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The imputation ofmissing data is often a crucial step in the analysis of survey data.This study reviews typical problems withmissing
data and discusses a method for the imputation of missing survey data with a large number of categorical variables which do not
have a monotone missing pattern. We develop a method for constructing a monotone missing pattern that allows for imputation
of categorical data in data sets with a large number of variables using a model-based MCMC approach. We report the results of
imputing the missing data from a case study, using educational, sociopsychological, and socioeconomic data from the National
Latino and Asian American Study (NLAAS). We report the results of multiply imputed data on a substantive logistic regression
analysis predicting socioeconomic success from several educational, sociopsychological, and familial variables. We compare the
results of conducting inference using a single imputed data set to those using a combined test over several imputations. Findings
indicate that, for all variables in the model, all of the single tests were consistent with the combined test.

1. Introduction

The problem of bias due to missing data has received a good
deal of attention over the last 20 years and the correction of
bias due to item and unit nonresponse remains an important
problem for investigators using survey data [1–9]. For data
missing because of item nonresponse, imputation of the
missing data is often the best solution. However, methods
for imputing categorical data are still experimental in some
software releases. Many software packages will automatically
remove cases with missing values from the analysis, greatly
reducing the sample size, often causing a drastic loss of infor-
mation. Additionally, if the data are not missing completely
at random, removing cases with missing items will result in
biased parameter estimates in subsequent analyses.

Durrant [10] conducted an extensive review of various
imputation methods. She showed that parameter estimates

can vary considerably with different methods and noted
their advantages and disadvantages. She noted that with the
regression model approach problems arise with failures in
model assumptions, but in the case where model assump-
tions hold the modelling approach works well. Regression
modelling is superior to mean imputation or similar meth-
ods in that it makes use of the information in the entire
sample to impute the missing value for each observation.
However, as with mean imputation, regression imputation
leads to underestimation of the variability in the data, because
predicted values from the regression model are treated in
the substantive analysis as if they were random observations
from the sample population, leading to biased estimates
of the population variance and subsequently the standard
errors used to conduct inference about themodel parameters.
There does not appear to be a consensus as to the best
method, as much depends on the nature of the data and
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the missing data process. However, in many situations, the
use of model-based approaches such as Markov chain Monte
Carlo methods (MCMC) is superior. These methods define
a model or distribution for the missing data (the missing
data model) and sample from this distribution to impute the
missing values [9], hence simulating or mimicking random
sampling from the population of interest. These methods
have been shown via theory and simulation to converge to
the true target distribution. Sampling from the distribution
of the missing variable reduces the underestimation of the
population variance, as well as the standard errors of the
parameter estimates for the substantive model, which would
result from most other single-imputation methods such
as mean imputation or regression imputation alone. Often
the model-based approaches are combined with regression
modelling to perform the imputation so as to also more
fully exploit the information in the data. For categorical
data, logistic regression is a natural choice and has the
advantage of accurately modelling the distribution of the
missing data given the observed data. The parameters are
easily estimated via the incomplete observed data [11, 12].
However, the model-based approaches in conjunction with
logistic regression become problematic for data sets with a
large number of variables. This is because the relationships
between the variables are modelled via cross-tabulation and
the size of the contingency table grows exponentially with
additional variables, often creating a situation which exceeds
the limitations of the software package [13]. The limitation
can be circumvented if the missing data pattern is monotone.
However, assessing the existence of a monotone missing
pattern is equally problematic for a large number of variables.

Furthermore, for the typical researcher in education and
the social sciences, ease of implementation of the imputation
so as to devote time and energy to the substantive model
is of more interest than programming advanced statistical
algorithms. Hence, our goal here is to provide a simple
method for exploiting the modelling capabilities of SAS or
other software packages and circumventing the difficulties for
the case of a large number of categorical variables with a non-
monotone missing data pattern.

In this paper we will review the degrees of randomness
and the implications for imputation. We will discuss MCMC
implementation of multivariate normal data and MCMC
combined with logistic regression for imputation of cate-
gorical data, the monotone missing requirement, creation of
a monotone missing pattern, and how to perform multiple
imputations using this method. Finally, we will apply the
method to data drawn from the National Latino and Asian
American Study (NLAAS) and show the use of multiple
imputations for an example substantive model using these
data.

