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This work is concerned with the abstract Cauchy problems that depend on parameters. The goal is to study continuity in the
parameters of the classical solutions of the Cauchy problems. The situation considered in this work is when the operator of the
Cauchy problem is not densely defined. By applying integrated semigroup theory and the results on continuity in the parameters
of C
0
-semigroup and integrated semigroup, we obtain the results on the existence and continuity in parameters of the classical

solutions of the Cauchy problems. The application of the obtained abstract results in a parabolic partial differential equation is
discussed in the last section of the paper.

1. Introduction

Many dynamical systems [1–4] such as differential equations,
integrodifferential equations, and functional differential
equations involve parameters in their equations and/or their
boundary conditions. For instance, consider the parabolic
partial differential equation

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑘
1
𝑢
𝑥
+ 𝑘
2
𝑢, for 𝑡 ≥ 0, 𝑘

1
, 𝑘
2
∈ 𝑅,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , for 𝑥 ∈ [0, 1] ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

(1)

where 𝑘
1
and 𝑘
2
are considered as parameters.

When making the change in variable V = 𝑒(𝑘1/2)𝑥𝑢, we
have that V satisfies the equation

V
𝑡
= V
𝑥𝑥
+ (𝑘
2
−

𝑘
2

1

4

) V, for 𝑡 ≥ 0, 𝑘
1
, 𝑘
2
∈ 𝑅,

V (𝑥, 0) = V
0
(𝑥) , for 𝑥 ∈ [0, 1] ,

V (0, 𝑡) = V (1, 𝑡) = 0,

(2)

where V
0
(𝑥) = 𝑒

(𝑘
1
/2)𝑥
𝑢
0
(𝑥).

Then, the abstract Cauchy problem formulated from (2)
is

𝑑V (𝑡)
𝑑𝑡

= 𝐴 (𝜀) V (𝑡) , V (0) = V0 (3)

on𝑋 = (𝐶[0, 1], ‖ ⋅ ‖
∞
), 𝑡 ≥ 0, where

𝐴 (𝜀) =

𝑑
2

𝑑𝑥
2
+ 𝐵 (𝜀) , where 𝐵 (𝜀) = (𝑘

2
−

𝑘
2

1

4

) ,

𝜀 = (𝑘
1
, 𝑘
2
) ∈ 𝑅
2
,

𝐷 (𝐴 (𝜀)) = {V ∈ 𝐶2 [0, 1] | V (0) = V (1) = 0} .

(4)

Equation (3) shows that the operator is dependent on the
parameter 𝜀. Thus, it is natural to investigate the effects of
the parameter on the classical solutions of Cauchy problems.
One of the natural questions is to determine the conditions
for continuity with respect to the parameter of the classical
solution of the abstract Cauchy problem

𝑢
󸀠
(𝑡) = 𝐴 (𝜀) 𝑢 (𝑡) + 𝑓 (𝑡) , for 𝑡 ≥ 0,

𝑢 (0) = 𝑢0
,

(5)

where 𝜀 is the parameter.
According to the semigroup theories, 𝐶

0
-semigroup (i.e,

strongly continuous semigroup) and integrated semigroup
play key roles in determining parameter properties of clas-
sical or integral solutions of Cauchy problems that depend
on parameters. Thus, a lot of work has focused on studying
continuity in parameters of 𝐶

0
-semigroup and/or integrated

semigroup. Lizama [5], Nicaise [6], and Busenberg and Wu
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[7] have established approximation theorems for integrated
semigroups concerning a one-dimensional parameter. These
results may be interpreted to imply continuity in parameters
of integrated semigroups.Grimmer and/orHe ([2–4], and the
reference therein) havemade a systematic study on continuity
in multiparameters of 𝐶

0
-semigroup and integrated semi-

group. In this paper, we will focus on determining conditions
that can directly obtain the continuity in parameter of the
classical solution of Cauchy problem (5). It turns out that
the conditions in our theorems are directly imposed on the
operator of Cauchy problem (5), which are very convenient
and easy to verify. As it will be illustrated in the application
of the obtained results in (1), the condition for continuity
in parameter is naturally possessed by (1). And a number of
equations studied in ([1–4], and the reference therein) also
naturally satisfy the condition for continuity with respect to
parameter.

