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The solvability of the inverse boundary problemwith an unknown coefficient dependent on time for the third order pseudoparabolic
equation with non-self-adjoint boundary conditions is investigated in the present paper. Here we have introduced the definition
of the classical solution of the considered inverse boundary value problem, which is reduced to the system of integral equations by
the Fourier method. At first, the existence and uniqueness of the solution of the obtaining system of integral equations is proved by
the method of contraction mappings; then the existence and uniqueness of the classical solution of the stated problem is proved.

1. Introduction

Contemporary problems of natural sciences lead to the
need for statement and investigation of the qualitative new
problems. As an example we can consider a class of nonlocal
problems for the partial differential equations. Researching
such kind of problems aroused both theoretical interest
and practical necessity and they are still studied actively
today.The problems with both nonlocal boundary and initial
conditions had previously been studied by many scientists.
Classes of nonlocal problemswith integral terms in boundary
conditions are of great importance in the theory of heat
conductivity, thermoelasticity, chemical engineering, under-
groundwater flow, population dynamics, and plasma physics.

The questions of solvability of the nonlocal problemswith
integral terms in boundary conditions had been studied by
Samarskii [1]. Auxiliary information for investigation of the
solution of such kind of problems can be found in [2–7].
Inverse problemswith integral condition of override for pseu-
doparabolic type of equations had been studied in [8–10].

Existence and uniqueness of the solution of an inverse
boundary value problem for the third order pseudoparabolic
equation with the integral condition of override is proved in
the present paper.

2. Statement of the Problem and Reducing
It to Equivalent

Problem 1. Let us consider inverse boundary problem for the
equation

𝑢
𝑡
(𝑥, 𝑡) − 𝑏𝑢

𝑡𝑥𝑥
(𝑥, 𝑡) − 𝑎𝑢

𝑥𝑥
(𝑥, 𝑡) = 𝑝 (𝑡) 𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) ,

(1)

in the domain𝐷
𝑇
= {(𝑥, 𝑡) : 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇}with initial

condition

𝑢 (𝑥, 0) = 𝜑 (𝑥) (0 ⩽ 𝑥 ⩽ 1) , (2)

periodical condition

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) (0 ≤ 𝑡 ≤ 𝑇) , (3)

Neumann boundary condition

𝑢
𝑥
(1, 𝑡) = 0 (0 ⩽ 𝑡 ⩽ 𝑇) , (4)

and the additional condition

𝑢 (

1

2

, 𝑡) + ∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥 = ℎ (𝑡) (0 ≤ 𝑡 ≤ 𝑇) , (5)
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where 𝑎 > 0, 𝑏 > 0 are the given numbers, 𝑓(𝑥, 𝑡), 𝜑(𝑥), ℎ(𝑡)
are the given functions, and 𝑢(𝑥, 𝑡) and 𝑝(𝑡) are the unknown
functions.

Definition 2. The classical solution of problems (1)–(5) is the
pair {𝑢(𝑥, 𝑡), 𝑝(𝑡)} of the functions 𝑢(𝑥, 𝑡) and 𝑝(𝑡) possessing
the following properties:

(a) 𝑢(𝑥, 𝑡) is continuous in 𝐷
𝑇

together with all its
derivatives contained in (1);

(b) 𝑝(𝑡) is continuous on [0, 𝑇];

(c) all the conditions of (1)–(5) are satisfied in the
ordinary sense.

The following lemma takes place.

Lemma 3. Suppose that 𝑎 > 0, 𝑏 > 0, 𝜑(𝑥) ∈ 𝐶 [0, 1],
𝑓(𝑥, 𝑡) ∈ 𝐶(𝐷

𝑇
), ℎ(𝑡) ∈ 𝐶

1
[0, 𝑇], ℎ(𝑡) ̸= 0 (0 ≤ 𝑡 ≤ 𝑇),

and 𝜑(1/2) + ∫

1

0
𝜑(𝑥)𝑑𝑥 = ℎ(0).

