝑥)

4

} .

(68)

The main result of this section is the following.

Theorem 29. Let (𝑋, 𝜎) be a complete metric-like space and
let 𝑇 : 𝑋 → 𝑋 be a generalized weaker Meir-Keeler type 𝛼-
(𝜇, 𝜑)-contractive mapping where 𝛼 is transitive. Suppose that

(i) 𝑇 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the lines in the proof of Theorem 20, we
construct an iterative sequence {𝑥

𝑛
} in𝑋 as follows:

𝑥
𝑛+1

= 𝑇𝑥
𝑛
= 𝑇
𝑛+1

𝑥
0

∀𝑛 ≥ 0. (69)

If we have 𝑥
𝑛0

= 𝑥
𝑛0+1

, for some 𝑛
0
, then the proof is

completed. Indeed, 𝑢 = 𝑥
𝑛0
is a fixed point of 𝑇. Hence, from

now on, we assume that

𝑥
𝑛
̸= 𝑥
𝑛+1

∀𝑛. (70)

Moreover, due to Lemmas 7(C) and (D), we have

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) > 0. (71)

Again, by following the lines in the proof of Theorem 20, we
get that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . . (72)

We divide the proof into three steps.

Step 1. We will prove that lim
𝑛→∞

𝜎(𝑥
𝑛
, 𝑥
𝑛+1

) = 0. Since 𝑇
is a generalized weakerMeir-Keeler type 𝛼-(𝜇, 𝜑)-contractive
mapping, by taking 𝑥 = 𝑥

𝑛−1
and 𝑦 = 𝑥

𝑛
in (67), we have

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝜎 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜇 (𝑀 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜑 (𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
)) ,

(73)



10 Abstract and Applied Analysis

where

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) = max{𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

) ,

𝜎 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

𝜎 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

4

}

= max{𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) ,

𝜎 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝜎 (𝑥
𝑛
, 𝑥
𝑛
)

4

}

= max{𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)

2

}

= max {𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜎 (𝑥

𝑛
, 𝑥
𝑛+1

)} .

(74)

If𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) = 𝜎(𝑥

𝑛
, 𝑥
𝑛+1

), then, by (73) and the properties
of the functions 𝜇 and 𝜑, we have

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝜎 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝜎 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜇 (𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

)) − 𝜑 (𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

))

≤ 𝜇 (𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

)) .

(75)

Since {𝜇𝑛(𝑡)}
𝑛∈N is decreasing, the inequality above yields

a contradiction. Thus, we conclude that 𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) =

𝜎(𝑥
𝑛−1

, 𝑥
𝑛
) and inequality (71) becomes

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜇 (𝜎 (𝑥
𝑛−1

, 𝑥
𝑛
)) , (76)

for all 𝑛 ∈ N. Recursively, we conclude that

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜇
𝑛

(𝜎 (𝑥
0
, 𝑥
1
)) , (77)

for all 𝑛 ∈ N.
Since {𝜇𝑛(𝜎(𝑥

0
, 𝑥
1
))}
𝑛∈N is decreasing, it must converge

to some 𝜂 ≥ 0. We claim that 𝜂 = 0. On the contrary, assume
that 𝜂 > 0. Then, by the definition of the weaker Meir-Keeler
function 𝜇, there exists 𝛿 > 0 such that, for 𝑥

0
, 𝑥
1
∈ 𝑋

with 𝜂 ≤ 𝜎(𝑥
0
, 𝑥
1
) < 𝛿 + 𝜂, there exists 𝑛

0
∈ N such that

𝜇
𝑛0
(𝜎(𝑥
0
, 𝑥
1
)) < 𝜂. Since lim

𝑛→∞
𝜇
𝑛
(𝜎(𝑥
0
, 𝑥
1
)) = 𝜂, there

exists 𝑝
0
∈ N such that 𝜂 ≤ 𝜇

𝑝
(𝜎(𝑥
0
, 𝑥
1
)) < 𝛿 + 𝜂, for all

𝑝 ≥ 𝑝
0
. Thus, we conclude that 𝜇𝑝0+𝑛0(𝜎(𝑥

0
, 𝑥
1
)) < 𝜂. So we

get a contradiction.Therefore lim
𝑛→∞

𝜇
𝑛
(𝜎(𝑥
0
, 𝑥
1
)) = 0; that

is,

lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (78)

Step 2. We prove that {𝑥
𝑛
} is a 𝜎-Cauchy sequence.