Furthermore, (3) indicates that the operator 𝐴(𝜀) is not
densely defined.However, the theory of integrated semigroup
is a powerful tool in dealing with nondensely defined opera-
tors. In Section 2, wewill provide background information on
integrated semigroup and state some existing theorems that
will be needed for proving our main theorems. In Section 3,
we apply the continuity results with respect to parameters
of 𝐶
0
-semigroup and integrated semigroup we derive the

analogous result for the classical solution of Cauchy problem.
We will begin with discussing the homogeneous Cauchy
problem

𝑢
󸀠
(𝑡) = 𝐴 (𝜀) 𝑢 (𝑡) , for 𝑡 ≥ 0,

𝑢 (0) = 𝑢
0
.

(6)

Applying the continuity results of 𝐶
0
-semigroup and inte-

grated semigroup theory, we prove that the unique classical
solution of (6) is continuous with respect to parameter.
Using the obtained result for (6), we will study the nonho-
mogeneous Cauchy problem (5) and present a theorem for
continuity with respect to parameters of the classical solution
of the nonhomogeneous Cauchy problem (5). In the last
section, we will discuss the application of obtained abstract
results in (1). As one will see, the obtained abstract result is
very easy to apply.

2. Preliminaries

We begin with providing the background information about
the integrated semigroup and state some results that will be
used in the following sections.

Let (𝑋, ‖ ⋅ ‖
𝑋
) be a Banach space and let 𝑃 be an open

subset of a finite-dimensional normed linear space P with
norm | ⋅ |.

Definition 1 (see [8]). {𝑆(𝑡)}
𝑡≥0
⊂B(𝑋) is called an integrated

semigroup if

(a) 𝑆(0) = 0,

(b) 𝑆(𝑡)𝑆(𝜏)𝑥 = ∫𝑡
0
(𝑆(𝜏 + 𝑟) − 𝑆(𝑟))𝑥 𝑑𝑟, for every 𝑥 ∈ 𝑋,

(c) for any 𝑥 ∈ 𝑋, 𝑆(𝑡)𝑥 : [0,∞) is continuous.

Definition 2 (see [8]). An integrated semigroup 𝑆 is called
nondegenerate if 𝑆(𝑡)𝑥 = 0 for all 𝑡 ≥ 0 implies that 𝑥 = 0.

Definition 3 (see [8]). The generator 𝐴 of a nondegenerate
integrated semigroup 𝑆 is defined by letting 𝑥, 𝑦 ∈ 𝑋, then
𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 = 𝑦 if

𝑆 (⋅) 𝑥 ∈ 𝐶
1
([0,∞) ,𝑋) , 𝑆

󸀠
(𝑡) 𝑥 − 𝑥 = 𝑆 (𝑡) 𝑦, 𝑡 ≥ 0.

(7)

Definition 4 (see [8]). An integrated semigroup 𝑆 is said to be
of type (𝑀, 𝜔), where𝑀 ≥ 1, iff for 𝑡, 𝜏 ≥ 0,

‖𝑆 (𝑡 + 𝑟) − 𝑆 (𝑡)‖ ≤ 𝑀∫

𝑡+𝑟

𝑡

𝑒
𝜔𝑠
𝑑𝑠. (8)

Theorem 5 (see [8]). Define 𝑋
0
= 𝐷(𝐴). Define the part 𝐴

0

of 𝐴 as

𝐴
0
= 𝐴 𝑜𝑛𝐷 (𝐴

0
) = {𝑢 ∈ 𝐷 (𝐴) : 𝐴𝑢 ∈ 𝑋

0
} . (9)

Assume that (𝜆𝐼 − 𝐴)−1 ∈B(𝑋) for all 𝜆 > 0 is large and that

lim sup
𝜆→∞

𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴)

−1󵄩󵄩
󵄩
󵄩
󵄩
< +∞. (10)

