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We extend Donsker’s theorem and the central limit theorem of classical Galton-Watson process to the Galton-Watson processes in
varying environment.

1. Introduction

There has been a lot of interesting works on Markov chains
in random environments, which is mainly concentrated in
branching processes in random environments and random
walks in random environments (see [1]).

The study of branching processes in random environ-
ments dates back to late 60s or early 70s in the last century
(see [2–5]). Our paper deals with a Galton-Watson branching
process in the varying environment (GWVE) which is a
special case of branching processes in random environments.
The main concern is the weak convergence for a GWVE,
which is an extension of Donsker’s theorem (see [6, 7]).

In the following context, {𝑋
𝑛𝑖
, 𝑛 ≥ 0, 𝑖 ≥ 1} is a double

sequence of independent and nonnegative integer valued
random variables, where for fixed 𝑛, {𝑋

𝑛𝑖
, 𝑖 ≥ 1} have the

same distribution {𝑝
𝑛𝑖
, 𝑖 = 0, 1, 2, . . .} with mean 𝜇

𝑛
> 0 and

variance 𝜎
2

𝑛
> 0.

Definition 1. Assume 𝑍
0
≡ 1 and for any 𝑛 ≥ 1, define

𝑍
𝑛+1

=

{{{

{{{

{

𝑍
𝑛

∑
𝑗=1

𝑋
𝑛𝑗
, if 𝑍

𝑛
̸= 0;

0, if 𝑍
𝑛
= 0,

(1)

then {𝑍
𝑛
, 𝑛 ≥ 0} is said to be a GWVE.

Define 𝑚
𝑛

= 𝐸(𝑍
𝑛
); it is well known that 𝑚

𝑛
= 𝜇
0

⋅

𝜇
1
, . . . , 𝜇

𝑛−1
and there exists a nonnegative random variable

𝑉 such that 𝑍
𝑛
/𝑚
𝑛

a.e.
󳨀󳨀→ 𝑉, as 𝑛 → +∞ (see [8]).

For any fixed 𝑟, let 𝜉
𝑛𝑗

:= 𝑋
(𝑗)

𝑛,𝑟
be the size of the 𝑟th

generation of GWVE starting with the 𝑗th particle at time 𝑛;
then {𝜉

𝑛𝑗
, 𝑗 ≥ 1} are i.i.d. with mean 𝑚

𝑛,𝑟
and variance 𝜎

2

𝑛,𝑟

(see (4) and (5)). For each 𝑛, define

𝑌
𝑛
(𝑡, 𝜔) =

1

𝜎
𝑛
√𝑍
𝑛

(

[𝑍
𝑛
𝑡]

∑
𝑗 =1

𝜉
𝑛𝑗

− 𝑚
𝑛,𝑟

[𝑍
𝑛
𝑡]) , 𝑡 ∈ [0, 1] ,

(2)

where [𝑥] is the largest integer that is less than 𝑥. Our
main result is a weak limit theorem for GWVE, which is an
extension of Donsker’s theorem.

Theorem 2. Suppose that 𝑚
𝑛

→ ∞ and 𝑃(𝑉 = 0) = 0; then
𝑌
𝑛

𝑑

󳨀→ 𝐵, where 𝐵 is the standard Brown motion on [0, 1].

Let 𝐷 be the space of functions defined on [0, 1] and
having discontinuities of at most the first kind. For any 𝛼 ∈

𝑅, define 𝐴
𝛼

= {𝑥 ∈ 𝐷 : 𝑥(1) ≤ 𝛼}; it turns out that
𝑊(𝜕𝐴

𝛼
) = 0, where 𝑊 is the Wiener measure on 𝐷. Note

that 𝑍
𝑛+𝑟

= ∑
𝑍
𝑛

𝑗=1
𝜉
𝑛𝑗
; by Theorem 2 one has the following.
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Corollary 3 (CLT). Suppose that 𝑚
𝑛

→ ∞ and 𝑃(𝑉 = 0) =

0; then for any fixed 𝑟,

1

√𝑍
𝑛
𝜎2
𝑛,𝑟

(𝑍
𝑛+𝑟

− 𝑚
𝑛,𝑟

𝑍
𝑛
)
𝑑

󳨀→ 𝑁(0, 1) , (3)

where 𝑁(0, 1) is the standard normal random variable.