Then the problem of finding the classical solution of problem
(1)–(5) is equivalent to the problem of defining the functions
𝑢(𝑥, 𝑡) and 𝑝(𝑡), possessing the properties (a) and (b) of
definition of the classical solution of problem (1)–(5), from
relations (1)–(4), and

ℎ

(𝑡) + 𝑏 (𝑢

𝑡𝑥
(0, 𝑡) + 𝑢

𝑡𝑥𝑥
(

1

2

, 𝑡))

+ 𝑎 (𝑢
𝑥
(0, 𝑡) + 𝑢

𝑥𝑥
(

1

2

, 𝑡))

= 𝑝 (𝑡) ℎ (𝑡) + 𝑓(

1

2

, 𝑡) + ∫

1

0

𝑓 (𝑥, 𝑡) 𝑑𝑥

(0 ≤ 𝑡 ≤ 𝑇) .

(6)

Proof . Let {𝑢(𝑥, 𝑡), 𝑝(𝑡)} be a classical solution of problem
(1)–(5). Differentiating (5) and taking into account that ℎ(𝑡) ∈
𝐶
1
[0, 𝑇] we will get

𝑑

𝑑𝑡

(𝑢 (

1

2

, 𝑡) + ∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥) = ℎ

(𝑡) (0 ≤ 𝑡 ≤ 𝑇) . (7)

From (1) we have

𝑑

𝑑𝑡

(𝑢 (

1

2

, 𝑡) + ∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥)

−𝑏 (𝑢
𝑡𝑥
(1, 𝑡) − 𝑢

𝑡𝑥
(0, 𝑡) + 𝑢

𝑡𝑥𝑥
(

1

2

, 𝑡))

−𝑎 (𝑢
𝑥
(1, 𝑡) − 𝑢

𝑥
(0, 𝑡) + 𝑢

𝑥𝑥
(

1

2

, 𝑡))

= 𝑓(

1

2

, 𝑡) + ∫

1

0

𝑓 (𝑥, 𝑡) 𝑑𝑥 + 𝑝 (𝑡)

× (𝑢 (

1

2

, 𝑡) + ∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥) (0 ≤ 𝑡 ≤ 𝑇) .

(8)

Taking into account conditions (5) and (7) in (8), the
fulfillment of condition (6) takes place.

Now suppose that {𝑢(𝑥, 𝑡), 𝑝(𝑡)} is a solution of problem
(1)–(4), (6). Then from (6) and (8), taking into account (4),
we find

𝑑

𝑑𝑡

(𝑢 (

1

2

, 𝑡) + ∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥 − ℎ (𝑡))

−𝑝 (𝑡) (𝑢 (

1

2

, 𝑡) + ∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥 − ℎ (𝑡)) = 0

(0 ≤ 𝑡 ≤ 𝑇) .

(9)

Further, by (2) and 𝜑(1/2) + ∫

1

0
𝜑(𝑥)𝑑𝑥 = ℎ(0), we obtain

𝑢 (

1

2

, 0) + ∫

1

0

𝑢 (𝑥, 0) 𝑑𝑥 − ℎ (0)

= 𝜑 (

1

2

) + ∫

1

0

𝜑 (𝑥) 𝑑𝑥 − ℎ (0) = 0.

(10)

Since problems (9) and (10) has only a trivial solution,
then 𝑢(1/2, 𝑡) + ∫

1

0
𝑢(𝑥, 𝑡)𝑑𝑥 − ℎ(𝑡) = 0 (0 ≤ 𝑡 ≤ 𝑇); that

is, the condition (5) is fulfilled.

3. Auxiliary Facts

Now, in order to investigate problem (1)–(4), (6) we introduce
known facts. Consider the following spectral problem:

𝑋

(𝑥) + 𝜇𝑋 (𝑥) = 0 (0 ≤ 𝑥 ≤ 1) ,

𝑋 (0) = 𝑋 (1) , 𝑋

(1) = 0,

(11)

where 𝜇 is a parameter. Boundary value problem (11) is not
self-adjoint [3]. The problem

𝑌

(𝑥) + 𝜇𝑌 (𝑥) = 0 (0 ≤ 𝑥 ≤ 1) ,

𝑌 (0) = 0, 𝑌

(0) = 𝑌


(1)

(12)

will be a conjugated problem.
Let us denote the system of eigen and adjoint functions of

problem (11) in the following way:

𝑋
0
(𝑥) = 2, 𝑋

2𝑘−1
= 4 cos 𝜆

𝑘
𝑥,

𝑋
2𝑘

(𝑥) = 4 (1 − 𝑥) sin 𝜆
𝑘
𝑥 (𝑘 = 1, 2, . . .) ,

(13)

where

𝜆
0
= 0,

𝜆
2𝑘−1

= 𝜆
2𝑘

= 2𝜋𝑘 (𝑘 = 1, 2, . . .) .

