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The problem of the peristaltic flow of a nanofluid under the effect of an endoscope is reinvestigated. The mathematical model
is governed by a system of linear and nonlinear partial differential equations with prescribed boundary conditions. Really, the
exact solution for any physical problem, if available, is of great importance which inevitably leads to a better understanding
of the behaviour of the involved physical phenomena. An attempt for doing so has been done in the present paper, where the
temperature equation is solved exactly by the help of Laplace transform and, accordingly, the exact expressions for the nanoparticle
concentration, the axial velocity, the pressure gradient, and the pressure rise are established. Furthermore, it is showed in this paper
that the physical interpretations of some involved phenomena are found totally different than those previously obtained by the
approximate solutions using the homotopy perturbation method. In addition, several comparisons between the current results and
the approximate ones have been displayed. Finally, the effect of various parameters on the temperature distribution, the nanoparticle
concentration, the pressure gradient, and the pressure rise has been also discussed through graphs.

1. Introduction

The subject of peristaltic flow of classical Newtonian and
non-Newtonian fluids has a long history [1–7]. It was and
is still of interest to many researchers because of its medical
and engineering applications. For example, Mekheimer and
Abd elmaboud [8] showed that the peristaltic flow of blood
with bioheat transfer is of great importance in destroying
undesirable tissues, such as cancer. It was also clarified in [9]
that, in the case of hyperthermia, the tissue can be destroyed
when heated to 42–45∘C. In addition, peristaltic flow occurs
widely in the functioning of the ureter, chyme movement in
the intestine, movement of eggs in the fallopian tube, the
transport of the spermatozoa in cervical canal, transport of
bile in the bile duct, transport of cilia, circulation of blood
in small blood vessels, and the transport of intrauterine fluid
within the cavity of the uterus.

Nowadays, nanotechnology is widely used in industry
since materials with sizes of nanometers possess unique

physical and chemical properties. Normally, if the particle
sizes are in the 1–100 nm ranges, they are generally called
nanoparticles, 1 nm (nano-meter) = 10

−9 meters. Nanoscale
particle added fluids are called nanofluid.The term nanofluid
was first used by Choi [10] to describe a fluid in which
nanometer-sized particles are suspended in conventional
heat transfer basic fluids. Fluids such as oil, water, and
ethylene glycol mixture are poor heat transfer fluids, since
the thermal conductivity of these fluids plays an important
role in the heat transfer coefficient between the heat transfer
medium and the heat transfer surface. Numerous methods
have been followed to improve the thermal conductivity
of these fluids by suspending nano/micro or larger-sized
particle materials in liquids. An innovative technique to
improve heat transfer is by using nanoscale particles in the
base fluid [10]. Choi et al. [11] showed that the addition of
a small amount (less than 1% by volume) of nanoparticles
to conventional heat transfer liquids increased the thermal
conductivity of the fluid up to approximately two times. This
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Figure 1: Geometry of the problem.

phenomenon suggests the possibility of using nanofluids in
advanced nuclear systems (see [12]). Despite the fact that a
huge number of studies are now available for the peristaltic
flow of classical fluids, the first study on the peristaltic flow of
a nanofluid has been introduced very recently and discussed
by Akbar and Nadeem [13]. Till this moment, a few papers
were presented in this area of research [13–17]. The main
observation on these studies is that the authors usually resort
to the approximate solutions to interpret the behaviour of
the physical quantities. In fact, such approximate solutions,
sometimes, do not provide us with the correct physical
discussion if compared with the exact solutions [18–20].
Many useful results for nanofluids flow can be found in [21–
27]. In [13], Akbar and Nadeem have analyzed the peristaltic
flow and heat transfer of a nanofluid in an endoscope. They
have used the homotopy perturbation method to obtain
the analytical approximate solutions for the temperature
distribution and the nanoparticle concentration. However,
their approximate solutions do not give the correct behaviour
of the physical quantities as will be clarified later. So, this
problem will be reinvestigated in the current paper and our
objectives can be summarized as follows.

(i) The first task is to obtain the exact solutions for the
system of partial differential equations governing the
flow.

(ii) The obtained exact solutions are used to introduce
various plots for the exact temperature and the exact
nanoparticle concentration.