We will use the method of reductio ad absurdum, as in
the proof of Theorem 20. Suppose, on the contrary, that {𝑥

𝑛
}

is not a 𝜎-Cauchy sequence. Hence, there exists 𝜖 > 0 and
subsequences {𝑥

𝑛𝑘
} and {𝑥

𝑚𝑘
} of {𝑥

𝑛
} with 𝑚

𝑘
> 𝑛
𝑘
≥ 𝑘

satisfying

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≥ 𝜖, 𝜎 (𝑥

𝑚𝑘−1
, 𝑥
𝑛𝑘
) < 𝜖. (79)

By repeating the related lines in the proof of Theorem 20, we
find the following limits:

lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) = lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘
)

= lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

)

= lim
𝑛→∞

𝜎 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

) = 𝜖.

(80)

By the assumption of the theorem, we have

𝜎 (𝑥
𝑛𝑘+1

, 𝑥
𝑚𝑘+1

) = 𝛼 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) 𝜎 (𝑇𝑥

𝑛𝑘
, 𝑇𝑥
𝑚𝑘
)

≤ 𝜇 (𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)) − 𝜑 (𝑀(𝑥

𝑛𝑘
, 𝑥
𝑚𝑘
)) ,

(81)

where

𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)

= max{𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) , 𝜎 (𝑥

𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) , 𝜎 (𝑥

𝑚𝑘
, 𝑇𝑥
𝑚𝑘
) ,

𝜎 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑚𝑘
) + 𝜎 (𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
)

4

}

= max{𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) , 𝜎 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) , 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

) ,

𝜎 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

)

4

} .

(82)

Case 1. If 𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) = 𝜎(𝑥

𝑛𝑘
, 𝑥
𝑚𝑘
), letting 𝑛 → ∞, then

(81) becomes

𝜖 ≤ 𝜖 − 𝜑 (𝜖) , (83)

which yields that 𝜑(𝜖) = 0, and so we conclude that 𝜖 = 0.
Therefore, we get a contradiction.

Case 2. If 𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) = 𝜎(𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) or 𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) =

𝜎(𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

), letting 𝑛 → ∞, then (81) turns into

𝜖 ≤ 𝜇 (0) − 𝜑 (0) = 0, (84)

which yields that 𝜖 = 0. It is a contradiction.

Case 3. If 𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) = (𝜎(𝑥

𝑛𝑘
, 𝑥
𝑚𝑘+1

) + 𝜎(𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1

))/4,
letting 𝑛 → ∞, then (81) becomes

𝜖 ≤ 𝜖 − 𝜑(

𝜖

2

) , (85)
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which yields that 𝜑(𝜖/2) = 0, and hence 𝜖 = 0. So, we get a
contradiction.

Following the arguments above, we show also that {𝑥
𝑛
} is

a 𝜎-Cauchy sequence.

Step 3. In this step, we prove that 𝑇 has a fixed point 𝑢 ∈

𝑋. Since (𝑋, 𝜎) is complete, there exists 𝑢 ∈ 𝑋 such that
lim
𝑛→∞

𝑥
𝑛
= 𝑢; equivalently,

𝜎 (𝑢, 𝑢) = lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑢) = lim

𝑚,𝑛→∞

𝜎 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (86)

Since 𝑇 is continuous, we obtain from (86) that
lim
𝑛→∞

𝜎 (𝑇𝑥
𝑛
, 𝑇𝑢) = lim

𝑛→∞

= 𝜎 (𝑥
𝑛
, 𝑢) = 𝜎 (𝑢, 𝑢) = 0. (87)

Due to Lemma 8, we also have
lim
𝑛→∞

𝜎 (𝑥
𝑛
, 𝑇𝑢) = 𝜎 (𝑢, 𝑇𝑢) . (88)

On account of (58)–(88) and Lemma 7(A), we derive that 𝑢
is a fixed point of 𝑇; that is, 𝑇𝑢 = 𝑢.