(14)

The system of function (13) forms a Riesz basis in the space
𝐿
2
(0, 1).
Let us choose the system of eigen and adjoint functions of

the conjugated problem as follows:

𝑌
0
(𝑥) = 𝑥,

𝑌
2𝑘−1

= 𝑥 cos 𝜆
𝑘
𝑥, 𝑌

2𝑘
(𝑥) = 4 sin 𝜆

𝑘
𝑥

(𝑘 = 1, 2, . . .) .

(15)
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From this it follows that for systems (13) and (15) the
biorthogonality condition in 𝐿

2
(0, 1)

(𝑋
𝑖
, 𝑌
𝑗
) = ∫

1

0

𝑋
𝑖
(𝑥) 𝑌
𝑗
(𝑥) 𝑑𝑥 = 𝜎

𝑖𝑗
(16)

is satisfied. Here, 𝜎
𝑖𝑗
is the Kronecker symbol.

Then the arbitrary function 𝑔(𝑥) ∈ 𝐿
2
(0, 1) is expanded

in biorthogonal series:

𝑔 (𝑥) =

∞

∑

𝑘=0

𝑔
𝑘
𝑋
𝑘
(𝑥) (17)

and the following estimate is true:

1

2





𝑔(𝑥)






2

𝐿
2(0,1)

≤

∞

∑

𝑘=0

𝑔
2

𝑘
≤




𝑔(𝑥)






2

𝐿
2
(0,1)

, (18)

where

𝑔
𝑘
= ∫

1

0

𝑔 (𝑥) 𝑌
𝑘
(𝑥) 𝑑𝑥. (19)

Under the assumptions

𝑔 (𝑥) ∈ 𝐶
2𝑖−1

[0, 1] , 𝑔
(2𝑖)

(𝑥) ∈ 𝐿
2
(0, 1) ,

𝑔
(2𝑠)

(0) = 𝑔
(2𝑠)

(1) , 𝑔
(2𝑠+1)

(1) = 0

(𝑠 = 0, 1, . . . , 𝑖 − 1, 𝑖 ≥ 1) ,

(20)

the following estimates hold:

∞

∑

𝑘=1

(𝜆
2𝑖

𝑘
𝑔
2𝑘
)

2

≤

1

2






𝑔
(2𝑖)

(𝑥)







2

𝐿
2
(0,1)

, (21)

∞

∑

𝑘=1

(𝜆
2𝑖

𝑘
𝑔
2𝑘−1

)

2

≤

1

2






𝑥𝑔
(2𝑖)

(𝑥) + 2𝑖𝑔
(2𝑖−1)

(𝑥)







2

𝐿
2
(0,1)

. (22)

Further, under the assumptions

𝑔 (𝑥) ∈ 𝐶 [0, 1] , 𝑔

(𝑥) ∈ 𝐿

2
(0, 1) , 𝑔 (0) = 𝑔 (1) ,

(23)

the validity of the estimates is proved:

∞

∑

𝑘=1

(𝜆
𝑘
𝑔
2𝑘
)
2

≤

1

2






𝑔

(𝑥)







2

𝐿
2
(0,1)

,

∞

∑

𝑘=1

(𝜆
𝑘
𝑔
2𝑘−1

)
2

≤

1

2






𝑥𝑔

(𝑥) + 𝑔(𝑥)







2

𝐿
2
(0,1)

.

(24)

Similarly, under the assumptions

𝑔 (𝑥) ∈ 𝐶
2𝑖
[0, 1] , 𝑔

(2𝑖+1)
(𝑥) ∈ 𝐿

2
(0, 1) ,

𝑔
(2𝑠)

(0) = 𝑔
(2𝑠)

(1) , 𝑔
(2𝑠−1)

(1) = 0

(𝑠 = 0, 1, . . . , 𝑖, 𝑖 ≥ 1) ,

(25)

the estimations hold:
∞

∑

𝑘=1

(𝜆
2𝑖+1

𝑘
𝑔
2𝑘
)

2

≤

1

2






𝑔
(2𝑖+1)

(𝑥)







2

𝐿
2
(0,1)

, (26)

∞

∑

𝑘=1

(𝜆
2𝑖+1

𝑘
𝑔
2𝑘−1

)

2

≤

1

2






𝑥𝑔
(2𝑖+1)

(𝑥) + (2𝑖 + 1)𝑔
(2𝑖)

(𝑥)







2

𝐿
2
(0,1)

.