So,Theorem 2 is an extension of the central limit theorem
for classical Galton-Watson process (see [9, 10]).

2. Auxiliary Results

Let us begin with a result of 𝜉
𝑛𝑗
.

Proposition 4. {𝜉
𝑛𝑗
, 𝑗 ≥ 1} are independent and identically

distributed with

𝑚
𝑛,𝑟

= 𝐸 (𝜉
𝑛𝑗
) = 𝜇
𝑛
𝜇
𝑛+1

⋅ ⋅ ⋅ 𝜇
𝑛+𝑟−1

, (4)

𝜎
2

𝑛,𝑟
= Var (𝜉

𝑛𝑗
) = (𝑚

𝑛,𝑟
)
2

𝑛+𝑟−1

∑
𝑗=𝑛

𝜎
2

𝑗

𝜇2
𝑗
𝑚
𝑛,𝑗−𝑛

. (5)

Proof. According to the definition of definition of GWVE,
{𝜉
𝑛𝑗
, 𝑗 ≥ 1} are independent and identically distributed.
Denote the generating functions of 𝑋

𝑛1
and 𝜉
𝑛,1

by 𝜙
𝑛
(𝑠)

and 𝑔
𝑛,𝑟

(𝑠), respectively; then it can be proved that

𝑔
𝑛,𝑟

(𝑠) = 𝜙
𝑛
(𝜙
𝑛+1

(⋅ ⋅ ⋅ 𝜙
𝑛+𝑟−1

(𝑠) ⋅ ⋅ ⋅ )) . (6)

Therefore,

𝑚
𝑛,𝑟

= 𝐸 (𝜉
𝑛1

) = 𝑔
󸀠

𝑛,𝑟
(1) =

𝑛+𝑟−1

∏
𝑗=𝑛

𝜙
󸀠

𝑗
(1) =

𝑛+𝑟−1

∏
𝑗=𝑛

𝜇
𝑗
. (7)

So (4) is proved. In addition, the first and second derivatives
of 𝑔
𝑛,𝑟

(𝑠) are as follows:

𝑔
󸀠

𝑛,𝑟
(𝑠) = 𝑔

󸀠

𝑛,𝑟−1
(𝜙
𝑛+𝑟−1

(𝑠)) 𝜙
󸀠

𝑛+𝑟−1
(𝑠) ,

𝑔
󸀠󸀠

𝑛,𝑟
(𝑠) = 𝑔

󸀠󸀠

𝑛,𝑟−1
(𝜙
𝑛+𝑟−1

(𝑠)) (𝜙
󸀠

𝑛+𝑟−1
(𝑠))
2

+ 𝑔
󸀠

𝑛,𝑟−1
(𝜙
𝑛+𝑟−1

(𝑠)) 𝜙
󸀠󸀠

𝑛+𝑟−1
(𝑠) .

(8)

By (8) one has

Var (𝑋(1)
𝑛,𝑟

)

= (Var (𝑋(1)
𝑛,𝑟−1

) − 𝑚
𝑛,𝑟−1

+ 𝑚
2

𝑛,𝑟−1
) 𝜇
2

𝑛+𝑟−1

+ 𝑚
𝑛,𝑟−1

(𝜎
2

𝑛+𝑟−1
− 𝜇
𝑛+𝑟−1

+ 𝜇
2

𝑛+𝑟−1
) + 𝑚

𝑛,𝑟
− 𝑚
2

𝑛,𝑟

= Var (𝑋(1)
𝑛,𝑟−1

) 𝜇
2

𝑛+𝑟−1
+ 𝜎
2

𝑛+𝑟−1
𝑚
𝑛,𝑟−1

.