(iii) The final major task is to explain the big difference
in the results and plots obtained in the current study
using the exact solutions when compared to those
obtained through the approximate solutions in [13].
This may refer to the fact that the approximate solu-
tions do not always lead to the correct interpretations
of the involved physical phenomena.

2. The Physical Problem

In [13], Akbar and Nadeem considered the peristaltic flow
of an incompressible nanofluid in an endoscope. The flow is
generated by sinusoidal wave trains propagating with con-
stant speed 𝑐 along the walls of the tube. Heat transfer along
with nanoparticle phenomena has been taken into account.
The inner tube is rigid and is maintained at temperature 𝑇

0

while the outer tube has a sinusoidal wave traveling down its
walls and is maintained at temperature 𝑇

1
. The geometry of

the wall surfaces, see Figure 1, is defined as

𝑅
1
= 𝑎
1
,

𝑅
2
= 𝑎
1
+ 𝑏 sin [

2𝜋

𝜆
(𝑍 − 𝑐𝑡)] ,

(1)

where 𝑎
1
is the radius of the inner tube, 𝑎

2
is the radius

of the outer tube at inlet, 𝑏 is the wave amplitude, 𝜆 is the
wavelength, and 𝑡 is the time. Introducing a wave frame (𝑟, 𝑧)
moving with velocity 𝑐 away from the fixed frame (𝑅, 𝑍) by
the transformations

𝑧 = 𝑍 − 𝑐𝑡, 𝑟 = 𝑅, 𝑤 = 𝑊 − 𝑐, 𝑢 = 𝑈, (2)

in which 𝑈, 𝑊 and 𝑢, 𝑤 are the velocity components in
the radial and axial directions in the fixed and moving
coordinates, respectively. In their analysis, it was found that
under the assumptions of long wavelength and low Reynolds
number approximation the flow is governed by the following
system of partial differential equations in nondimensional
form [13]:

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0, (3)

𝜕𝑃

𝜕𝑟
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
) + 𝐺

𝑟
𝜃 + 𝐵
𝑟
𝜎, (4)

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁

𝑏

𝜕𝜎

𝜕𝑟

𝜕𝜃

𝜕𝑟
+ 𝑁
𝑡
(
𝜕𝜃

𝜕𝑟
)

2

= 0, (5)

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜎

𝜕𝑟
) +

𝑁
𝑡

𝑁
𝑏

[
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
)] = 0, (6)

where 𝑁
𝑏
, 𝑁
𝑡
, 𝐺
𝑟
, and 𝐵

𝑟
are, respectively, the Brownian

motion parameter, the thermophoresis parameter, the local
temperature Grashof number, and the nanoparticle Grashof
number. The flow is subject to the boundary conditions:

𝑤 = −1, 𝜃 = 1, 𝜎 = 1,

at 𝑟 = 𝑟
1
= 𝜖,

(7)

𝑤 = −1, 𝜃 = 0, 𝜎 = 0,

at 𝑟 = 𝑟
2
= 1 + 𝜙 sin (2𝜋𝑧) .

(8)

In nondimensional form [13], the transformation 𝑤 = 𝑊 − 𝑐

becomes 𝑤 = 𝑊 − 1. Therefore, the no-slip condition at the
wall 𝑊 = 0 leads to the boundary condition 𝑤 = −1 in
the moving frame. The system ((3)–(8)) was solved approx-
imately in [13] by using the homotopy perturbation method.
The approximate series solution obtained in [13] was used
to discuss various physical phenomena such as temperature
profile, nanoparticle concentration, pressure gradient, and
the streamlines. However, the exact solutions of the above
system can be obtained and this is the subject of the next
section.
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3. The Exact Solutions

At first, (5) reveals that the axial velocity depends on getting
the temperature and the concentration. So, it may be useful to
first focus on searching for the exact solutions to (6) and (7).
It is observed from (7) that it can be easily integrated twice
with respect to 𝑟 to give the following exact relation between
the temperature and the nanoparticle concentration:

𝜎 (𝑟, 𝑧) = ℎ
1
(𝑧) ln 𝑟 − (

𝑁
𝑡

𝑁
𝑏

)𝜃 + ℎ
2
(𝑧) , (9)

where ℎ
1
(𝑧) and ℎ

2
(𝑧) are two unknown functions. On

applying the boundary conditions in (8) to (9), we obtain

ℎ
1
(𝑧) =

1 + 𝑁
𝑡
/𝑁
𝑏

ln (𝑁
𝑡
/𝑁
𝑏
)
, ℎ

2
(𝑧) = −(

1 + 𝑁
𝑡
/𝑁
𝑏

ln (𝑁
𝑡
/𝑁
𝑏
)
) ln (𝑟

2
) .