(27)

In order to investigate problem (1)–(4), (6), consider the
following spaces.

(1) Denote by 𝐵
3

2,𝑇
[11] the set of all the functions 𝑢(𝑥, 𝑡)

of the form

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝑢
𝑘
(𝑡) 𝑋
𝑘
(𝑥) , (28)

considered in 𝐷
𝑇
, where each of the functions

𝑢
𝑘
(𝑡) (𝑘 = 0, 1, . . .) is continuous on [0, 𝑇] and

𝐽
𝑇
(𝑢) ≡





𝑢
0
(𝑡)




𝐶[0,𝑇]

+(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

+(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘−1

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

< +∞.

(29)

The norm in this set is determined as follows:

‖𝑢(𝑥, 𝑡)‖
𝐵
3

2,𝑇

= 𝐽
𝑇
(𝑢) . (30)

(2) Denote by 𝐸
3

𝑇
the space 𝐵

3

2,𝑇
× 𝐶[0, 𝑇] of the vector

functions 𝑧(𝑥, 𝑡) = {𝑢(𝑥, 𝑡), 𝑝(𝑡)} with the norm

‖𝑧(𝑥, 𝑡)‖
𝐸
3

𝑇

= ‖𝑢(𝑥, 𝑡)‖
𝐵
3

2,𝑇

+




𝑝(𝑡)




𝐶[0,𝑇]

. (31)

It is known that 𝐵3
2,𝑇

and 𝐸
3

𝑇
are Banach spaces.

4. Investigation of the Existence and
Uniqueness of the Classical Solution of
the Inverse Boundary Value Problem

Since the system (13) is a Riesz basis in 𝐿
2
(0, 1) and system

(13), (15) is a system of biorthogonal functions in 𝐿
2
(0, 1), it

is obvious that for each solution {𝑢(𝑥, 𝑡), 𝑝(𝑡)} of problem (1)–
(4), (6) its first component 𝑢(𝑥, 𝑡) has the following form:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝑢
𝑘
(𝑡) 𝑋
𝑘
(𝑥) , (32)

where

𝑢
𝑘
(𝑡) = ∫

1

0

𝑢 (𝑥, 𝑡) 𝑌
𝑘
(𝑥) 𝑑𝑥 (𝑘 = 0, 1, . . .) . (33)
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Moreover, 𝑋
𝑘
(𝑥) and 𝑌

𝑘
(𝑥) are defined by relations (13) and

(15), respectively.
Then applying the formal scheme of the Fourier method,

from (1) and (2), we have

𝑢


0
(𝑡) = 𝐹

0
(𝑡; 𝑢, 𝑝) (0 ≤ 𝑡 ≤ 𝑇) , (34)

(1 + 𝑏𝜆
2

𝑘
) 𝑢


2𝑘
(𝑡) + 𝑎𝜆

2

𝑘
𝑢
2𝑘

(𝑡) = 𝐹
2𝑘

(𝑡; 𝑢, 𝑝)

(0 ≤ 𝑡 ≤ 𝑇; 𝑘 = 1, 2, . . .) ,

(35)

(1 + 𝑏𝜆
2

𝑘
) 𝑢


2𝑘−1
(𝑡) + 𝑎𝜆

2

𝑘
𝑢
2𝑘−1

(𝑡)

= 𝐹
2𝑘−1

(𝑡; 𝑢, 𝑝) − 2𝜆
𝑘
(𝑏𝑢


2𝑘
(𝑡) + 𝑎𝑢

2𝑘
(𝑡))

(0 ≤ 𝑡 ≤ 𝑇; 𝑘 = 1, 2, . . .) ,

(36)

𝑢
𝑘
(0) = 𝜑

𝑘
(𝑘 = 0, 1, . . .) , (37)

where

𝐹
𝑘
(𝑡; 𝑢, 𝑝) = 𝑓

𝑘
(𝑡) + 𝑝 (𝑡) 𝑢

𝑘
(𝑡) ,

𝑓
𝑘
(𝑡) = ∫

1

0

𝑓 (𝑥, 𝑡) 𝑌
𝑘
(𝑥) 𝑑𝑥,

𝜑
𝑘
= ∫

1

0

𝜑 (𝑥) 𝑌
𝑘
(𝑥) 𝑑𝑥 (𝑘 = 0, 1, . . .) .