(9)

Thus,

Var (𝑋(1)
𝑛,𝑟

)

𝑚2
𝑛,𝑟

=
Var (𝑋(1)

𝑛,𝑟−1
)

𝑚2
𝑛,𝑟−1

+
𝜎
2

𝑛+𝑟−1

𝜇2
𝑛+𝑟−1

𝑚
𝑛,𝑟−1

. (10)

Since 𝑚
𝑛,1

= 𝜇
𝑛
, 𝜎2
𝑛,1

= 𝜎
2

𝑛
, 𝜉
𝑛1

= 𝑋
(1)

𝑛,𝑟
, we complete the proof

of (5) by (10).

For any 𝑛, define

𝜂
𝑛𝑗

=
𝜉
𝑛𝑗

− 𝑚
𝑛,𝑟

𝜎
𝑛,𝑟

,

𝑋
𝑛
(𝑡, 𝜔) =

1

√𝑚
𝑛

[𝑚
𝑛
𝑡]

∑
𝑗=1

𝜂
𝑛𝑗
, 𝑡 ∈ [0, 1] .

(11)

The proof ofTheorem 2 depends on the following propo-
sition.

Proposition 5. 𝑋
𝑛

𝑑

󳨀→ 𝐵, where 𝐵 is standard Brown motion
on [0, 1].

Proof. It lose no generality if we assume that {𝑚
𝑛
} are integers.

The proof is divided into two steps. We first show that the
finite-dimensional distributions of the 𝑋

𝑛
are convergent to

those of 𝐵. Consider first a single time point 𝑠. Wemust prove
that 𝑋

𝑛
(𝑠, ⋅)
𝑑

󳨀→ 𝑊
𝑠
.

Since {𝜂
𝑛𝑗
, 𝑗 ≥ 1} have the same distribution, we can set

𝜑
𝑛
(𝑡) = 𝐸 (exp (𝑖𝑡𝜂

𝑛𝑗
)) . (12)

Note 𝐸(𝜂
𝑛𝑗
) ≡ 0 and Var(𝜂

𝑛𝑗
) ≡ 1, according to (3.8) of [11]

P101; one obtains

𝜑
𝑛
(𝑠) = 𝜑

𝑛
(0) + 𝜑

󸀠

𝑛
(0) 𝑠 +

𝜑
󸀠󸀠

𝑛
(0)

2!
𝑠
2

+ 𝑜 (𝑠
2

)

= 1 −
𝑠
2

2
+ 𝑜(

𝑠
2

2
) , (𝑠 󳨀→ 0) .

(13)

For any fixed 𝑡 and 𝑘 large enough,

𝜑
𝑛
(

𝑡

√𝑘
) = 1 −

𝑡
2

2𝑘
+ 𝑜 (

1

2𝑘
) . (14)

Since 𝑚
𝑛

→ ∞, for 𝑛 large enough, we have

𝐸 exp (𝑖𝑡𝑋
𝑛
(𝑠)) = 𝐸(exp(𝑖𝑡

1

√𝑚
𝑛

[𝑚
𝑛
𝑠]

∑
𝑗=1

𝜂
𝑛𝑗
))

= [1 −
𝑡
2

2𝑚
𝑛

+ 𝑜(
1

2𝑚
𝑛

)]

[𝑚
𝑛
𝑠]

󳨀→ exp{−
𝑠𝑡
2

2
} as 𝑛 󳨀→ ∞.

(15)

This means that the characteristic function of 𝑋
𝑛
(𝑠) is

convergent to that of 𝐵
𝑠
; by Lévy continuous theorem we

complete the proof of single point case.
Consider now two time points 𝑠 and 𝑡 with 𝑠 < 𝑡; we are

to prove

(𝑋
𝑛
(𝑠) , 𝑋

𝑛
(𝑡))
𝑑

󳨀→ (𝐵
𝑠
, 𝐵
𝑡
) . (16)

Note that

(𝑋
𝑛
(𝑠) , 𝑋

𝑛
(𝑡)) = (𝑋

𝑛
(𝑠) , 𝑋

𝑛
(𝑡) − 𝑋

𝑛
(𝑠)) (

1 1

0 1
) . (17)
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By Corollary 1 to Theorem 5.1 in [12], it is only needed to
prove

(𝑋
𝑛
(𝑠) , 𝑋

𝑛
(𝑡) − 𝑋

𝑛
(𝑠))
𝑑

󳨀→ (𝐵
𝑠
, 𝐵
𝑡
− 𝐵
𝑠
) . (18)

Since the components on the left are independent by the
independence of the {𝜉

𝑛𝑖
, 𝑖 ≥ 1}. Equation (16) follows from

the case of one time point andTheorem 3.2 of [12].
A set of three or more time points can be treated in

the same way, and hence the finite-dimensional distributions
converge properly.