Theorem 30. Let (𝑋, 𝜎) be a complete metric-like space and
let 𝑇 : 𝑋 → 𝑋 be a generalized weaker Meir-Keeler type 𝛼-
(𝜇, 𝜑)-contractive mapping where 𝛼 is transitive. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.
Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 29, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, for all 𝑛 ≥ 0, converges

to 𝑢 where 𝑢 ∈ 𝑋. It is enough to show that 𝑢 ∈ 𝑋 is the
fixed point of 𝑇. Suppose, on the contrary, that 𝜎(𝑇𝑢, 𝑢) =
𝑡 > 0. From (71) and condition (iii), there exists a subsequence
{𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘. Applying (67),

for all 𝑘, we get that

𝜎 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢) = 𝜎 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢) 𝜎 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

𝜇 (𝑀 (𝑥
𝑛(𝑘)

, 𝑢)) − 𝜑 (𝑀 (𝑥
𝑛(𝑘)

, 𝑢)) ,

(89)

where
𝑀(
𝑛(𝑘)

, 𝑢)

= max{𝜎 (𝑥
𝑛(𝑘)

, 𝑢) , 𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) , 𝜎 (𝑢, 𝑇𝑢) ,

𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢) + 𝜎 (𝑢, 𝑇𝑥
𝑛(𝑘)

)

4

}

= max{𝜎 (𝑥
𝑛(𝑘)

, 𝑢) , 𝜎 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) , 𝜎 (𝑢, 𝑇𝑢) ,

𝜎 (𝑥
𝑛(𝑘)

, 𝑇𝑢) + 𝜎 (𝑢, 𝑥
𝑛(𝑘)+1

)

4

} .

(90)

Letting 𝑘 → ∞ in equality (89) and taking (88) into account,
we get that

𝑡 ≤ 𝜇 (𝑡) − 𝜑 (𝑡) . (91)

Since 𝜇(𝑡)−𝜑(𝑡) < 𝑡, for all 𝑡 > 0, we conclude that 𝜎(𝑢, 𝑇𝑢) =
0; that is, 𝑇𝑢 = 𝑢.

In what follows we will show that 𝑢 is a unique fixed point
of 𝑇.

Theorem 31. Adding condition (𝑈) to the hypotheses of
Theorem 29 (resp., Theorem 30), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Proof. Wewill use the reductio ad absurdum. Let V be another
fixed point of 𝑇 with V ̸= 𝑢 and hence 𝜎(𝑢, V) = 𝑡 > 0. By
hypothesis (𝑈),

1 ≤ 𝛼 (𝑢, V) = 𝛼 (𝑇𝑢, 𝑇V) . (92)

Due to inequality (67), we have

𝜎 (𝑢, V) = 𝜎 (𝑇𝑢, 𝑇V) ≤ 𝛼 (𝑢, 𝑦) 𝜎 (𝑇𝑢, 𝑇V)

≤ 𝜇 (𝑀 (𝑢, 𝑦)) − 𝜑 (𝑀 (𝑢, 𝑦)) ,

(93)

where

𝑀(𝑢, V) = max {𝜎 (𝑢, V) , 𝜎 (𝑢, 𝑇𝑢) , 𝜎 (V, 𝑇V) ,

𝜎 (𝑢, 𝑇V) + 𝜎 (V, 𝑇𝑢)
4

}

= max {𝜎 (𝑢, V) , 𝜎 (𝑢, 𝑢) , 𝜎 (V, V) ,

𝜎 (𝑢, V) + 𝜎 (V, 𝑢)
4

} = 𝜎 (𝑢, V) .

(94)

Hence, we have

𝜎 (𝑢, 𝑦) ≤ 𝜇 (𝜎 (𝑢, 𝑦)) − 𝜑 (𝜎 (𝑢, 𝑦)) , (95)

since 𝜇(𝑡) − 𝜑(𝑡) < 𝑡, for all 𝑡 > 0, which is a contradiction.
Thus we proved that 𝑢 is the unique fixed point of 𝑇.