1.1. Degrees of Randomness in Missing Data. A missing data
process is said to be missing completely at random (MCAR)
if the probability that a subject is missing a variable is
completely independent of the value of the variable and of
the values of any other variables. For example, missing data
from lost survey pages are MCAR because, presumably, the
probability that a page was lost is not in any way related

to the value of any of the variables measured on that page,
nor to any other possible variables related to the missing
data. To restate, a missing variable is said to be MCAR if
the probability that the variable is missing from a subject is
neither related to the value of the missing variable nor to the
value of any other variable for that subject.

A missing variable is said to bemissing at random (MAR)
when the probability that a variable is missing from a given
subject depends on the value of another variable for that
subject but not on the value of the missing variable itself. For
example, if we have a variable income that is more likely to be
missing from respondents with higher levels of education but
is no more likely to be missing for higher or lower incomes,
then both the missing and the observed income values in a
survey are a random sample of the population of income at
a given level of education but are not a random sample of
the population of all possible income. That is, the conditional
distribution of income given education is unbiased and is
representative of the distribution of income for any given
level of education. Hence, the income variables are missing
at random given the education level. However, the sample
of income may be biased for the unconditional distribution
of income because any relationship between income and
educationwill cause bias in the observed sample. For example,
if higher education is correlated with higher income, then
the sample mean of all incomes in the data set will be
biased downwards because the higher incomes associated
with higher education were more likely to be missing.

If the probability that a particular question is not
answered is dependent on the answer itself, then the missing
data process is nonrandom and the resulting bias in the
parameter estimates cannot be corrected without informa-
tion from outside the sample. For example, if low-income
respondents are more likely to refuse to answer a question
about their income level, then the estimates for income will
be biased, since lower levels of income were more likely to
be excluded. If we have other sources of information about
income, we may be able to correct this, but the sample itself
is biased and by itself will produce biased parameter esti-
mates. Similarly, the model parameter estimates containing
statistics based on the sample values for income may also
be biased. This issue is similar to bias that can result from
unit nonresponse to surveys and similar corrective measures
may be possible. In any case, certainly, avoidance of both unit
and item nonresponse is the best solution, when possible [6–
8, 14].

For most survey data, including the National Latino and
Asian American Study, we cannot assume that the missing
data are MCAR. Some respondents may be more likely
to refuse to answer certain questions depending on their
understanding of the question, their education level, their
cultural identity, or other characteristics. However, it can
usually be argued for surveys with a large number of variables
that the missing data in the survey can be assumed to be
MAR because we have a large number of variables with which
to model the missing data process. That is, the larger the
number of variables we have, the more likely that there is a
variable (or a combination of variables) in our data set for
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which the conditional distribution of the missing variable is
unbiased [11, 15, 16].

It should be noted here that if the number of continuous
variables in the data set is small, we are more likely to
encounter problems with the MAR assumption. Under the
MAR assumption, unbiased estimates of the missing data
values can be obtained by conditioning the imputed value
on the observed variables that model the missing data
process. Imputation of missing data using small data sets can
increase the risk of violating the MAR assumption in that the
missingness may depend on a variable we did not include
in the imputation model. If auxiliary variables (variables not
intended for the substantive model, but may be correlated
with those that are) can be collected, it is expedient to do
so [17, 18]. Care should be taken and expert knowledge
employed to consider possible relationships between vari-
ables and the probability of missingness when building the
imputation model.

1.2. Imputation ofMissing Data Using BayesianMethods. One
useful approach to imputation is to use a Bayesian model-
based method. In this method, a posterior distribution for
the parameters of the missing data distribution given the
observed data is obtained using Bayes’ Rule. The posterior
distribution is based on the maximum likelihood estimates
for the population parameters for the data and a prior
distribution for the parameters.The prior distribution for the
parameters models our uncertainty about the true parameter
values. In general, the posterior distribution of the parameter
vector, 𝜃, of the distribution of a given random variable, 𝑌, is
expressed as

Pr {𝜃 | 𝑌} =
𝐿 {𝑌 | 𝜃} 𝑝 (𝜃)

∑
𝜃
𝐿 {𝑌 | 𝜃} 𝑝 (𝜃)