(10)

Substituting (9) into (6) yields a partial differential equation
in only 𝜃:

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁

𝑏
ℎ
1
(𝑧)

𝜕𝜃

𝜕𝑟
= 0, (11)

which can be integrated with respect to 𝑟 once again to give

𝑟
𝜕𝜃

𝜕𝑟
+ 𝑁
𝑏
ℎ
1
(𝑧) 𝜃 = ℎ

3
(𝑧) , (12)

where ℎ
3
(𝑧) is also an unknown function and is to be

determined later. In order to solve (12), a new independent
variable 𝑥 is suggested, where 𝑥 = ln(𝑟) or 𝑟 = 𝑒

𝑥.
Accordingly, (12) becomes

𝜕𝜃

𝜕𝑥
+ 𝑁
𝑏
ℎ
1
(𝑧) 𝜃 (𝑥, 𝑧) = ℎ

3
(𝑧) . (13)

Equation (13) can be now solved exactly by the help of Laplace
transform as follows. Taking Laplace transform to both sides
of the last partial differential equation, we get

𝜃 (𝑥, 𝑧) =
𝜃 (0, 𝑧)

𝑠 + 𝑁
𝑏
ℎ
1
(𝑧)

+
ℎ
3
(𝑧)

𝑠 (𝑠 + 𝑁
𝑏
ℎ
1
(𝑧))

, (14)

where 𝜃(0, 𝑧) is an unknown function. Applying the inverse
Laplace transform to (14) yields

𝜃 (𝑥, 𝑧) = 𝜃 (0, 𝑧) 𝑒
−𝑁𝑏ℎ1(𝑧)𝑥

+
ℎ
3
(𝑧)

𝑁
𝑏
ℎ
1
(𝑧)

[1 − 𝑒
−𝑁𝑏ℎ1(𝑧)𝑥

] .

(15)

In terms of the original independent variable 𝑟 we obtain

𝜃 (𝑟, 𝑧) = 𝜃 (1, 𝑧) 𝑟
−𝑁𝑏ℎ1(𝑧)

+
ℎ
3
(𝑧)

𝑁
𝑏
ℎ
1
(𝑧)

[1 − 𝑟
−𝑁𝑏ℎ1(𝑧)

] . (16)

The unknown functions 𝜃(1, 𝑧) and ℎ
3
(𝑧) can be now deter-

mined by applying the boundary conditions to (16).Therefore

ℎ
3
(𝑧) =

𝑁
𝑏
ℎ
1
(𝑧)

1 − (𝑟
2
/𝑟
1
)
𝑁𝑏ℎ1(𝑧)

, 𝜃 (1, 𝑧) =
1 − (𝑟

2
)
𝑁𝑏ℎ1(𝑧)

1 − (𝑟
2
/𝑟
1
)
𝑁𝑏ℎ1(𝑧)

,

(17)

and, hence, the exact analytical form for the temperature
distribution is given by

𝜃 (𝑟, 𝑧) =
1 − (𝑟/𝑟

2
)
𝑁𝑏ℎ1(𝑧)

1 − (𝑟
1
/𝑟
2
)
𝑁𝑏ℎ1(𝑧)

. (18)

Here, it should be noted that the exact solution obtained
above and given by (18) can be easily verified by the direct
substitution.Moreover, the exact analytical expression for the
nanoparticle concentration is obtained by substituting (18)
into (9) as

𝜎 (𝑟, 𝑧) = ℎ
1
(𝑧) ln(

𝑟

𝑟
2

)(
𝑁
𝑡

𝑁
𝑏

)(
1 − (𝑟/𝑟

2
)
𝑁𝑏ℎ1(𝑧)

1 − (𝑟
1
/𝑟
2
)
𝑁𝑏ℎ1(𝑧)

) , (19)

where ℎ
1
(𝑧) is already defined in (10). Our task now is to

construct the exact solution for the axial velocity 𝑤(𝑟, 𝑧).
This task is achieved as follows. In view of (4), the pressure
𝑃 becomes a function in only 𝑧, that is, 𝑃 = 𝑃(𝑧), and
accordingly (5) can be written as