Then𝐷(𝐴
0
) is dense in𝑋

0
, and if𝐴

0
generates a𝐶

0
-semigroup

on𝑋
0
, then𝐴 generates a nondegenerate integrated semigroup

of type (𝑀, 𝜔) on𝑋.
In the sequel we use “𝐴 is a Hille-Yosida operator” to mean

that there exist 𝑀 ≥ 1 and 𝜔 ∈ 𝑅 such that 𝜆 > 𝜔 implies
𝜆 ∈ 𝜌(𝐴) (the resolvent set of A) and

󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴)

−𝑛󵄩
󵄩
󵄩
󵄩
≤

𝑀

(𝜆 − 𝜔)
𝑛
, for 𝜆 > 𝜔, 𝑛 = 1, 2, . . . . (11)

Note that the boundedness of the resolvent (𝜆𝐼 − 𝐴)−1 implies
that 𝐴 is closed.

Theorem 6 (see [9]). The following two statements are equiv-
alent:

(a) 𝐴 is the generator of a nondegenerate semigroup 𝑆 of
type (𝑀, 𝜔),

(b) 𝐴 is a Hille-Yosida operator.

Theorem 7 (see [8]). If 𝐴 is a Hille-Yosida operator, then the
part 𝐴

0
of 𝐴 in 𝑋

0
generates a 𝐶

0
-semigroup 𝑇(𝑡) on 𝑋

0

satisfying

‖𝑇 (𝑡)‖ ≤ 𝑀𝑒
𝜔𝑡
. (12)

Furthermore, 𝐴 generates a nondegenerate integrated semi-
group 𝑆(𝑠) on𝑋 with

‖𝑆 (𝑡 + 𝑟) − 𝑆 (𝑡)‖ ≤ 𝑀∫

𝑡+𝑟

𝑡

𝑒
𝜔𝑠
𝑑𝑠. (13)
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𝑆(𝑡) is related to 𝑇(𝑡) by

𝑆 (𝑡) 𝑥 = lim
𝜆→∞

∫

𝑡

0

𝑇 (𝑠) 𝜆(𝜆 − 𝐴)
−1
𝑥𝑑𝑠 (14)

for 𝑡 ≥ 0, 𝑥 ∈ 𝑋. Moreover,𝑋
0
= 𝐶
1 and 𝑇(𝑡) = 𝑆󸀠(𝑡).

Consider the nonhomogeneous Cauchy problem

𝑢
󸀠
(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , for 𝑡 ≥ 0,

𝑢 (0) = 𝑢
0
,

(15)

where 𝑓 : [0,∞) → 𝑋 is a continuous function.

Theorem 8 (see [10]). Let 𝐴 be the generator of a nondegen-
erate integrated semigroup of type (𝑀, 𝜔); 𝑓 is continuously
differentiable, 𝑥 ∈ 𝐷(𝐴), 𝐴𝑥 + 𝑓(0) ∈ 𝑋

0
= 𝐷(𝐴). Then

𝑢 (𝑡) = 𝑆
󸀠
(𝑡) 𝑥 +

𝑑

𝑑𝑡

∫

𝑡

0

𝑆 (𝑡 − 𝜏) 𝑓 (𝜏) 𝑑𝜏 (16)

is the unique classical solution to (15); that is 𝑢 is the only
continuously differentiable function with values in 𝐷(𝐴) such
that (15) is satisfied.

3. Continuity in Parameter of Classical
Solutions of Cauchy Problems

We first study the homogeneous abstract Cauchy problem

𝑢
󸀠
(𝑡) = 𝐴 (𝜀) 𝑢 (𝑡) , for 𝑡 ≥ 0,

𝑢 (0) = 𝑢
0
,

(17)

where 𝜀 is the parameter in 𝑃. For each 𝜀 ∈ 𝑃, the operator
𝐴(𝜀) is a closed linear and a nondensely defined operator on
the Banach space𝑋.

For each 𝜀 ∈ 𝑃, define the part 𝐴
0
(𝜀) of 𝐴(𝜀) as

𝐴
0
(𝜀) = 𝐴 (𝜀)

on 𝐷(𝐴
0 (
𝜀))

= {𝑢 ∈ 𝐷 (𝐴 (𝜀)) : 𝐴 (𝜀) 𝑢 ∈ 𝑋
0
(𝜀) = 𝐷 (𝐴 (𝜀))} .