𝑗

, (1)

where 𝑝(𝜃) is the prior distribution of 𝜃, 𝐿{𝑌 | 𝜃} is the
likelihood function for the data, and the denominator is the
sum (or integral for continuous sets) over all possible values
of 𝜃. The denominator is a normalizing constant (once the
data have been observed) that ensures that the posterior
distribution is a valid probability distribution [19]. In the
missing data context, once we have obtained the posterior
distribution of the parameters of the missing data distribu-
tion, we sample themissing data population parameter values
from their posterior distribution using simulation, and then
we impute the missing data by sampling via simulation of
the missing data values from their distribution given the
previously sampled parameter values and the observed data.
Finding the posterior distribution often involves the use of
MCMCmethods, most often the Gibbs sampler. Note that, in
theBayesian framework, the parameters are randomvariables
and come from a probability distribution. This probability
distribution is meant to model our uncertainty in the model
parameter values. In practice, if we have no prior information
about the distribution of the parameters, we can specify
a non-informative prior. With non-informative prior, the
Bayesian point estimate for the parameters will be equal to the
maximum likelihood estimator in most situations.The bene-
fit of the Bayesian approach, especially for the imputation of

missing values, is that, unlike with regression imputation, we
are not limited to point estimation in building the imputation
model but can model our uncertainty in the parameter
estimates for each imputed variable by sampling them from
their posterior distribution for each imputation and thus
each imputation uses a different parameter estimate in the
imputation model to impute the missing value, thus more
realistically incorporating variability due to uncertainty in the
parameter estimates into the imputed data set.

In non-model-based approaches, such as mean imputa-
tion, hot-deck imputation, and regression imputation, the
variability in the imputed data will be less than the vari-
ability in the population. That is, variance estimates based
on the complete data (the observed data with imputed
values replacing the missing data) will be biased downwards
because the imputed data does not contain information
about uncertainty in the parameter estimates used in the
imputation [11, 20–22]. Likewise, standard errors based on
the variance estimates will be biased downwards, possibly
affecting inference in the substantive model. Hence, with
the Bayesian approach, the downward bias of the population
variance estimates for the complete data set is reduced
because we are modelling the uncertainty in the imputation
model parameters.

1.3. Imputation of Multivariate Normal Data. In the method
we discuss here we need to first impute any multivariate
normal data that we may have in our survey before imputing
the categorical data. Having at least a few complete variables
(either observed or imputed) will help us in establishing a
monotone missing pattern for the categorical data. Some
software packages, such as SAS, can perform model-based
imputations, such as the Bayesian method described above,
within a canned procedure so that the investigator does not
need to have mastered advanced statistical computing.

In the context of missing multivariate normal data
we aim to sample from the posterior distribution, 𝑝(𝜃 |

𝑌obs, 𝑌mis), to obtain estimates for the population parameters,
the mean vector, 𝜇, and the covariance matrix Σ. Once we
have population parameter estimates we sample from the
distribution of the missing data, given the parameters and
the observed data, 𝑝(𝑌mis | 𝜇,Σ, 𝑌obs), in order to impute
the missing data. These methods produce a Markov chain
whose stationary distribution is the target distribution. For
data from an approximatelymultivariate normal distribution,
the imputation process involves the following steps.

(1) The Imputation Step. At step 𝑡, given the current esti-
mates for the mean vector, 𝜇t = (𝜇1, 𝜇2, 𝜇3, . . . , 𝜇𝑝),
and covariance matrix, Σt, the I-step simulates the
missing values for eachmissing observation indepen-
dently. That is, if the variables with missing values
for the 𝑖th observation are denoted by 𝑌𝑖(mis) and the
variables with observed values by 𝑌𝑖(obs), then the I-
step draws independent values for 𝑌𝑖(mis) from the
current conditional distribution for𝑌𝑖(mis) given𝑌𝑖(obs)
and 𝜃t = (𝜇

t
,Σ

t
).

(2) The Posterior Step. Given a complete sample, that
is, with all missing values provisionally imputed,
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the P-step simulates the mean vector and covariance
matrix from their respective posterior distributions.
These new estimates are then used in the next I-step,
𝑡 + 1.

These two steps constitute aMarkov chain whose equilibrium
distribution is the true distribution of 𝑌𝑖(mis) given 𝑌𝑖(obs)
and the parameter estimates that have been simulated from
their respective posterior distributions.That is, with a current
parameter estimate 𝜃t at the 𝑡th iteration, the I-step draws
𝑌
(𝑡+1)

mis from 𝑝(𝑌mis | 𝑌obs, 𝜃
t
) and the P-step draws 𝜃t+1

from 𝑝(𝜃 | 𝑌obs, 𝑌
𝑡+1

mis ). This produces a Markov chain
, . . . , (𝑌

𝐵+1

mis , 𝜃
B+1

), (𝑌
𝐵+2

mis , 𝜃
B+2

), . . ., where 𝐵 is a large number
such that the chain has converged to the target distribution
𝑝(𝑌mis | 𝑌obs, 𝜃). Once the chain has converged, each
simulation is an independent draw from this distribution, the
values of which are then used to impute the missing data [11].