(38)

Solving the problem (34)–(37), we find the following:

𝑢
0
(𝑡) = 𝜑

0
+ ∫

𝑡

0

𝐹
0
(𝜏; 𝑢, 𝑝) 𝑑𝜏 (0 ⩽ 𝑡 ⩽ 𝑇) , (39)

𝑢
2𝑘

(𝑡) = 𝜑
2𝑘
𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

+

1

1 + 𝑏𝜆
2

𝑘

× ∫

𝑡

0

𝐹
2𝑘

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏

(0 ⩽ 𝑡 ⩽ 𝑇; 𝑘 = 1, 2, . . .) ,

(40)

𝑢
2𝑘−1

(𝑡) = 𝜑
2𝑘−1

𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

+

1

1 + 𝑏𝜆
2

𝑘

×∫

𝑡

0

𝐹
2𝑘−1

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏

−

2𝑎𝜆
𝑘
𝑡

(1 + 𝑏𝜆
2

𝑘
)
2
𝜑
2𝑘
𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

−

2𝑎𝜆
𝑘

(1 + 𝑏𝜆
2

𝑘
)
3

×∫

𝑡

0

(∫

𝜏

0

𝐹
2𝑘

(𝜉; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜉)

𝑑𝜉)𝑑𝜏

−

2𝑏𝜆
𝑘

(1 + 𝑏𝜆
2

𝑘
)
2

×∫

𝑡

0

𝐹
2𝑘

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏

(0 ≤ 𝑡 ≤ 𝑇; 𝑘 = 1, 2, . . .) .

(41)

After substituting expressions 𝑢
𝑘
(𝑡) (𝑘 = 0, 1, . . .) into

(32) for determining the component 𝑢(𝑥, 𝑡) of the solution
{𝑢(𝑥, 𝑡), 𝑝(𝑡)} of problem (1)–(4), (6) we get

𝑢 (𝑥, 𝑡)

= (𝜑
0
+ ∫

𝑡

0

𝐹
0
(𝜏; 𝑢, 𝑝) 𝑑𝜏)𝑋

0
(𝑥)

+

∞

∑

𝑘=1

(𝜑
2𝑘
𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

+

1

1 + 𝑏𝜆
2

𝑘

∫

𝑡

0

𝐹
2𝑘

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏)

× 𝑋
2𝑘

(𝑥)

+

∞

∑

𝑘=1

(𝜑
2𝑘−1

𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

+

1

1 + 𝑏𝜆
2

𝑘

× ∫

𝑡

0

𝐹
2𝑘−1

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏

−

2𝑎𝜆
𝑘
𝑡

(1 + 𝑏𝜆
2

𝑘
)
2
𝜑
2𝑘
𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

−

2𝑎𝜆
𝑘

(1 + 𝑏𝜆
2

𝑘
)
3

×∫

𝑡

0

(∫

𝜏

0

𝐹
2𝑘

(𝜉; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜉)

𝑑𝜉)𝑑𝜏

−

2𝑏𝜆
𝑘

(1 + 𝑏𝜆
2

𝑘
)
2

× ∫

𝑡

0

𝐹
2𝑘

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏)

× 𝑋
2𝑘−1(𝑥)

.

(42)

Now, taking into account (32), from (6), we get

𝑝 (𝑡)

= ℎ
−1

(𝑡) {ℎ

(𝑡) − 𝑓(

1

2

, 𝑡) − ∫

1

0

𝑓 (𝑥, 𝑡) 𝑑𝑥

+4

∞

∑

𝑘=1

((−1)
𝑘
𝜆
2

𝑘
+ 𝜆
𝑘
) (𝑏𝑢


2𝑘
(𝑡) + 𝑎𝑢

2𝑘
(𝑡))} .