(18)

The following proposition is a direct result from Theorems
5–7.

Proposition 9. Assume that

(∗) for each 𝜀 ∈ 𝑃, there exist 𝜔 = 𝜔(𝜀) ∈ 𝑅 and 𝑀 =
𝑀(𝜀) ≥ 1 such that 𝜆 > 𝜔 implies 𝜆 ∈ 𝜌(𝐴(𝜀)) and

󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴 (𝜀))

−𝑛󵄩
󵄩
󵄩
󵄩
≤

𝑀

(𝜆 − 𝜔)
𝑛
, for 𝜆 > 𝜔, 𝑛 ∈ 𝑁. (19)

Then, for 𝜀 ∈ 𝑃

(a) the part 𝐴
0
(𝜀) of 𝐴(𝜀) in 𝑋

0
(𝜀) = 𝐷(𝐴(𝜀)) generates a

𝐶
0
-semigroup 𝑇(𝑡, 𝜀) on 𝑋

0
(𝜀) satisfying

‖𝑇 (𝑡, 𝜀)‖ ≤ 𝑀𝑒
𝜔𝑡
, (20)

(b) 𝐴(𝜀) generates a nondegenerate integrated semigroup
𝑆(𝑡, 𝜀) on𝑋 satisfying

‖𝑆 (𝑡 + 𝑟, 𝜀) 𝑥 − 𝑆 (𝑡, 𝜀) 𝑥‖ ≤ (𝑀∫

𝑡+𝑟

𝑡

𝑒
𝜔𝜏
𝑑𝜏) ‖𝑥‖ ,

for 𝑡 ≥ 0, 𝑥 ∈ 𝑋,
(21)

(c) 𝑋
0
(𝜀) = 𝐶

1
= {𝑥 ∈ 𝑋 | 𝑆(𝑡, 𝜀)𝑥 is a continuously

differentiable X-value function for 𝑡 ≥ 0},
(d) 𝑇(𝑡, 𝜀) = 𝑆󸀠(𝑡, 𝜀) on𝑋

0
(𝜀).

The following theorem is about the continuity in param-
eters of 𝐶

0
-semigroup that is obtained in [4]. We will use this

theorem to prove a theorem about the Cauchy problem (17).

Theorem 10 (see [4]). Assume that

(1) for each 𝜀 ∈ 𝑃, 𝐴(𝜀) is densely defined; that is
𝐷(𝐴(𝜀)) = 𝑋,

(2) 𝐷(𝐴(𝜀)) = 𝐷, for all 𝜀 ∈ 𝑃,
(3) there are constants𝑀 ≥ 1 and 𝜔 ∈ 𝑅 such that

󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴 (𝜀))

−𝑛󵄩
󵄩
󵄩
󵄩
≤

𝑀

(𝜆 − 𝜔)
𝑛

for 𝜆 > 𝜔, 𝑛 ∈ 𝑁, and all 𝜀 ∈ 𝑃,
(22)

(4) for each 𝑥 ∈ 𝐷, 𝐴(𝜀)𝑥 is continuous in 𝜀 ∈ 𝑃.

Then (𝜆𝐼−𝐴(𝜀))−1𝑥 is continuous in 𝜀 for each 𝑥 ∈ 𝑋.Thus, the
𝐶
0
-semigroup 𝑇(𝑡, 𝜀) generated by 𝐴(𝜀) is strongly continuous

in 𝜀 ∈ 𝑃, and the continuity is uniform on bounded 𝑡-intervals.
In particular, for any 𝜀 ∈ 𝑃, ℎ ∈ P with 𝜀 + ℎ ∈ 𝑃, and for any
𝑡
0
∈ [0,∞),

sup
0≤𝑡≤𝑡

0

‖𝑇 (𝑡, 𝜀 + ℎ) 𝑥 − 𝑇 (𝑡, 𝜀) 𝑥‖ = ∘ (1)

as |ℎ| 󳨀→ 0, for each𝑥 ∈ 𝑋.
(23)

Now we present the theorem about (17).