In the next step, we will show that {𝑋
𝑛
} is tight. According

toTheorem 15.6 of [12], it is enough to establish the inequality

Δ
𝑛
:= 𝐸 {

󵄨󵄨󵄨󵄨𝑋𝑛 (𝑡) − 𝑋
𝑛
(𝑡
1
)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨𝑋𝑛 (𝑡2) − 𝑋

𝑛
(𝑡)

󵄨󵄨󵄨󵄨
2

}

≤ 4(𝑡
2
− 𝑡
1
)
2

, ∀ 0 ≤ 𝑡
1
≤ 𝑡 ≤ 𝑡

2
≤ 1.

(19)

Since {𝜂
𝑛𝑗
, 𝑗 ≥ 1} are i.i.d. with 𝐸(𝜂

𝑛𝑗
) ≡ 0 and Var(𝜂

𝑛𝑗
) ≡ 1;

by the definition of 𝑋
𝑛
, we have

Δ
𝑛
= 𝐸

{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

√𝑚
𝑛

[𝑚
𝑛
𝑡]

∑
𝑗=[𝑚
𝑛
𝑡
1
+1]

𝜂
𝑛𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

√𝑚
𝑛

[𝑚
𝑛
𝑡
2
]

∑
𝑗=[𝑚
𝑛
𝑡+1]

𝜂
𝑛𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}

}

}

=
([𝑚
𝑛
𝑡] − [𝑚

𝑛
𝑡
1
]) ⋅ ([𝑚

𝑛
𝑡
2
] − [𝑚

𝑛
𝑡])

𝑚2
𝑛

≤
([𝑚
𝑛
𝑡
2
] − [𝑚

𝑛
𝑡
1
])
2

𝑚2
𝑛

.

(20)

If 𝑡
2
− 𝑡
1
≥ 1/𝑚

𝑛
, then there exist 𝑘

1
< 𝑘
2
such that

𝑡
1
∈ [

𝑘
1

𝑚
𝑛

,
𝑘
1
+ 1

𝑚
𝑛

) , 𝑡
2
∈ [

𝑘
2

𝑚
𝑛

,
𝑘
2
+ 1

𝑚
𝑛

) . (21)

Hence,

[𝑚
𝑛
𝑡
2
] − [𝑚

𝑛
𝑡
1
]

𝑚
𝑛

=
𝑘
2
− 𝑘
1

𝑚
𝑛

=
𝑘
2
− (𝑘
1
+ 1)

𝑚
𝑛

+
1

𝑚
𝑛

≤ (𝑡
2
− 𝑡
1
) + (𝑡
2
− 𝑡
1
) .

(22)

So (19) is truewhen 𝑡
2
−𝑡
1
≥ 1/𝑚

𝑛
. Next, if 𝑡

2
−𝑡
1
< 1/𝑚

𝑛
, then

either 𝑡
1
and 𝑡 lie in the same subinterval [𝑘/𝑚

𝑛
, (𝑘 + 1)/𝑚

𝑛
)

or else 𝑡 and 𝑡
2
do. In either of these casesΔ

𝑛
= 0 by (20).This

establishes (19) in general and proves the proposition.

3. The Proof of Theorem 2

We are now ready to proveTheorem 2.

Proof. Note that for each 𝑛,

𝑌
𝑛
(𝑡, 𝜔) =

1

𝜎
𝑛,𝑟

√𝑍
𝑛

(

[𝑍
𝑛
𝑡]

∑
𝑗=1

𝜉
𝑛𝑗

− 𝜇
𝑛
[𝑍
𝑛
𝑡])

=
1

√𝑍
𝑛

[𝑍
𝑛
𝑡]

∑
𝑗=1

𝜂
𝑛𝑗
, 𝑡 ∈ [0, 1] .

