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We use the local fractional series expansion method to solve the Klein-Gordon equations on Cantor sets within the local fractional
derivatives. The analytical solutions within the nondifferential terms are discussed. The obtained results show the simplicity and
efficiency of the present technique with application to the problems of the liner differential equations on Cantor sets.

1. Introduction

The Klein-Gordon equation [1] has been applied to mathe-
matical physics such as solid-state physics, nonlinear optics,
and quantum field theory. Some of the analytical methods
for solving theKlein-Gordon equation include the variational
iteration method [2], the tanh and the sine-cosine methods
[3], the decompositionmethod [4], the differential transform
method [5], and the homotopy-perturbation method [6].

Recently, the solutions for the fractional Klein-Gordon
equation with the Caputo fractional derivative were con-
sidered in [7–9]. Golmankhaneh et al. used the homotopy-
perturbation method to obtain solution for the fractional
Klein-Gordon equation [7]. Kurulay [8] pointed out the
solution for the fractional Klein-Gordon equation by using
the homotopy analysis method. Gepreel and Mohamed [9]
presented the solution for nonlinear space-time fractional
Klein-Gordon equation by the homotopy analysis method.

When some domains cannot be described by smooth
functions, both the classical approach and the fractional

approach based on Riemann-Liouville (or Caputo) deriva-
tives are unacceptable. In such cases, the local fractional
calculus is an efficient technique for modeling these physical
problems [10–23]. Using the fractional complex transform
method [20], one transforms the classical Klein-Gordon
equation into the Klein-Gordon equation on Cantor sets in
the following form:

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
−
𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 𝐹 (𝑢 (𝑥)) , (1)

subject to the initial value conditions:

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) = 𝑔 (𝑥) ,

(2)
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where the operator is the local fractional derivative operator,
which is defined by [16–23]

𝑓
(𝛼)
(𝑥
0
) =
𝑑
𝛼
𝑓 (𝑥)

𝑑𝑥𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼
,

(3)

with Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)) and 𝑢(𝑥, 𝑡)

and 𝑔(𝑥) are the local fractional continuous functions and
𝐹(𝑢(𝑥)) are themixed terms of nonlinear and liner functions.

In view of (1)-(2), the linear Klein-Gordon equation on
Cantor sets:

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
−
𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 𝑢 (𝑥, 𝑡) , 𝑥 > 0, 𝑡 > 0, (4)

subject to the initial value conditions:

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) = 𝑔 (𝑥) ,

(5)

is under consideration, where 𝑓(𝑥) and 𝑔(𝑥) are local
fractional continuous functions.

On the other hand, the local fractional series expansion
methodwas applied to solve the wave and diffusion equations
on Cantor sets [21], the local fractional Schrödinger equation
in the one-dimensional Cantorian system [22], and the local
fractional Helmholtz equation [23]. In this paper, our aim
is to investigate a new application of this technology to
solve the linear Klein-Gordon equations on Cantor sets. The
paper is organized as follows. In Section 2, the idea of local
fractional series expansion method is given. In Section 3, the
solutions for linear Klein-Gordon equations on Cantor sets
are presented. Finally, Section 4 is the conclusions.

2. The Local Fractional Series
Expansion Method

In order to illustrate the idea of the local fractional series
expansion method [21–23], we consider the local fractional
differential operator equation in the following form:

𝑢
2𝛼

2𝑡
= 𝐿
𝛼
𝑢, (6)

where 𝐿
𝛼
is the linear local fractional operator and 𝜙 is a local

fractional continuous function.
From (6), the multiterm separated functions with respect

to 𝑥, 𝑡 read as

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=0

𝜙
𝑖
(𝑡) 𝜓
𝑖
(𝑥) , (7)

where 𝜙
𝑖
(𝑡) and 𝜓

𝑖
(𝑥) are the local fractional continuous

functions.
From (7), we have

𝜙
𝑖
(𝑡) =

𝑡
𝑖𝛼

Γ (1 + 𝑖𝛼)
, (8)

so that

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=0

𝑡
𝑖𝛼

Γ (1 + 𝑖𝛼)
𝜓
𝑖
(𝑥) . (9)

In view of (9), we obtain

𝑢
2𝛼

𝑡
=

∞

∑

𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡
𝑖𝛼
𝜓
𝑖+2
(𝑥) ,

𝐿
𝛼
𝑢 = 𝐿

𝛼
[

∞

∑

𝑖=0

𝑡
𝑖𝛼

Γ (1 + 𝑖𝛼)
𝜓
𝑖
(𝑥)] =

∞

∑

𝑖=0

𝑡
𝑖𝛼

Γ (1 + 𝑖𝛼)
(𝐿
𝛼
𝜓
𝑖
) (𝑥) .

(10)

Making use of (10), we have

∞

∑

𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡
𝑖𝛼
𝜓
𝑖+2
(𝑥) =

∞

∑

𝑖=0

𝑡
𝑖𝛼

Γ (1 + 𝑖𝛼)
(𝐿
𝛼
𝜓
𝑖
) (𝑥) , (11)

so that

𝜓
𝑖+2
(𝑥) = (𝐿

𝛼
𝜓
𝑖
) (𝑥) . (12)

Hence, from (12) we get

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) =

∞

∑

𝑖=0

𝑡
𝑖𝛼

Γ (1 + 𝑖𝛼)
𝜓
𝑖
(𝑥) . (13)

We now rewrite (4) in the local fractional operator form as
follows:

𝑢
2𝛼

2𝑡
= 𝐿
𝛼
𝑢, (14)

subject to the initial value conditions:

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) = 𝑔 (𝑥) ,

(15)

where the linear local fractional operator is defined as follows:

𝐿
𝛼
=
𝜕
2𝛼

𝜕𝑥2𝛼
+ 𝐼. (16)

Hence, (16) is a special case of (6) and it is usedwith the linear
Klein-Gordon equations on Cantor sets in next section.