(43)

Further, from (35), taking into account (40), we have

𝑏𝑢


2𝑘
(𝑡) + 𝑎𝑢

2𝑘
(𝑡)

=

𝑎

1 + 𝑏𝜆
2

𝑘

𝑢
2𝑘

(𝑡) +

𝑏

1 + 𝑏𝜆
2

𝑘

𝐹
2𝑘

(𝑡; 𝑢, 𝑝)

=

𝑎

1 + 𝑏𝜆
2

𝑘

(𝜑
2𝑘
𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

+

1

1 + 𝑏𝜆
2

𝑘
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×∫

𝑡

0

𝐹
2𝑘

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏)

+

𝑏

1 + 𝑏𝜆
2

𝑘

𝐹
2𝑘

(𝑡; 𝑢, 𝑝) .

(44)

To find the second component 𝑝(𝑡) of the solution
{𝑢(𝑥, 𝑡), 𝑝(𝑡)} of problem (1)–(4), (6) after substituting
expression (44) into (43), we get

𝑝 (𝑡) = ℎ
−1

(𝑡) {ℎ

(𝑡) − 𝑓(

1

2

, 𝑡) − ∫

1

0

𝑓 (𝑥, 𝑡) 𝑑𝑥

+ 4

∞

∑

𝑘=1

(−1)
𝑘
𝜆
2

𝑘
+ 𝜆
𝑘

1 + 𝑏𝜆
2

𝑘

× [𝑎(𝜑
2𝑘
𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))𝑡

+

1

1 + 𝑏𝜆
2

𝑘

×∫

𝑡

0

𝐹
2𝑘

(𝜏; 𝑢, 𝑝) 𝑒
−(𝑎𝜆
2

𝑘
/(1+𝑏𝜆

2

𝑘
))(𝑡−𝜏)

𝑑𝜏)

+𝑏𝐹
2𝑘

(𝑡; 𝑢, 𝑝) ]} .

(45)

Thus, the solution of problem (1)–(4), (6) is reduced to the
solution of system (42) and (45) with respect to the unknown
functions 𝑢(𝑥, 𝑡) and 𝑝(𝑡).

Now, proceeding from the definition of the classical
solution of problem (1)–(4), (6) the following lemma is
proved.

Lemma 4. If {𝑢(𝑥, 𝑡), 𝑝(𝑡)} is any solution of problem (1)–(4),
(6), then the function

𝑢
𝑘
(𝑡) = ∫

1

0

𝑢 (𝑥, 𝑡) 𝑌
𝑘
(𝑥) 𝑑𝑥 (𝑘 = 0, 1, . . .) (46)

satisfies the system (39)-(41) in [0, 𝑇].

Remark 5. From Lemma 4 it follows that, to prove the
uniqueness of the solution of problem (1)–(4), (6), it suffices
to prove the uniqueness of the solution of system (42), (45).

Now, in the space 𝐸3
𝑇
consider the operator

Φ(𝑢, 𝑝) = {Φ
1
(𝑢, 𝑝) , Φ

2
(𝑢, 𝑝)} , (47)

where

Φ
1
(𝑢, 𝑝) = �̃� (𝑥, 𝑡) ≡ �̃�

0
(𝑡) 𝑋
0
(𝑥)

+

∞

∑

𝑘=1

�̃�
2𝑘

(𝑡) 𝑋
2𝑘

(𝑥)

+

∞

∑

𝑘=1

�̃�
2𝑘−1

(𝑡) 𝑋
2𝑘−1

(𝑥) ,

Φ
2
(𝑢, 𝑝) = 𝑝 (𝑡) ,

(48)

and �̃�
0
(𝑡), �̃�
2𝑘
(𝑡), �̃�
2𝑘−1

(𝑡), and 𝑝(𝑡) equal the right sides of
(39), (40), (41), and (45), respectively.

It is easy to see that

𝑏𝜆
2

𝑘
< 1 + 𝑏𝜆

2

𝑘
< (1 + 𝑏) 𝜆

2

𝑘
,

1

(1 + 𝑏) 𝜆
2

𝑘

<

1

1 + 𝑏𝜆
2

𝑘

<

1

𝑏𝜆
2

𝑘

.