1.4. Imputation of Categorical Data. For ordinal or nominal
data, we can use a logistic regression model to impute
missing data once a monotonemissing data pattern had been
established and the posterior distribution of the parameters
for the regression imputation model has been found. Once
a model has been fitted, the missing values can be imputed
using the predicted values from the model [4, 23].

For a missing binary class variable 𝑌𝑗 with possible
outcomes 0 and 1, we fit a logistic regression model using the
observed data for𝑌𝑗 and its covariates𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑘 and
a vector of 𝛽 sampled from their posterior distribution. We
have

logit (𝜇𝑗) = 𝛽0 + 𝛽1𝑋1𝑗 + 𝛽2𝑋2𝑗 + ⋅ ⋅ ⋅ + 𝛽𝑘𝑋𝑘𝑗, (2)

where𝑋1𝑗, 𝑋2𝑗, 𝑋3𝑗, . . . , 𝑋𝑘𝑗 are the covariates for 𝑌𝑗, where

𝜇𝑗 = Pr (𝑌𝑗 = 1 | 𝑋1𝑗, 𝑋2𝑗, . . . , 𝑋𝑘𝑗) (3)

and where

logit (𝜇𝑗) = log(
𝜇𝑗

1 − 𝜇𝑗

) . (4)

The imputed values are simulated algorithmically using the
following steps.

(1) At step 𝑡, randomly draw a new parameter vector,
𝛽
𝑡

= (𝛽1, 𝛽2, . . . , 𝛽𝑘), from the current posterior
predictive distribution, where 𝛽𝑡 = 𝛽

t−1
+ VhjZ,

where Vhj is the upper triangular matrix of the
Cholesky decomposition and Z is a vector of 𝑘 + 1

independent random normal variates. The posterior
predictive distribution is updated at each step, 𝑡, given
the observed data and the imputed data from the last
step.

(2) For each observation withmissing𝑌𝑗 given covariates
𝑋1𝑗, 𝑋2𝑗, 𝑋3𝑗, . . . , 𝑋𝑘𝑗 and 𝛽

t find the expected prob-
ability that 𝑌𝑗 = 1 given by 𝑝𝑗.

(3) Draw 𝑢, a uniform (0, 1) random variable. If 𝑢 < 𝑝𝑗,
impute 𝑌𝑗 = 1; else impute 𝑌𝑗 = 0.

The above algorithm produces a Markov chain whose
stationary distribution converges to the true distribution of
𝑌. The imputed 𝑌𝑗 are our best estimates of the true value of
the missing variable for each observation given the observed
data and the covariates. Furthermore, sampling from the
posterior distribution of the parameter vector, 𝛽, models
our uncertainty in the imputation model parameters, thus
providing amore realistic variability in the imputed data.This
algorithm can be extended for ordinal or categorical variables
with more than two categories.

1.5. The Monotone Missing Pattern Requirement. For the
imputation of categorical data, if the missing data pattern is
non-monotone, this can cause difficulties in the imputation
in a variety of situations [12, 24–26]. A data set is said to have
amonotonemissing pattern when it is possible to arrange the
variables in order such that if an individual ismissing variable
𝑌𝑗 then that individual is alsomissing all subsequent variables
𝑌𝑘, 𝑘 > 𝑗.The data set below has amonotonemissing pattern:

Obs 𝑌1 𝑌2 𝑌3 𝑌4
1 2.1 0 10.2 0.5

2 3.0 1 11.0 ⋅

3 1.9 1 ⋅ ⋅

4 3.2 ⋅ ⋅ ⋅

(5)

Because survey data are often categorical with a large number
of variables, finding such an ordering of the variables may
be prohibitively time consuming or impossible. However, if
we can achieve a monotone missing data pattern, we can
use the automatedmodel-based capabilities of many software
packages to impute our missing data and avoid many of the
pitfalls of other types of imputation.