5. Consequences

In this section, we will demonstrate that several existing fixed
point results in the literature can be deduced easily from our
main results: Theorem 22, Theorem 26, andTheorem 31.

5.1. Standard Fixed PointTheorems. If we substitute 𝛼(𝑥, 𝑦) =
1 for all 𝑥, 𝑦 ∈ 𝑋 in Theorem 22, we derive immediately the
following fixed point theorem.

Theorem32. Let (𝑋, 𝜎) be a complete metric-like space and let
𝑇 : 𝑋 → 𝑋 be a mapping. Suppose that for each 𝜂 > 0 there
exists 𝛿 > 0 such that
𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(96)
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for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 ∈ Φ. Then there exists a unique fixed
point 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

If we take 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 in Theorem 26, we
get the following fixed point theorem.

Theorem 33. Let (𝑋, 𝜎) be a metric-like space and let 𝑇 :

𝑋 → 𝑋 be self-mapping. Suppose that 𝑇 satisfies the following
inequality:

𝜑 (𝜎 (𝑇𝑥, 𝑇𝑦))

≤ 𝜙 (𝜓 (𝜎 (𝑥, 𝑦)) , 𝜓 (𝜎 (𝑥, 𝑇𝑥)) , 𝜓 (𝜎 (𝑦, 𝑇𝑦)) ,

𝜓 (𝜎 (𝑥, 𝑇𝑦)) , 𝜓 (𝜎 (𝑦, 𝑇𝑥)))

− 𝜉(max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) ,

𝜎 (𝑥, 𝑇𝑦) + 𝜎 (𝑦, 𝑇𝑥)

4

}) ,

(97)

for all 𝑥, 𝑦 ∈ 𝑋, where𝜓 ∈ Ψ, 𝜙 ∈ Φ
𝜓
, 𝜑 ∈ Θ, and 𝜉 ∈ Ξ. Then

there exists a unique fixed point 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

If we take 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 in Theorem 31, we
get the following fixed point theorem.

Theorem 34. Let (𝑋, 𝜎) be a complete metric-like space and
let 𝑇 : 𝑋 → 𝑋 be mapping. Suppose that 𝑇 satisfies

𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝜇 (𝑀 (𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) , (98)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜇 ∈ M, 𝜑 ∈ Θ, and

𝑀(𝑥, 𝑦) = max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑓𝑥) , 𝜎 (𝑦, 𝑓𝑦) ,

𝜎 (𝑥, 𝑓𝑦) + 𝜎 (𝑦, 𝑓𝑥)

4

} .

(99)

Then there exists a unique fixed point 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

5.2. Fixed Point Theorems on Metric Spaces Endowed with
a Partial Order. In the last decade, the investigation of the
existence of fixed point on metric spaces endowed with
partial orders has been appreciated by several authors. The
initial results in this direction were reported by Turinici [29],
Ran and Reurings in [30]. Now, we consider the partially
ordered versions of our theorems. For this purpose, we need
to recall some concepts.

Definition 35. Let (𝑋, ≼) be a partially ordered set and let
𝑇 : 𝑋 → 𝑋 be a given mapping. One says that 𝑇 is
nondecreasing with respect to ≼ if

𝑥, 𝑦 ∈ 𝑋, 𝑥 ≼ 𝑦 ⇒ 𝑇𝑥 ≼ 𝑇𝑦. (100)

Definition 36. Let (𝑋, ≼) be a partially ordered set. A
sequence {𝑥

𝑛
} ⊂ 𝑋 is said to be nondecreasing with respect

to ≼ if 𝑥
𝑛
≼ 𝑥
𝑛+1

for all 𝑛.

Definition 37. Let (𝑋, ≼) be a partially ordered set and let 𝑑 be
a metric on 𝑋. One says that (𝑋, ≼, 𝑑) is regular if, for every
nondecreasing sequence {𝑥

𝑛
} ⊂ 𝑋 such that 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as

𝑛 → ∞, there exists a subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that

𝑥
𝑛(𝑘)

≼ 𝑥 for all 𝑘.