(23)

We assume at first that 𝑉 is bounded, so that there exists
a constant 𝑘 such that 0 < 𝑉 ≤ 𝑘 with probability 1. We may
adjust the 𝑚

𝑛
so that they are integer and so that 𝑘 < 1.

If we define

󵄨󵄨󵄨󵄨Φ𝑛 (𝑡) − 𝑡𝑉
󵄨󵄨󵄨󵄨 =

{

{

{

𝑡
𝑍
𝑛

𝑚
𝑛

, if
𝑍
𝑛

𝑚
𝑛

≤ 1;

𝑡𝑉 otherwise.
(24)

Since

󵄨󵄨󵄨󵄨Φ𝑛 (𝑡) − 𝑡𝑉
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍
𝑛

𝑚
𝑛

− 𝑉
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

a.e.
󳨀󳨀→ 0, (25)

Φ
𝑛
converges in probability in the sense of the Skorohod

topology to the elements Φ(𝑡) = 𝑉𝑡 of 𝐷
0
, where 𝐷

0
consists

of those elements 𝜑 of 𝐷 that are nondecreasing and satisfy
0 ≤ 𝜑(𝑡) ≤ 1 for all 𝑡. Define

𝑋
󸀠

𝑛
(𝑡, 𝜔) =

{{

{{

{

1

√𝑚
𝑛

∑
𝑙
𝑛
≤𝑖≤𝑚

𝑛
𝑡

𝜂
𝑛𝑖

(𝜔) , if 𝑡 ≥
𝑙
𝑛

𝑚
𝑛

;

0, otherwise,
(26)

where {𝑙
𝑛
, 𝑛 ≥ 0} is a sequence of nonnegative integers going

to infinity slowly enough that 𝑙
𝑛
/√𝑚
𝑛

→ 0 as 𝑛 → +∞.
Define 𝛿

𝑛
= sup

𝑡
|𝑋
𝑛
(𝑡) − 𝑋

󸀠

𝑛
(𝑡)|; then

𝛿
𝑛
≤

1

𝛿√𝑚
𝑛

𝑙
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝜂𝑛𝑖
󵄨󵄨󵄨󵄨 . (27)

By Minkowski’s inequality and the fact that 𝑙
𝑛
/√𝑚
𝑛

→ 0,
one has

𝐸
1/2

{𝛿
2

𝑛
} ≤

1

𝛿√𝑚
𝑛

𝑙
𝑛

∑
𝑖=1

𝐸
1/2

{𝜂
2

𝑛𝑖
} =

𝑙
𝑛

𝛿√𝑚
𝑛

󳨀→ 0. (28)

So that by Chebyshev’s inequality 𝛿
𝑛

𝑃

󳨀→ 0. By Proposition 4,
𝑋
𝑛

𝑑

󳨀→ 𝐵. Since 𝑑(𝑋
𝑛
, 𝑋
󸀠

𝑛
) ≤ 𝛿

𝑛
, where 𝑑 is the metric

in 𝐷 which generates the Skorohod topology, it follows by
Theorem 4.1 of [12] that 𝑋󸀠

𝑛

𝑑

󳨀→ 𝐵. So, if 𝐴 is a 𝑊-continuity
set in 𝐷, we have

𝑃 {𝑋
󸀠

𝑛
∈ 𝐴} 󳨀→ 𝑊(𝐴) . (29)

Let B
0
be the field of cylinders sets; that is, B

0
consists

of the form

{𝜔; (𝜉
𝑖𝑗
(𝑤) , 0 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘) ∈ 𝐻} (30)

with 𝐻 ∈ B(𝑅
𝑚𝑘

), the Borel 𝜎-field of 𝑅𝑚𝑘.
If 𝐸 ∈ B

0
, since 𝑙

𝑛
→ ∞ and {𝑋

𝑛𝑖
, 𝑛 ≥ 0, 𝑖 ≥ 1} are

independent, then for large 𝑛,

𝑃 ({𝑋
󸀠

𝑛
∈ 𝐴} ∩ 𝐸) = 𝑃 {𝑋

󸀠

𝑛
∈ 𝐴}𝑃 (𝐸) . (31)