1.5.1. Creating a Monotone Missing Pattern. To construct a
monotone missing data pattern, the first step is to use the
model-based approach described above for multivariate nor-
mal data in the data set to simultaneously impute the missing
data for the continuous variables. Once this step is completed,
we can impute the incomplete categorical variables, one at
a time, using the model-based approach for categorical data
described above, which requires a monotone missing pattern
for implementation. Once a variable is complete it can be
used in the imputation of the next variable. Hence, at each
step in the process only one variable is incomplete, creating
by default a monotone missing data pattern. We recommend
starting with the variable with the fewest missing values and
ending with the variable with the most missing values. This
procedure is repeated until all variables are complete.

1.6. A Word about Multiple Imputations. Some investiga-
tors argue that multiple imputation is necessary to obtain
unbiased estimates of the standard errors and hence for
conducting inference [1, 4, 5, 14, 27]. However, most multiple
imputation procedures work in tandem with the procedure
for the substantive analysis. For example, SAS’s Proc MI
works in tandem with Proc MIanalyze, which performs the
substantive analysis after each of the multiple imputations.
Because we must first build a monotone missing pattern,
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we must first impute each missing variable for each case
before building the substantive logistic regression model and
we cannot exploit the “multiple” aspects of Proc MI and
other similar software implementations. Furthermore, we
must impute the normal variables using different methods
than the categorical variables and hence these need to be
imputed in a separate step. Furthermore, in our case study as
well as in many studies involving ordinal data, we construct
indices from item responses to measure constructs such as
socioeconomic status, family cohesion, and language profi-
ciency. We need to have complete data to build these indices
and building constructs is not an imbedded part of any soft-
ware implementation. Multiple imputation procedures work
in conjunction with the substantive analysis by repeating
the imputation several (up to 10 usually) times, each time
estimating the parameters of the substantive model and their
standard errors. Less biased estimates of the standard errors
can then be obtained based on changes in the parameter
estimates across different imputations. Inference about the
parameters is then conducted using this improved standard
error.

This cannot be implementedwithin the cannedprocedure
if the data need to be imputed variable by variable. Hence
confidence intervals and 𝑃 values could retain some down-
ward bias when performing single imputation even with the
model-based approach.

We can, of course, perform our own procedure for the
imputation and the data analysis several times and calculate
the variance of the different parameter estimates of interest
across different analyses with different imputations. Here we
show an example of this procedure which involved imputing
the data, calculating indices based on the complete data,
fitting the substantive logistic regressionmodel, repeating the
entire process several times, and calculating the total variance
as a weighted sum of the within- and between-imputation
variance estimates. The resulting standard error could then
be used to conduct inference. While it may sound tedious,
in practice once the code is written it is quite simple and
straightforward.

Let 𝑚 be the number of imputations performed, pro-
ducing 𝑚 different point estimates for the parameters and
their standard errors. The combined point estimate for the
parameter, 𝜃, is given by the mean over all imputations:

𝜃 =
1

𝑚

𝑚

∑

𝑖=1

𝜃𝑖, (6)

where 𝜃𝑖 is the estimate from the 𝑖th imputation. Let 𝑊𝑖
be the variance estimate from the 𝑖th imputation; then the
within-imputation variance is given by the mean over all 𝑚
imputations:

𝑊 =
1

𝑚

𝑚

∑

𝑖=1

𝑊𝑖. (7)

The between-imputation variance is given by

𝐵 =
1

𝑚 − 1

𝑚

∑

𝑖=1

(𝜃𝑖 − 𝜃)
2

. (8)

The estimate for the total variance for 𝜃 is given by

𝑇 = 𝑊 + (1 +
1

𝑚
)𝐵. (9)

The statistic has a 𝑡 distribution given by

𝑇
−1/2

(𝜃 − 𝜃) ∼ 𝑡 (V𝑚) , (10)

where 𝜃 is the value of the parameter under the null
hypothesis and the degrees of freedom are given by

V𝑚 = (𝑚 − 1) [1 +
𝑊

(1 + 1/𝑚) 𝐵
]

2

. (11)

Inference can then be conducted via the construction of
confidence intervals or hypothesis testing [4, 28].