Theorem 38. Let (𝑋, 𝜎) be a complete metric-like space and
let 𝑇 : 𝑋 → 𝑋 be a mapping. Suppose that for each 𝜂 > 0

there exists 𝛿 > 0 such that

𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(101)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 ∈ Φ. Then there exists a unique fixed
point 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

We have the following result.

Corollary 39. Let (𝑋, ≼) be a partially ordered set and let 𝜎 be
ametric-likemapping on𝑋 such that (𝑋, 𝜎) is completemetric-
like space. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing mapping with
respect to ≼. Suppose that for each 𝜂 > 0 there exists 𝛿 > 0 such
that

𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(102)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦 and 𝜙 ∈ Φ. Suppose also that the
following conditions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
;

(ii) 𝑇 is continuous or (𝑋, ≼, 𝜎) is regular.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ 𝑋 there
exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one has uniqueness of
the fixed point.

Proof. Define the mapping 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥 ≼ 𝑦 or 𝑥 ≽ 𝑦,
0 otherwise.

(103)

Clearly, for each 𝜂 > 0, there exists 𝛿 > 0 such that

𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝛼 (𝑥, 𝑦) 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(104)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 ∈ Φ. From condition (i), we have
𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. Moreover, for all 𝑥, 𝑦 ∈ 𝑋, from the

monotone property of 𝑇, we have

𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝑥 ≽ 𝑦 or 𝑥 ≼ 𝑦 ⇒ 𝑇𝑥 ≽ 𝑇𝑦

or 𝑇𝑥 ≼ 𝑇𝑦 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1.

(105)

Thus 𝑇 is 𝛼-admissible. Now, if 𝑇 is continuous, the existence
of a fixed point follows from Theorem 20. Suppose now that
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(𝑋, ≼, 𝜎) is regular. Let {𝑥
𝑛
} be a sequence in 𝑋 such that

𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞. From

the regularity hypothesis, there exists a subsequence {𝑥
𝑛(𝑘)

}

of {𝑥
𝑛
} such that 𝑥

𝑛(𝑘)
≼ 𝑥 for all 𝑘. This implies from the

definition of 𝛼 that 𝛼(𝑥
𝑛(𝑘)

, 𝑥) ≥ 1 for all 𝑘. In this case, the
existence of a fixed point follows from Theorem 21. To show
the uniqueness, let 𝑥, 𝑦 ∈ 𝑋. By the hypothesis, there exists
𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, which implies from the
definition of 𝛼 that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1. Thus we
deduce the uniqueness of the fixed point byTheorem 22.

By using the same argument in the proof of Corollary 39,
we can conclude the following two corollaries. We omit the
proofs of these corollaries to avoid the repetition.

Corollary 40. Let (𝑋, ≼) be a partially ordered set and let 𝜎 be
ametric-likemapping on𝑋 such that (𝑋, 𝜎) is completemetric-
like space. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing mapping with
respect to ≼. Suppose that 𝑇 satisfies the following inequality:

𝜑 (𝜎 (𝑇𝑥, 𝑇𝑦))

≤ 𝜙 (𝜓 (𝜎 (𝑥, 𝑦)) , 𝜓 (𝜎 (𝑥, 𝑇𝑥)) , 𝜓 (𝜎 (𝑦, 𝑇𝑦)) ,

𝜓 (𝜎 (𝑥, 𝑇𝑦)) , 𝜓 (𝜎 (𝑦, 𝑇𝑥)))

− 𝜉(max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) ,

𝜎 (𝑥, 𝑇𝑦) + 𝜎 (𝑦, 𝑇𝑥)

4

}) ,

(106)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦, where 𝜓 ∈ Ψ, 𝜙 ∈ Φ
𝜓
, 𝜑 ∈ Θ, and

𝜉 ∈ Ξ.
Suppose also that the following conditions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
;

(ii) 𝑇 is continuous or (𝑋, ≼, 𝜎) is regular.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ 𝑋 there
exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one has uniqueness of
the fixed point.