Theorem 11. Assume that (2)–(4) of Theorem 10 hold.
Then 𝑢(𝑡, 𝜀) = 𝑆󸀠(𝑡, 𝜀)𝑢

0
and 𝑡 ≥ 0 is the unique classical

solution of (17). Further, 𝑢(𝑡, 𝜀) is continuous with respect to 𝜀.
In particular, for any 𝜀 ∈ 𝑃, ℎ ∈ P with 𝜀 + ℎ ∈ 𝑃, and for any
𝑡
0
∈ [0,∞),

sup
0≤𝑡≤𝑡

0

‖𝑢 (𝑡, 𝜀 + ℎ) − 𝑢 (𝑡, 𝜀)‖ = ∘ (1) as |ℎ| 󳨀→ 0. (24)

Proof. Because (3) of Theorem 10 holds, Proposition 9(b)
indicates that 𝐴(𝜀) generates a nondegenerate integrated
semigroup 𝑆(𝑡, 𝜀) on𝑋. Thus, it follows fromTheorem 8 that

𝑢 (𝑡, 𝜀) = 𝑆
󸀠
(𝑡, 𝜀) 𝑢

0
, for 𝑢

0
∈ 𝐷 (25)

is the unique classical solution of (17).
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From Proposition 9(d), we have 𝑆󸀠(𝑡, 𝜀) = 𝑇(𝑡, 𝜀) on 𝑋
0
,

where𝑇(𝑡, 𝜀) is the𝐶
0
-semigroup that is generated by the part

𝐴
0
(𝜀) of 𝐴(𝜀). Hence, we have

𝑢 (𝑡, 𝜀) = 𝑆
󸀠
(𝑡, 𝜀) 𝑢

0
= 𝑇 (𝑡, 𝜀) 𝑢

0
, for 𝑢

0
∈ 𝐷. (26)

Because, for each 𝜀 ∈ 𝑃, 𝐴
0
(𝜀) is densely defined, that is

𝐷(𝐴
0
(𝜀)) = 𝑋

0
(𝜀), Condition (1) of Theorem 10 is satisfied.

Also (2)–(4) indicate that all other conditions of Theorem 10
are satisfied. Now, by applying Theorem 10, we have that the
classical solution𝑢(𝑡, 𝜀) = 𝑇(𝑡, 𝜀)𝑢

0
is continuouswith respect

to parameter 𝜀.

Next, we will discuss the nonhomogeneous abstract
Cauchy problem

𝑢
󸀠
(𝑡) = 𝐴 (𝜀) 𝑢 (𝑡) + 𝑓 (𝑡) , for 𝑡 ≥ 0,

𝑢 (0) = 𝑢
0
,

(27)

where 𝜀 is the parameter in 𝑃. For each 𝜀 ∈ 𝑃, the operator
𝐴(𝜀) is a closed, linear, and nondensely defined operator on
the Banach space 𝑋. 𝑓 : [0,∞) → 𝑋 is continuously
differentiable, and 𝑓(0) ∈ 𝑋

0
(𝜀) = 𝐷(𝐴(𝜀)), for 𝜀 ∈ 𝑃.

In order to prove our main theorem for (27), we first state
a result obtained in [4].

Theorem 12 (see [4]). Assuming that (2)–(4) of Theorem 10
are satisfied, then the integrated semigroup 𝑆(𝑡, 𝜀) generated
by 𝐴(𝜀) is strongly continuous in 𝜀 ∈ 𝑃, and the continuity is
uniform on bounded 𝑡-intervals. In particular, for any 𝜀 ∈ 𝑃,
ℎ ∈ P with 𝜀 + ℎ ∈ 𝑃, and for any 𝑡

0
∈ [0,∞),

sup
0≤𝑡≤𝑡

0

‖𝑆 (𝑡, 𝜀 + ℎ) 𝑥 − 𝑆 (𝑡, 𝜀) 𝑥‖ = ∘ (1)

as |ℎ| 󳨀→ 0, for each 𝑥 ∈ 𝑋.
(28)

Now we present the main theorem about (27).