3. Analytical Solutions for Linear
Klein-Gordon Equations on Cantor Sets

In this section, we present the nondifferentiable solutions for
linear Klein-Gordon equations on Cantor sets.

Example 1. Let us consider the Klein-Gordon equations on
Cantor sets in the following form:

𝑢
2𝛼

2𝑡
= 𝐿
𝛼
𝑢, (17)
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subject to the initial value conditions:

𝑢 (𝑥, 0) = 0,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) =

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(18)

From (12) and (18), we can structure the following iterative
formulas:

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
0
(𝑥) = 0,

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
1
(𝑥) =

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(19)

Hence, we can calculate

𝜓
0
(𝑥) = 0,

𝜓
1
(𝑥) =

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
2
(𝑥) = 0,

𝜓
3
(𝑥) = 1 +

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
4
(𝑥) = 0,

𝜓
5
(𝑥) = 1 +

𝑥
2𝛼

Γ (1 + 2𝛼)
,

...

(20)

and so on.
Therefore, we have

𝑢 (𝑥, 𝑡) =
𝑥
2𝛼

Γ (1 + 2𝛼)

∞

∑

𝑖=1

𝑡
(2𝑖−1)𝛼

Γ (1 + (2𝑖 − 1) 𝛼)

+

∞

∑

𝑖=1

𝑡
(1+2𝑖)𝛼

Γ (1 + (1 + 2𝑖) 𝛼)
,

(21)

and the corresponding graph is illustrated in Figure 1.

Example 2. We consider the following Klein-Gordon equa-
tions on Cantor sets:

𝑢
2𝛼

2𝑡
= 𝐿
𝛼
𝑢, (22)

subject to the initial value conditions:

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) = 0.

(23)
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Figure 1: The plot of 𝑢(𝑥, 𝑡) for the parameter 𝛼 = ln 2/ ln 3.

From (12) and (23), we get the following iterative formulas:

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
0
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
1
(𝑥) = 0.

(24)

Hence, we get

𝜓
0
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
1
(𝑥) = 0,

𝜓
2
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
3
(𝑥) = 0,

𝜓
4
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
5
(𝑥) = 0,

...

(25)

and so on.
Hereby, we obtain the solution of (22):

𝑢 (𝑥, 𝑡) =
𝑥
𝛼

Γ (1 + 𝛼)

∞

∑

𝑖=0

𝑡
2𝑖𝛼

Γ (1 + 2𝑖𝛼)
, (26)

and the corresponding graph is depicted in Figure 2.

Example 3. We present the following Klein-Gordon equa-
tions on Cantor sets:

𝑢
2𝛼

2𝑡
= 𝐿
𝛼
𝑢, (27)
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Figure 2: The plot of 𝑢(𝑥, 𝑡) for the parameter 𝛼 = ln 2/ ln 3.

subject to the initial value conditions:

𝑢 (𝑥, 0) =
𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) =

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(28)

From (12) and (27)-(28), we get the following iterative
formulas:

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
0
(𝑥) =

𝑥
2𝛼

Γ (1 + 𝛼)
,

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
1
(𝑥) =

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(29)

From (29) we obtain

𝜓
0
(𝑥) =

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
1
(𝑥) =

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
2
(𝑥) = 1 +

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
3
(𝑥) = 1 +

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
4
(𝑥) = 1 +

𝑥
2𝛼

Γ (1 + 2𝛼)
,

𝜓
5
(𝑥) = 1 +

𝑥
2𝛼

Γ (1 + 2𝛼)
,

...

(30)

and so on.

Therefore, we obtain the exact solution of (27)

𝑢 (𝑥, 𝑡) =
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(𝑡
𝛼
) + 𝐸
𝛼
(𝑡
𝛼
) −
𝑡
𝛼

Γ (1 + 𝛼)
− 1,

(31)

and its graph is shown in Figure 3.

Example 4. The Klein-Gordon equation on Cantor sets is
presented as

𝑢
2𝛼

2𝑡
= 𝐿
𝛼
𝑢, (32)

and the initial value conditions are written as

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
,

𝜕
𝛼

𝜕𝑢𝛼
𝑢 (𝑥, 0) =

𝑥
𝛼

Γ (1 + 𝛼)
.

(33)

From (12) and (27)-(28), the following iterative formulas are
as follows:

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
0
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
𝑖+2
(𝑥) = (
𝜕
2𝛼
𝜓
𝑖

𝜕𝑥2𝛼
+ 𝜓
𝑖
) (𝑥) ,

𝜓
1
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
.

(34)

From (29), we give

𝜓
0
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
1
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
2
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
3
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
4
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

𝜓
5
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
,

...

(35)

and so on.
Therefore, we give the exact solution of (32):

𝑢 (𝑥, 𝑡) =
𝑥
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(𝑡
𝛼
) , (36)

and its graph is shown in Figure 4.
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Figure 3: The plot of 𝑢(𝑥, 𝑡) for the parameter 𝛼 = ln 2/ ln 3.
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Figure 4: The plot of 𝑢(𝑥, 𝑡) for the parameter 𝛼 = ln 2/ ln 3.

4. Conclusions

In this work the Klein-Gordon equations on Cantor sets
within the local fractional differential operator had been
analyzed using the local fractional series expansion method.
The nondifferentiable solutions for local fractional Klein-
Gordon equations were obtained. The present method is a
powerful mathematical tool for solving the local fractional
linear differential equations.
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