It follows by (29) that

𝑃 ({𝑋
󸀠

𝑛
∈ 𝐴} ∩ 𝐸) 󳨀→ 𝑊(𝐴)𝑃 (𝐸) . (32)
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Since (Φ
𝑛
, 𝑍
𝑛
/𝑚
𝑛
)
𝑃

󳨀→ (Φ,𝑉) in the sense of the product
topology on 𝐷

0
× 𝑅 and every 𝑋

󸀠

𝑛
is 𝜎(B

0
) measurable, it

follows byTheorem 4.5 of [12] that

(𝑋
󸀠

𝑛
, Φ
𝑛
,
𝑍
𝑛

𝑚
𝑛

)
𝑑

󳨀→ (𝐵,Φ
0
, 𝑉
0
) (33)

is relative to the product topology in𝐷×𝐷
0
×𝑅
1, where𝑉

0
is

independent of 𝐵 and has the same distribution as𝑉,Φ
0
(𝑡) =

𝑉
0
𝑡. By the fact that 𝛿

𝑛

𝑃

󳨀→ 0,

(𝑋
𝑛
, Φ
𝑛
,
𝑍
𝑛

𝑚
𝑛

)
𝑑

󳨀→ (𝐵,Φ
0
, 𝑉
0
) . (34)

Now themapping that carries the point (𝑥, 𝜙, 𝛼) to𝛼
−1/2

(𝑥∘𝜙)

is continuous at that point 𝑥 ∈ 𝐶, 𝜙 ∈ 𝐶 ∩ 𝐷
0
and 𝛼 > 0. By

Corollary 1 to Theorem 5.1 of [12],

(
𝑍
𝑛

𝑚
𝑛

)

−1/2

(𝑋
𝑛
∘ Φ
𝑛
)
𝑑

󳨀→ (𝑉
0
)
−1/2

(𝐵 ∘ Φ
0
) . (35)

Since𝑉
0
and 𝐵 are independent, (𝑉

0
)
−1/2

(𝐵∘Φ
0
) has the same

distribution as 𝐵. Moreover (𝑍
𝑛
/𝑚
𝑛
)
−1/2

(𝑋
𝑛
∘ Φ
𝑛
) coincides

with 𝑌
𝑛
if 𝑍
𝑛
/𝑚
𝑛
< 1, the probability of which goes to 1 since

𝑘 < 1. Thus 𝑌
𝑛

𝑑

󳨀→ 𝐵 if 𝑉 is bounded.
Suppose 𝑉 is not bounded. For 𝑢 > 0, define

𝑉
𝑢
= {

𝑉, if 𝑉 ≤ 𝑢;

𝑢, if 𝑉 > 𝑢,

𝑍
𝑢𝑛

= {
𝑍
𝑛
, if 𝑉 ≤ 𝑢;

𝑚
𝑛
𝑢, if 𝑉 > 𝑢.

(36)

Then for each 𝑢,𝑍
𝑢𝑛

/𝑚
𝑛

𝑃

󳨀→ 𝑉
𝑢
and by the case already treated

if

𝑌
𝑢𝑛

(𝑡, 𝜔) =
1

𝜎
𝑛,𝑟

√𝑍
𝑢𝑛

(

[𝑍
𝑢𝑛
𝑡]

∑
𝑗=1

𝜉
𝑛𝑗

− 𝜇
𝑛
[𝑍
𝑢𝑛

𝑡]) (37)

then 𝑌
𝑢𝑛

𝑑

󳨀→ 𝐵. Since 𝑃(𝑌
𝑢𝑛

̸= 𝑌
𝑛
) ≤ 𝑃(𝑉 > 𝑢), 𝑌

𝑛

𝑑

󳨀→ 𝐵

followsTheorem 4.2 of [12].
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