Corollary 41. Let (𝑋, ≼) be a partially ordered set and 𝜎 be a
metric-like mapping on 𝑋 such that (𝑋, 𝜎) is complete metric-
like space. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing mapping with
respect to ≼. Suppose that 𝑇 satisfies

𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝜇 (𝑀 (𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) , (107)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦, where 𝜇 ∈ M, 𝜑 ∈ Θ, and

𝑀(𝑥, 𝑦) = max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑓𝑥) , 𝜎 (𝑦, 𝑓𝑦) ,

𝜎 (𝑥, 𝑓𝑦) + 𝜎 (𝑦, 𝑓𝑥)

4

} .

(108)

Suppose also that the following conditions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
;

(ii) 𝑇 is continuous or (𝑋, ≼, 𝜎) is regular.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ 𝑋 there
exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one has uniqueness of
the fixed point.

5.3. Fixed PointTheorems for Cyclic Contractive Mappings. In
this subsection, we consider the cyclic contraction and related
fixed point as a consequence of our main results. Notice that
this trendwas initiated byKirk et al. [31]. Following this paper
[31], a number of fixed point theorems for cyclic contractive
mappings have been reported (see, e.g., [32–37]).

We have the following result.

Corollary 42. Let {𝐴
𝑖
}
2

𝑖=1
be nonempty closed subsets of a

complete metric-like space (𝑋, 𝜎) and let 𝑇 : 𝑌 → 𝑌 be a
given mapping such that

(I) 𝑇(𝐴
1
) ⊆ 𝐴

2
and 𝑇(𝐴

2
) ⊆ 𝐴

1
,

where 𝑌 = 𝐴
1
∪ 𝐴
2
. Suppose that for each 𝜂 > 0 there exists

𝛿 > 0 such that

𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(109)

for all (𝑥, 𝑦) ∈ 𝐴
1
× 𝐴
2
and 𝜙 ∈ Φ. Then 𝑇 has a unique fixed

point that belongs to 𝐴
1
∩ 𝐴
2
.

Proof. Since 𝐴
1
and 𝐴

2
are closed subsets of the complete

metric space (𝑋, 𝑑), then (𝑌, 𝑑) is complete. Define the
mapping 𝛼 : 𝑌 × 𝑌 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1 if (𝑥, 𝑦) ∈ (𝐴
1
× 𝐴
2
) ∪ (𝐴

2
× 𝐴
1
) ,

0 otherwise.
(110)

From (111) and the definition of 𝛼, for each 𝜂 > 0, there exists
𝛿 > 0 such that

𝜂 ≤ 𝜙 (𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) , 𝜎 (𝑥, 𝑇𝑦) , 𝜎 (𝑦, 𝑇𝑥))

< 𝜂 + 𝛿 → 𝛼 (𝑥, 𝑦) 𝜎 (𝑇𝑥, 𝑇𝑦) < 𝜂,

(111)

for all (𝑥, 𝑦) ∈ 𝐴
1
× 𝐴
2
and 𝜙 ∈ Φ. Thus 𝑇 satisfies the

contractive condition (104).
Let (𝑥, 𝑦) ∈ 𝑌×𝑌 such that𝛼(𝑥, 𝑦) ≥ 1. If (𝑥, 𝑦) ∈ 𝐴

1
×𝐴
2
,

from (I), (𝑇𝑥, 𝑇𝑦) ∈ 𝐴
2
×𝐴
1
, which implies that 𝛼(𝑇𝑥, 𝑇𝑦) ≥

1. If (𝑥, 𝑦) ∈ 𝐴
2
× 𝐴
1
, from (I), (𝑇𝑥, 𝑇𝑦) ∈ 𝐴

1
× 𝐴
2
,

which implies that 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Thus, in all cases, we have
𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. This implies that 𝑇 is 𝛼-admissible.