1.7. Assessing Imputation. Assessing how well an imputation
worked is somewhat problematic. If the MCAR assumption
holds, then we would expect only small changes in the
means of the different variables and no change in the basic
shape of the distribution for quantitative variables. Hence,
small changes in the histograms of variables between the
incomplete and complete data (before and after imputation)
indicateMCAR. For quantitativeMAR data, we would expect
small changes in the shape of the conditional distribution of𝑌
given each level of𝑋 or combination of𝑋’s. If there are a large
number of variables it may be impossible to check. However,
it can be instructive to plot histograms of the incomplete
data for the missing variable by different categories of a few
categorical variables and compare these histograms to the
same for the complete data. If there are no drastic changes,
then this is evidence for the data being at least MAR. For
categorical data, assessing the imputation is even harder. In
practice, usually we can only examine summary statistics
and look for any problematic data or data patterns. This
is a difficult theoretical problem and until it is resolved by
theorists, the investigator must rely on common sense and
reasonable care with checking of assumptions. If, in expert
opinion and experience, respondents are likely to refuse
to answer certain types of questions based on the answer
to the question itself, and no number of other participant
characteristics can be used to model this probability of
refusal, then methods to correct this bias using information
from outside the sample are indicated.

In general, though, in the assessment of imputation using
model-based approaches, if the algorithm converges and
produces no anomalous values, then we have no reason to
question the results, as MCMCmethods have been shown by
strong theory and simulation to produce samples from the
target distribution.

2. Methods

We tested the method on a case study using the National
Latino and Asian American Study (NLAAS). The NLAAS
core sampling procedure resulted in a nationally represen-
tative sample of 4649 Latino and Asian Americans and
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immigrants who resided in the contiguous United States.
Regarding the Latino sample, there were 577 Cubans, 868
Mexicans, and 614 other Latinos. The subcategory “other
Latinos” included immigrants from Colombia, the Domini-
can Republic, Ecuador, El Salvador, Guatemala, Honduras,
Nicaragua, and Peru. The Asian sample consisted of 600
Chinese, 508 Filipino, and 520 Vietnamese participants and
467 other Asians. The subcategory “other Asians” consisted
of Koreans, Japanese, Asian Indians, and individuals of other
Asian backgrounds.

The NLAAS data set had one of the most comprehensive
and advanced designs ever developed. A detailed description
of the NLAASmethods of data collection has been previously
documented [29–32].

The sampling techniques consisted of three major
approaches. First, core and secondary sampling units were
selected according to probability proportionate to size, from
which household members in the continental United States
were sampled. While primary sampling units were defined as
metropolitan statistical areas, secondary sampling units were
formed from contiguous groupings of census blocks. Second,
high-density supplemental sampling was applied, using a
greater than 5% density criterion, in which Asian and Latino
groups were oversampled. Asian and Latino individuals who
did not belong to the target groups under which these
geographical areas were classified were still eligible to take
part in NLAAS. For example, Vietnamese individuals living
in a Chinese high-density census block were eligible. Third,
secondary respondents were recruited from households in
which one eligible participant had already been recruited and
interviewed. Secondary respondents sampling was used to
further increase the number of study participants. In all three
sampling procedures explained above weighting corrections
were applied to take into account joint probabilities of
selection.

The NLAAS instruments were available in Cantonese,
Mandarin, Tagalog, Vietnamese, Spanish, and English. They
were translated using standard translation as well as back-
translation techniques. All participants received an intro-
ductory letter and the study brochure in their preferred
language. Those who gave their consent to take part in the
study were screened and interviewed by professionals who
had linguistic and cultural backgrounds similar to those
of the sample population. Interviews were conducted with
computer-assisted interviewing software in the preferred
language of the participants. Face-to-face interviews with
the participants were administered in the core and high-
density samples. Exceptions were made when respondents
specifically requested a telephone interview or when face-
to-face interviewing was prohibitive. The average length of
each interviewwas 2.4 hours. As ameasure of quality control,
a randomly selected sample of participants with completed
interviews was contacted to validate the data.

Written consent was obtained for all study participants,
protocols, and procedures. Human subject approval was
given by the Cambridge Health Alliance, Harvard University,
the University of Michigan, and the University of Washing-
ton.

2.1. Imputing Missing Values for the NLAAS Data Set. All but
a few variables in the NLAAS data set had missing obser-
vations. We selected a total of 75 out of approximately 3000
items available in theNLAAS dataset for the imputation, with
68 items of interest in the substantive model. The 75 items
include both single variables such as sex, race, participant’s
education, spouse’s education, mother’s education, father’s
education, child labor, economic resources, andmultivariable
constructs such as social networks, family cohesion, language
preference, ethnic or native language proficiency, English
language proficiency, and socioeconomic success. Out of the
75 items used for imputation, 5 were either approximately
normal or could be normalized using transformations. The
variable SE2 (spouse’s education) was transformed using the
square root transformation and EM2 (child labor/age at
employment) was transformed using exponentiation to 3/2.
The remaining 70 variables were binary or ordinal with 2 to 5
categories. Additionally, four variables had no missing data.
Hence we had 9 variables with which to build the first impu-
tation model and 75 variables with which to build the final
imputationmodel.The extent of themissing data can be visu-
alized in the histogram and box-plot shown in Figures 1 and 2.