Theorem 13. Assume that (2)–(4) of Theorem 10 hold.
Then the unique classical solution 𝑢(𝑡, 𝜀) of (27) is contin-

uous with respect to 𝜀. In particular, for any 𝜀 ∈ 𝑃, ℎ ∈ P with
𝜀 + ℎ ∈ 𝑃, and for any 𝑡

0
∈ [0,∞),

sup
0≤𝑡≤𝑡

0

‖𝑢 (𝑡, 𝜀 + ℎ) − 𝑢 (𝑡, 𝜀)‖ = ∘ (1) as |ℎ| 󳨀→ 0. (29)

Proof. From (2) ofTheorem 10 and Proposition 9(b), we have
that 𝐴(𝜀) generates a nondegenerate integrated semigroup
𝑆(𝑡, 𝜀) on𝑋. It follows fromTheorem 8 that

𝑢 (𝑡, 𝜀) = 𝑆
󸀠
(𝑡, 𝜀) 𝑢

0
+

𝑑

𝑑𝑡

∫

𝑡

0

𝑆 (𝑡 − 𝜏, 𝜀) 𝑓 (𝜏) 𝑑𝜏, 𝑢
0
∈ 𝐷

(30)

is the unique classical solution to (27).
Note that, from Proposition 9(d), we have 𝑆󸀠(𝑡, 𝜀) =

𝑇(𝑡, 𝜀) on 𝑋
0
, where 𝑇(𝑡, 𝜀) is the 𝐶

0
-semigroup that is

generated by the part 𝐴
0
(𝜀) of 𝐴(𝜀). Since 𝑢

0
∈ 𝐷 ⊂ 𝑋

0
,

𝑆
󸀠
(𝑡, 𝜀)𝑢

0
= 𝑇(𝑡, 𝜀)𝑢

0
. Using the similar argument as that in

the proof ofTheorem 11, we see that𝑇(𝑡, 𝜀)𝑢
0
is continuous in

𝜀. Thus, 𝑆󸀠(𝑡, 𝜀)𝑢
0
(= 𝑇(𝑡, 𝜀)𝑢

0
) is continuous in 𝜀.

Now we just need to show that (𝑑/𝑑𝑡) ∫𝑡
0
𝑆(𝑡 − 𝜏, 𝜀)𝑓(𝜏)𝑑𝜏

is continuous in 𝜀.
It is obvious that 𝑆(𝑡, 𝜀)𝑓(𝑡) is continuous in 𝑡. Thus, we

have

𝑑

𝑑𝑡

∫

𝑡

0

𝑆 (𝑡 − 𝜏, 𝜀) 𝑓 (𝜏) 𝑑𝜏

=

𝑑

𝑑𝑡

∫

𝑡

0

𝑆 (𝑠, 𝜀) 𝑓 (𝑡 − 𝑠) 𝑑𝑠

= 𝑆 (𝑡, 𝜀) 𝑓 (0) − 𝑆 (0) 𝑓 (−𝑠) = 𝑆 (𝑡, 𝜀) 𝑓 (0)

(since 𝑆 (0) = 0) .

(31)

It is sufficient to show that 𝑆(𝑡, 𝜀)𝑓(0) is continuous in 𝜀.
Note that Conditions (2)–(4) of Theorem 10 indicate that all
assumptions of Theorem 12 are satisfied. Since 𝑓(0) ∈ 𝑋, it
follows fromTheorem 12 that 𝑆(𝑡, 𝜀)𝑓(0) is continuous in 𝜀.

In summary, we have 𝑢(𝑡, 𝜀) = 𝑆󸀠(𝑡, 𝜀)𝑢
0
+ (𝑑/𝑑𝑡) ∫

𝑡

0
𝑆(𝑡 −

𝜏, 𝜀)𝑓(𝜏)𝑑𝜏 is continuous with respect to parameter 𝜀.

4. Application to a Parabolic Partial
Differential Equation

Consider the parabolic partial differential equation with
boundary conditions

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑘
1
𝑢
𝑥
+ 𝑘
2
𝑢, for 𝑡 ≥ 0, 𝑘

1
, 𝑘
2
∈ 𝑅,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , for 𝑥 ∈ [0, 1] ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0.

(32)

In this section, we will apply the abstract results obtained
in Section 3 to show that the classical solution of (32) is
continuous with respect to parameters 𝑘

1
and 𝑘
2
.