Also, from (I), for any 𝑎 ∈ 𝐴
1
, we have (𝑎, 𝑇𝑎) ∈ 𝐴

1
×𝐴
2
,

which implies that 𝛼(𝑎, 𝑇𝑎) ≥ 1.
Now, let {𝑥

𝑛
} be a sequence in𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1

for all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞. This implies from the

definition of 𝛼 that

(𝑥
𝑛
, 𝑥
𝑛+1

) ∈ (𝐴
1
× 𝐴
2
) ∪ (𝐴

2
× 𝐴
1
) , ∀𝑛. (112)

Since (𝐴
1
×𝐴
2
) ∪ (𝐴

2
×𝐴
1
) is a closed set with respect to the

Euclidean metric, we get that

(𝑥, 𝑥) ∈ (𝐴
1
× 𝐴
2
) ∪ (𝐴

2
× 𝐴
1
) , (113)
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which implies that 𝑥 ∈ 𝐴
1
∩ 𝐴
2
. Thus we get immediately

from the definition of 𝛼 that 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛.

Let 𝑥, 𝑦 ∈ 𝑋 be distinct fixed points of 𝑇 from (I); this
implies that 𝑥, 𝑦 ∈ 𝐴

1
∩ 𝐴
2
. So, for any 𝑧 ∈ 𝑌, we have

𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1. Thus condition (𝑈) is satisfied.
Now, all the hypotheses of Theorem 22 are satisfied; we

deduce that𝑇 has a unique fixed point that belongs to𝐴
1
∩𝐴
2

(from (I)).

As in the previous section, we can conclude the following
two corollaries by using the same argument in the proof of
Corollary 42. We omit the proofs of the following corollaries
to avoid the repetition.

Corollary 43. Let {𝐴
𝑖
}
2

𝑖=1
be nonempty closed subsets of a

complete metric-like space (𝑋, 𝜎) and let 𝑇 : 𝑌 → 𝑌 be a
given mapping such that

(I) 𝑇(𝐴
1
) ⊆ 𝐴

2
and 𝑇(𝐴

2
) ⊆ 𝐴

1
, where 𝑌 = 𝐴

1
∪ 𝐴
2
.

Suppose that 𝑇 satisfies the following inequality:

𝜑 (𝜎 (𝑇𝑥, 𝑇𝑦))

≤ 𝜙 (𝜓 (𝜎 (𝑥, 𝑦)) , 𝜓 (𝜎 (𝑥, 𝑇𝑥)) , 𝜓 (𝜎 (𝑦, 𝑇𝑦)) ,

𝜓 (𝜎 (𝑥, 𝑇𝑦)) , 𝜓 (𝜎 (𝑦, 𝑇𝑥)))

− 𝜉(max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑇𝑥) , 𝜎 (𝑦, 𝑇𝑦) ,

𝜎 (𝑥, 𝑇𝑦) + 𝜎 (𝑦, 𝑇𝑥)

4

}) ,

(114)

for all (𝑥, 𝑦) ∈ 𝐴
1
× 𝐴
2
, where 𝜓 ∈ Ψ, 𝜙 ∈ Φ

𝜓
, 𝜑 ∈ Θ, and

𝜉 ∈ Ξ.Then𝑇 has a unique fixed point that belongs to𝐴
1
∩𝐴
2
.

Corollary 44. Let {𝐴
𝑖
}
2

𝑖=1
be nonempty closed subsets of a

complete metric-like space (𝑋, 𝜎) and let 𝑇 : 𝑌 → 𝑌 be a
given mapping such that

(I) 𝑇(𝐴
1
) ⊆ 𝐴

2
and 𝑇(𝐴

2
) ⊆ 𝐴

1
, where 𝑌 = 𝐴

1
∪ 𝐴
2
.

Suppose that 𝑇 satisfies

𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝜇 (𝑀 (𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) , (115)

for all (𝑥, 𝑦) ∈ 𝐴
1
× 𝐴
2
, where 𝜇 ∈ M, 𝜑 ∈ Θ, and

𝑀(𝑥, 𝑦) = max{𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑓𝑥) , 𝜎 (𝑦, 𝑓𝑦) ,

𝜎 (𝑥, 𝑓𝑦) + 𝜎 (𝑦, 𝑓𝑥)

4

} .

(116)

Then 𝑇 has a unique fixed point that belongs to 𝐴
1
∩ 𝐴
2
.
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