Weused the SAS procedureProcMI to perform the impu-
tations using the MCMC model-based method described
above. First the continuous variables were normalized by a
suitable transformation, if necessary. Then the multivariate
normal imputation, as described above, was performed on
these. Next, the categorical variable with the fewest missing
values was imputed using all completely observed variables
and the normal variables imputed in the first stage of
imputation. We used themonotone discrimmodel for binary
and 3-category variables and monotone logistic for variables
with more than 3 categories. These methods implement
the methods model-based MCMC procedure described and
require the monotone missing pattern.

Once all missing values were imputed, we developed
indices to measure various abstract concepts such as English
language proficiency, ethnic or native language proficiency,
language preference, social networks, and family cohesion.
We developed a model to predict socioeconomic success in
Latino and Asian immigrants based on constructs such as
language preference and proficiency, economic resources, social
networks, family cohesion, and child labor. The constructs
were built from responses to items in the survey using the
complete data.

For illustration of the multiple imputation procedure,
we performed the procedure 10 times for data used in a
substantive model to predict socioeconomic success based
on several constructs. We estimated the total variance and
performed the 𝑡-test for the null hypothesis that the true
parameter value is zero versus the alternative that is it not
equal to zero for each parameter in the model.

To assess the imputation, we checked for extreme or non-
sensical values after each imputation and graphed histograms
of the continuous variables. Examples of the histograms are
shown in Figures 3, 4, 5, and 6. All tables and figures were
produced in SPSS.



Journal of Applied Mathematics 7

6005004003002001000

0

60

40

20

Fr
eq

ue
nc

y

Missing

Figure 1: Histogram of the number of missing observations in 75
items used from the NLAAS data.
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Figure 2: Bar chart of the extent of missingness showing each
variable.
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Figure 3: Histograms of raw data for the number of years the
participant’s mother attended school.
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Figure 4: Histogram after imputation of missing values of the
number of years the participant’s mother attended school.
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Figure 5: Histograms of raw data of the square root of father’s
education by writing proficiency in English.

3. Results and Discussion

3.1. Imputation. For this study, the imputation appeared to
work well. There were no problems with convergence and no
implausible values were observed. Figure 3 shows the small
changes in the distribution of the variable Mother’s Ed, the
number of years of education for the respondent’s mother.
These results are typical of the quantitative variables imputed.
Figures 5 and 6 show the histograms for a continuous variable
which is the square root of the number of years of education
for the participant’s father. The square root was necessary
to achieve approximate normality. The small changes in the
conditional distribution lend evidence that the missing data
process for this variable isMAR.
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Table 1: Results of logistic regression substantive analyses on 10 imputed data sets.The far right column reports the percentage of the imputed
data sets which resulted in rejecting the null hypothesis that the parameter is equal to zero versus the two-sided alternative.The other columns
represent the parameter estimates and 𝑡 values for the 𝑡-test described in Section 1.6.𝑁 = 4649, 𝑡∗

9
(0.05) = 2.26.

Index 𝜃 𝑊 𝐵 𝑇 𝑡 % Reject𝐻𝑜
Child labor −4.40𝐸 − 01 1.17𝐸 − 02 3.15𝐸 − 03 1.51𝐸 − 02 −3.57 100
English language proficiency 1.98𝐸 − 01 1.65𝐸 − 04 4.00𝐸 − 04 6.05𝐸 − 04 8.07 100
Parents’ education 6.83𝐸 − 02 8.86𝐸 − 05 2.59𝐸 − 04 3.73𝐸 − 04 3.54 100
Race −3.67𝐸 − 01 1.26𝐸 − 03 3.72𝐸 − 04 1.67𝐸 − 03 −8.98 100
Sex 2.25𝐸 − 01 1.11𝐸 − 03 3.13𝐸 − 03 4.55𝐸 − 03 3.33 100
Dependent variable: socioeconomic success (0, 1).
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Figure 6: Histograms of complete data of the square root of father’s
education by writing proficiency in English.