We start with making the change in variable V = 𝑒(𝑘1/2)𝑥𝑢.
Then V satisfies the equation

V
𝑡
= V
𝑥𝑥
+ (𝑘
2
−

𝑘
2

1

4

) V, for 𝑡 ≥ 0, 𝑘
1
, 𝑘
2
∈ 𝑅,

V (𝑥, 0) = V
0
(𝑥) , for 𝑥 ∈ [0, 1] ,

V (0, 𝑡) = V (1, 𝑡) = 0,

(33)

where V
0
(𝑥) = 𝑒

(𝑘
1
/2)𝑥
𝑢
0
(𝑥).

The abstract Cauchy problem formulated from (33) is

𝑑V (𝑡)
𝑑𝑡

= 𝐴 (𝜀) V (𝑡) , V (0) = V0 (34)

on𝑋 = (𝐶[0, 1], ‖ ⋅ ‖
∞
), 𝑡 ≥ 0, where

𝐴 (𝜀) =

𝑑
2

𝑑𝑥
2
+ 𝐵 (𝜀) , where 𝐵 (𝜀) = (𝑘

2
−

𝑘
2

1

4

) ,

𝜀 = (𝑘
1
, 𝑘
2
) ∈ 𝑅
2
,

𝐷 (𝐴 (𝜀)) = {V ∈ 𝐶2 [0, 1] | V (0) = V (1) = 0} .

(35)
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Firstly, for each 𝜀, the operator𝐴(𝜀) is not densely defined.
Consider

𝐷 (𝐴 (𝜀)) = 𝑋
0 (
𝜀) = {V ∈ 𝐶 [0, 1] | V (0) = V (1) = 0} ⊂ 𝑋.

(36)

However, the domains of 𝐴(𝜀) are the same for all 𝜀; that is
𝐷(𝐴(𝜀)) = 𝐷.

Secondly, it is easy to see that 𝐴 = 𝑑2/𝑑𝑥2 with domain
𝐷(𝐴(𝜀)) is a Hille-Yosida operator. In particular, for 𝜆 > 0,
consider the equation

𝜆𝑢 − 𝐴𝑢 = V. (37)

Then ‖𝑢‖
∞
= |𝑢(𝑥

0
)|, where 0 < 𝑥

0
< 1. We may assume that

𝑢(𝑥
0
) > 0. Then 𝑢󸀠󸀠(𝑥

0
) ≤ 0 and

𝜆𝑢 (𝑥
0
) ≤ 𝜆𝑢 (𝑥

0
) − 𝑢
󸀠󸀠
(𝑥
0
) = V (𝑥

0
) ≤ ‖V‖∞. (38)

Thus,

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴)

−1V
󵄩
󵄩
󵄩
󵄩
󵄩
≤

1

𝜆

‖V‖∞. (39)

Furthermore, since 𝐵(𝜀) is bounded, then by the “boun-
ded perturbations theorem” (see [11, page 76]), we have that
𝐴(𝜀) = 𝐴 + 𝐵(𝜀) is a Hille-Yosida operator on 𝑋 for each
𝜀 ∈ 𝑅

2. Now taking 𝑃 = {(𝑘
1
, 𝑘
2
) | |𝑘

1
| ≤ 𝑘

1𝑜
, |𝑘
2
| ≤ 𝑘

2𝑜
}

for some 𝑘
1𝑜
, 𝑘
2𝑜
> 0, we have that 𝐴(𝜀) satisfies the uniform

Hille-Yosida condition (∗) of Proposition 9.
Thirdly, it is obvious that𝐴(𝜀)𝑢 = (𝑑2/𝑑𝑥2)𝑢+(𝑘

2
−𝑘
2

1
/4)𝑢

is continuous with respect to 𝜀 for each 𝑢 ∈ 𝐷.
Therefore, from Theorem 11, it follows that the classical

solution V(𝑥, 𝑡, 𝜀) is continuous with respect to 𝜀. Clearly, the
classical solution 𝑢(𝑥, 𝑡, 𝜀) = 𝑒−(𝑘1/2)𝑥V(𝑥, 𝑡, 𝜀) of (32) is also
continuous with respect to 𝜀.
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