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
) =

𝑑𝑃

𝑑𝑧
− 𝐺
𝑟
𝜃 − 𝐵
𝑟
𝜎, (20)

which is also integrated twice with respect to 𝑟 to give

𝑤 (𝑟, 𝑧) =
1

4

𝑑𝑃

𝑑𝑧
𝑟
2

− 𝐺
𝑟
Π
1
(𝑟, 𝑧) − 𝐵

𝑟
Π
2
(𝑟, 𝑧)

+ ℎ
4
(𝑧) ln (𝑟) + ℎ

5
(𝑧) .

(21)

Here ℎ
4
(𝑧) and ℎ

5
(𝑧) are two further unknown functions and

Π
1
(𝑟, 𝑧) and Π

2
(𝑟, 𝑧) are defined by the following indefinite

integrals:

Π
1
(𝑟, 𝑧) = ∫ [

1

𝑟
∫ 𝑟𝜃 (𝑟, 𝑧) 𝑑𝑟] 𝑑𝑟,

Π
2
(𝑟, 𝑧) = ∫ [

1

𝑟
∫ 𝑟𝜎 (𝑟, 𝑧) 𝑑𝑟] 𝑑𝑟.

(22)

On performing the above integrations, we obtain

Π
1
(𝑟, 𝑧) =

𝑟
2

1 − (𝑟
1
/𝑟
2
)
−𝑁𝑏ℎ1(𝑧)

[
1

4
−

(𝑟/𝑟
2
)
−𝑁𝑏ℎ1(𝑧)

(2 − 𝑁
𝑏
ℎ
1
(𝑧))
2

] ,

(23)

Π
2
(𝑟, 𝑧) =

1

4
ℎ
1
(𝑧) 𝑟
2

[ln(
𝑟

𝑟
2

) − 1] − (
𝑁
𝑡

𝑁
𝑏

)Π
1
(𝑟, 𝑧) .

(24)

In view of (21) and (24), the exact expression for 𝑤(𝑟, 𝑧) can
be written as

𝑤 (𝑟, 𝑧) =
𝑟
2

4
[Λ (𝑧) − 𝐵

𝑟
ℎ
1
(𝑧) ln(

𝑟

𝑟
2

)] − ΩΠ
1
(𝑟, 𝑧)

+ ℎ
4
(𝑧) ln 𝑟 + ℎ

5
(𝑧) ,

(25)

where Λ(𝑧) andΩ (a constant) are given as

Λ (𝑧) =
𝑑𝑃

𝑑𝑧
+ 𝐵
𝑟
ℎ
1
(𝑧) , Ω = 𝐺

𝑟
−

𝐵
𝑟
𝑁
𝑡

𝑁
𝑏

. (26)
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Applying the boundary conditions (8) to (25), it then follows
that

𝑟
2

1

4
[Λ (𝑧) − 𝐵

𝑟
ℎ
1
(𝑧) ln(

𝑟
1

𝑟
2

)] − ΩΠ
1
(𝑟
1
, 𝑧)

+ ℎ
4
(𝑧) ln 𝑟

1
+ ℎ
5
(𝑧) = −1,

𝑟
2

2

4
Λ (𝑧) − ΩΠ

1
(𝑟
2
, 𝑧) + ℎ

4
(𝑧) ln 𝑟

2
+ ℎ
5
(𝑧) = −1.

(27)

Solving this system for ℎ
4
(𝑧) and ℎ

5
(𝑧), we get

ℎ
4
(𝑧)

=
𝐵
𝑟

4
ℎ
1
(𝑧) 𝑟
2

1

+

[(Λ (𝑧) /4) (𝑟
2

2

− 𝑟
2

1

) + Ω (Π
1
(𝑟
1
, 𝑧) − Π

1
(𝑟
2
, 𝑧))]

ln (𝑟
1
/𝑟
2
)

,

(28)

ℎ
5
(𝑧) = −1 −

1

4
Λ (𝑧) 𝑟

2

2

+ ΩΠ
1
(𝑟
1
, 𝑧) − ℎ

4
(𝑧) ln (𝑟

2
) . (29)

Therefore, the axial velocity 𝑤(𝑟, 𝑧) is given by

𝑤 (𝑟, 𝑧)

= −1 +
1

4
Λ (𝑧) (𝑟

2

− 𝑟
2

2

) + (ℎ
4
(𝑧) −

1

4
𝐵
𝑟
ℎ
1
(𝑧) 𝑟
2

) ln(
𝑟

𝑟
2

)

+ Ω (Π
1
(𝑟
2
, 𝑧) − Π

1
(𝑟
1
, 𝑧)) .