3.2. Multiple Imputation. The results for the multiple impu-
tations are shown in Table 1. Findings indicate that, for all
variables in the model, all of the single tests were consistent
with the combined test.

Our approach represents a simple and very effective
method for imputation of survey data, which are often
ordinal or nominal. Our method combines the capability of
modelling the missing data distribution of the automated
model-based procedures, such as Bayesian MCMCmethods,
commonly available in many software packages, while cir-
cumventing the current limitations inmany of these packages
for the imputation of a large number of categorical variables.
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[9] G. Chen and T. Åstebro, “How to deal with missing categorical
data: test of a simple Bayesianmethod,”Organizational Research
Methods, vol. 6, no. 3, pp. 309–327, 2003.

[10] G. B. Durrant, “Imputation methods for handling item−nonre-
sponse in practice: methodological issues and recent debates,”
International Journal of Social ResearchMethodology, vol. 12, no.
4, pp. 293–304, 2009.

[11] J. L. Schafer,Analysis of IncompleteMultivariate Data, Chapman
& Hall, New York, NY, USA, 1997.

[12] J. K. Vermunt, J. R. vanGinkel, L. A. van derArk, andK. Sijtsma,
“Multiple imputation of incomplete categorical data using latent
class analysis,” Sociological Methodology, vol. 38, no. 1, pp. 369–
397, 2008.

[13] N. J. Horton and K. P. Kleinman, “Much ado about nothing:
a comparison of missing data methods and software to fit
incomplete data regression models,” The American Statistician,
vol. 61, no. 1, pp. 79–90, 2007.

[14] R. M. Groves, “Non-response rates and nonresponse bias in
household surveys,” Public Opinion Quarterly, vol. 70, no. 5, pp.
646–675, 2006.



Journal of Applied Mathematics 9

[15] J. L. Schafer, “Multiple imputation: a primer,” StatisticalMethods
in Medical Research, vol. 8, no. 1, pp. 3–15, 1999.

[16] S. van Buuren, H. C. Boshuizen, and D. L. Knook, “Multiple
imputation of missing blood pressure covariates in survival
analysis,” Statistics in Medicine, vol. 18, pp. 681–694, 1999.

[17] P. D. Allison, “Handling missing data by maximum likeli-
hood,” SAS Global Forum: Statistics Data Analysis 312-2012,
2012, http://www.statisticalhorizons.com/wp-content/uploads/
MissingDataByML.pdf.

[18] “Statistical Computing Seminars: Multiple Imputation in
Stata,” Institute for Digital Research and Education, UCLA,
http://www.ats.ucla.edu/stat/stata/seminars/missing data/mi
in stata pt1.htm.

[19] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian
Data Analysis, Chapman & Hall, New York, NY, USA, 1995.

[20] K.H. Li, “Imputation usingMarkov chains,” Journal of Statistical
Computation and Simulation, vol. 30, no. 1, pp. 57–79, 1988.

[21] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing
Data, John Wiley & Sons, New York, NY, USA, 2002.

[22] C. Liu, “Bartlett’s decomposition of the posterior distribution
of the covariance for normalmonotone ignorablemissing data,”
Journal ofMultivariate Analysis, vol. 46, no. 2, pp. 198–206, 1993.

[23] M. A. Tanner and W. H. Wong, “The calculation of posterior
distributions by data augmentation,” Journal of the American
Statistical Association, vol. 82, pp. 528–540, 1987.

[24] P. Minini andM. Chavance, “Sensitivity analysis of longitudinal
binary data with non-monotone missing values,” Biostatistics,
vol. 5, no. 4, pp. 531–544, 2004.

[25] P. J. Lavrakas, Encyclopedia of Survey Research Methods, Sage,
Thousand Oaks, Calif, USA, 2008.

[26] D. Zhang, A Monte Carlo Investigation of Robustness to Non-
normal Incomplete Data of Multilevel Modeling, Texas A&M
University Press, College Station, Tex, USA, 2005.

[27] K. Lueck, Evaluationsmethoden der Bildungsforschung, LISUM,
Ludwigsfelde, Germany, 2006.

[28] J. Barnard and D. B. Rubin, “Small-sample degrees of freedom
with multiple imputation,” Biometrika, vol. 86, no. 4, pp. 948–
955, 1999.
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