(30)

By substituting ℎ
4
(𝑧) given in (28) into (30), we obtain the

following exact expression for the axial velocity:

𝑤 (𝑟, 𝑧)

= −1 −
𝐵
𝑟

4
ℎ
1
(𝑧) Λ (𝑧) (𝑟

2

− 𝑟
2

1

) ln(
𝑟

𝑟
2

)

+
Λ (𝑧)

4
[𝑟
2

− 𝑟
2

2

+ (
𝑟
2

2

− 𝑟
2

1

ln (𝑟
1
/𝑟
2
)
) ln(

𝑟

𝑟
2

)]

+ Ω[Π
1
(𝑟
2
, 𝑧) − Π

1
(𝑟, 𝑧)

+(
Π
1
(𝑟
2
, 𝑧) − Π

1
(𝑟
2
, 𝑧)

ln (𝑟
1
/𝑟
2
)

) ln(
𝑟

𝑟
2

)] .

(31)

According to [25], the pressure gradient is given by

𝑑𝑃

𝑑𝑧
=

𝐹 − Γ
1
(𝑧)

Γ
2
(𝑧)

− 𝐵
𝑟
ℎ
1
(𝑧) , (32)

where the flow rate in dimensionless form is defined as

𝐹 = 2𝑄 −
𝜙

2
− 1. (33)

Besides, Γ
1
(𝑧) and Γ

2
(𝑧) are given as follows:

Γ
1
(𝑧)

= ∫

𝑟2

𝑟1

[−2𝑟 −
1

2
𝐵
𝑟
ℎ
1
(𝑧) (𝑟
3

− 𝑟
2

1

𝑟) ln(
𝑟

𝑟
2

)]𝑑𝑟 + 2Ω

× ∫

𝑟2

𝑟1

[
Π
1
(𝑟
1
, 𝑧)

ln (𝑟
1
/𝑟
2
)
× 𝑟 ln(

𝑟

𝑟
2

) −
Π
1
(𝑟
2
, 𝑧)

ln (𝑟
1
/𝑟
2
)

× 𝑟 ln(
𝑟

𝑟
1

) − 𝑟Π
1
(𝑟, 𝑧) ] 𝑑𝑟,

Γ
2
(𝑧) =

1

2
∫

𝑟2

𝑟1

[𝑟
3

− 𝑟
2

2

𝑟 + (
𝑟
2

2

− 𝑟
2

1

ln (𝑟
1
/𝑟
2
)
) × 𝑟 ln(

𝑟

𝑟
2

)]𝑑𝑟.

(34)

The pressure rise in nondimensional form is expressed as

Δ𝑃 = ∫

1

0

𝑑𝑃

𝑑𝑧
𝑑𝑧 = ∫

1

0

[
2𝑄 − 𝜙/2 − 1 − Γ

1
(𝑧)

Γ
2
(𝑧)

− 𝐵
𝑟
ℎ
1
(𝑧)] 𝑑𝑧.

(35)

In [13], the authors obtained the approximate solutions for the
temperature distribution and the nanoparticle concentration
as

𝜃HPM (𝑟, 𝑧)

=
1

𝐴
1

[𝐴
2
(log 𝑟 − log 𝑟

1
) (2 log 𝑟 − 𝐴

4
)

− 6 (𝑁
𝑏
+ 𝑁
𝑡
) (log 𝑟 − log 𝑟

1
) (log 𝑟 − log 𝑟

2
)

+12𝐴
2

4

(log 𝑟 − log 𝑟
2
)] ,

(36)

𝜎HPM (𝑟, 𝑧)

=
1

𝐴
4
𝐴
5

[𝐴
5
(log 𝑟 − log 𝑟

2
) + 𝐴
3
𝐴
4
(log 𝑟 − log 𝑟

1
)

× (log 𝑟 − log 𝑟
2
) (2 log 𝑟 − 𝐴

4
)] ,

(37)

where

𝐴
1
= 12 (log 𝑟

1
− log 𝑟

2
)
3

,

𝐴
2
= − (𝑁

𝑏
+ 𝑁
𝑡
) (𝑁
𝑏
+ 2𝑁
𝑡
) ,

𝐴
3
= 𝑁
𝑡
(𝑁
𝑏
+ 𝑁
𝑡
) (𝑁
𝑏
+ 2𝑁
𝑡
) ,

𝐴
4
= log 𝑟

1
− log 𝑟

2
,

𝐴
5
= 12𝑁

𝑏
(log 𝑟
1
− log 𝑟

2
)
3

.

(38)

4. Numerical Results

In the previous section, the exact solutions for the tem-
perature, nanoparticle concentration, the axial velocity, the
pressure gradient, and the pressure rise have been obtained.
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Figure 2: (a) Temperature profile for different values of 𝑁
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at 𝑁
𝑏

= 8, 𝑟
1

= 0.1, 𝜙 = 0.2, and 𝑧 = 0.5. (b) Temperature profile for different
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at𝑁
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= 0.5, 𝑟
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= 0.1, 𝜙 = 0.2, and 𝑧 = 0.5.
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Figure 3: (a) Concentration profile for different values of𝑁
𝑡

at𝑁
𝑏

= 8, 𝑟
1

= 0.1, 𝜙 = 0.2, and 𝑧 = 0.5. (b) Concentration profile for different
values of𝑁

𝑏

at𝑁
𝑡

= 0.5, 𝑟
1

= 0.1, 𝜙 = 0.2, and 𝑧 = 0.5.

Undoubtedly, such exact solutions are of great importance
and certainly would lead to a better understanding of the
physical aspects of the model. In the present section, the
obtained exact solutions are used to explore the actual effects
of various parameters on the temperature distribution, the
nanoparticle concentration, the pressure gradient, and the
pressure rise.

Figures 2(a) and 2(b) represent the temperature profiles
at different values of the physical parameters. Figure 2(a)
indicates that the temperature profile decreases in the whole
region 0.1 ≤ 𝑟 ≤ 1 at different values of the thermophore-
sis parameter 𝑁

𝑡
. Unfortunately, the results presented in

Figure 2(a) contradict those obtained by Akbar and Nadeem
[13] (Figure 5(a)) at the same values of the physical param-
eters. In addition, in [13], the authors used the approximate
solutions derived from the homotopy perturbation method
to show in Figure 5(a) that the temperature profile increases

in the region 0.1 ≤ 𝑟 ≤ 0.41 and decreases in the region
0.41 ≤ 𝑟 ≤ 1. This may refer to the fact that their
approximate solutions were not really effective. In Figure 2(b)
an additional figure for the temperature profile is depicted at
different values of the Brownianmotion parameter𝑁

𝑏
, where

the temperature profile also decreases in the whole region
0.1 ≤ 𝑟 ≤ 1. Comparing the results presented in the current
study in Figure 2(b) with those obtained in Figure 5(b) in [13]
at the same parameters values one can easily observe the big
difference between the temperature curves. This difference
in results can be also observed through comparing Figures
3(a) and 3(b) with Figures 6(a) and 6(b) in [13] for the
nanoparticle concentration profile.

Due to this remarkable difference in the behaviour of
the mentioned physical quantities, it may be concluded that
the approximate solutions obtained in [13] were not effective
enough to give the correct physical interpretation.Therefore,
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the obtained exact solutions should be invested here. To
do so, several plots are presented in Figures 4–9 for the
variation of 𝜃 and 𝜎 versus 𝑟 at additional values for the
parameters𝑁

𝑡
and𝑁

𝑏
. Here, it may be important to mention

that the chosen values for𝑁
𝑡
and𝑁

𝑏
as observed in [13] were

always exceeding one. However, Rana and Bhargava [28] and
Makinde and Aziz [29] as well as Aly et al. [30] practically
studied𝑁

𝑏
and𝑁

𝑡
in the range of 0.1–0.5.Hence, the variation

of these nondimensional parameters is considered here to
vary in wider ranges than those mentioned above. Figures
4–7 indicate that the behaviour of the temperature mainly
depends on whether 𝑁

𝑡
or 𝑁
𝑏
is less than one or when both

are less than one. For the purpose of illustration, a rapid
decrease in the temperature is observed in Figures 6-7 when
both 𝑁

𝑡
and 𝑁

𝑏
are in the range of 0.1–0.9, while distinct

behaviour is observed for the temperature in Figures 4-5
when either𝑁

𝑡
or𝑁
𝑏
exceeds one. However, the nanoparticle

concentration profile remains the same as shown in Figures
8-9.
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Figures 10, 11, 12, and 13 display comparisons between the
exact temperature solution given by (18) and the approximate
temperature solution obtained in [13] by (36). These figures
show that the deviation of the approximate solution (HPM)
from the exact one for the temperature decreases with
decreasing the values of both 𝑁

𝑡
and 𝑁

𝑏
. This conclusion

is also confirmed through Figures 14, 15, 16, and 17 for the
nanoparticle concentration.

As for the rest of the physical quantities such as the
pressure gradient and the pressure rise, one can use their
exact expressions to obtain several plots which facilitates
the physical discussion. Figures 18 to 20 are prepared to
see the effect of various parameters on the behavior of the
pressure gradient. It is observed from Figure 18 that for 𝑧 ∈

[0, 0.45] and 𝑧 ∈ [1, 1.5] the pressure gradient decreases
with increasing the amplitude ratio 𝜙, while 𝑑𝑝/𝑑𝑧 increases
with increasing 𝜙 in the other part of the physical domain.
Figure 19(a) shows that the pressure gradient is not affected
by the variation of the thermophoresis parameter in the
range 𝑁

𝑡
∈ [0.1, 1.3]. At higher range for 𝑁

𝑡
∈ [1.5, 4.5],

it is observed from Figure 19(b) that the pressure gradient
decreases with increasing 𝑁

𝑡
. Both figures show that the

maximum value in pressure gradient occurs at 𝑧 ≈ 0.7.
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The effect of the internal radius 𝑟
1
of the endoscope on the

pressure gradient is depicted in Figure 20which indicates that
the pressure gradient increases as 𝑟

1
increases.

The effects of various parameters on the pressure rise Δ𝑃

against volume flow rate 𝑄 are shown in Figures 21 to 23 for
various values of the amplitude ratio 𝜙, the thermophoresis
parameter 𝑁

𝑡
, and the radius ratio 𝑟

1
. It is observed from

Figures 21 to 23 that the pressure rise increases with the
increase in the amplitude ratio 𝜙 and the radius ratio 𝑟

1
,

while the pressure rise decreases with the increase in the
thermophoresis parameter 𝑁

𝑡
as shown in Figure 22(b).

Unfortunately, Figure 22(a) shows that the pressure rise is not
affected by the small variation of 𝑁

𝑡
and this behaviour is

different than the one obtained in Figure 2(a) [13]. Finally,
it is observed that the solutions derived from the homotopy
perturbation method in [13] can be considered accurate
when 𝑁

𝑡
and 𝑁

𝑏
take values in short range, less than 0.5,

as described in Figure 17. In order to increase the accuracy
of the solution derived from the homotopy perturbation
method, it is necessary to increase the number of terms in
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the series solution. So, it is important to take this conclusion
into account in any future work when using homotopy
perturbation method. About the number of terms required
to obtain accurate numerical solution, several approximate
solutions should be obtained till the same curve occurs.

5. Conclusion

In this paper, the system of partial differential equations
describing the peristaltic flow of a nanofluid with an endo-
scope has been solved exactly. The obtained exact solutions
have been used to study the effects of the thermophoresis
parameter 𝑁

𝑡
, the Brownian motion parameter 𝑁

𝑏
, and

other parameters on the temperature, the nanoparticle con-
centration profiles, the pressure gradient, and the pressure
rise. On comparing our exact results with those obtained in
[13], remarkable difference in the behaviour of the physical
quantities is detected. This may refer to the fact that the
approximate solutions obtained in [13] were not sufficient
to obtain the correct physical interpretations of the involved
phenomena. A final note on the current comparative study

is that when it is difficult to get the exact solutions of the
physical problem, we instead search for the approximate
solutions by using any of the series methods [31, 32], which
must be used very carefully in this case in order to achieve
the desirable accuracy.
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