(49)

By means of simple transformations we find





�̃�
0
(𝑡)




𝐶[0,𝑇]

<




𝜑
0





+ √𝑇(∫

𝑇

0





𝑓
0
(𝜏)






2

𝑑𝜏)

1/2

+ 𝑇




𝑝(𝑡)




𝐶[0,𝑇]





𝑢
0
(𝑡)




𝐶[0,𝑇]

,

(

∞

∑

𝑘=1

(𝜆
3

𝑘





�̃�
2𝑘

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

≤ √3(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝜑
2𝑘





)

2

)

1/2

+

√3𝑇

𝑏

(∫

𝑇

0

∞

∑

𝑘=1

(𝜆
𝑘





𝑓
2𝑘

(𝜏)




)
2

𝑑𝜏)

1/2

+

√3

𝑏

𝑇




𝑝 (𝑡)




𝐶[0,𝑇]

× (

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘
(𝑡)




𝐶[0,𝑇]

)

2

)

1/2

,

(

∞

∑

𝑘=1

(𝜆
3

𝑘





�̃�
2𝑘−1

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

≤ 2√2(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝜑
2𝑘−1





)

2

)

1/2

+

2√2𝑇

𝑏

(∫

𝑇

0

∞

∑

𝑘=1

(𝜆
𝑘





𝑓
2𝑘−1

(𝜏)




)
2

𝑑𝜏)

1/2

+

2√2

𝑏

𝑇




𝑝 (𝑡)




𝐶[0,𝑇]

× (

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘−1

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

+

4√2𝑎

𝑏
2

𝑇(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝜑
2𝑘





)

2

)

1/2

+ 4√2(

1

𝑏

+

𝑎

𝑏
3
𝑇)√𝑇

× (∫

𝑇

0

∞

∑

𝑘=1

(𝜆
𝑘





𝑓
2𝑘

(𝜏)




)
2

𝑑𝜏)

1/2
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+ 4√2(

1

𝑏

+

𝑎

𝑏
3
𝑇)𝑇





𝑝 (𝑡)




𝐶[0,𝑇]

× (

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘−1

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

,





𝑝 (𝑡)




𝐶[0,𝑇]

≤






ℎ
−1

(𝑡)





𝐶[0,𝑇]

×

{

{

{











ℎ

(𝑡) − 𝑓 (

1

2

, 𝑡) − ∫

1

0

𝑓 (𝑥, 𝑡) 𝑑𝑥










𝐶[0,𝑇]

+

4

√6𝑏

[

[

𝑎(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝜑
2𝑘





)

2

)

1/2

+

𝑎

𝑏

√𝑇(∫

𝑇

0

∞

∑

𝑘=1

(𝜆
𝑘





𝑓
2𝑘

(𝜏)




)
2

𝑑𝜏)

1/2

+ 𝑏(

∞

∑

𝑘=1

(𝜆
𝑘





𝑓
2𝑘
(𝑡)




𝐶[0,𝑇]

)

2

)

1/2

+ (

𝑎

𝑏

𝑇 + 𝑏)




𝑝 (𝑡)




𝐶[0,𝑇]

× (

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘
(𝑡)




𝐶[0,𝑇]

)

2

)

1/2

]

]

}

}

}

.

(50)

Suppose that the data of problem (1)–(4), (6) satisfy the
following conditions:

(1) 𝜑(𝑥) ∈ 𝐶
2
[0, 1], 𝜑


(𝑥) ∈ 𝐿

2
(0, 1), 𝜑(0) = 𝜑(1),

𝜑

(1) = 0, 𝜑


(0) = 𝜑


(1);

(2) 𝑓(𝑥, 𝑡) ∈ 𝐶(𝐷
𝑇
), 𝑓
𝑥
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷
𝑇
), 𝑓(0, 𝑡) =

𝑓(1, 𝑡) (0 ⩽ 𝑡 ⩽ 𝑇);

(3) 𝑎 > 0, 𝑏 > 0, ℎ(𝑡) ∈ 𝐶
1
[0, 𝑇], ℎ(𝑡) ̸= 0 (0 ⩽ 𝑡 ⩽ 𝑇).

Then taking into account (21)–(27), from (50), we get

‖�̃� (𝑥, 𝑡)‖
𝐵
3

2,𝑇

+




𝑝 (𝑡)




𝐶[0,𝑇]

≤ 𝐴 (𝑇) + 𝐵 (𝑇)




𝑝(𝑡)




𝐶[0,𝑇]

‖𝑢(𝑥, 𝑡)‖
𝐵
3

2,𝑇

,

(51)

where

𝐴 (𝑇)

=

1

3





𝜑(𝑥)




𝐿
2
(0,1)

+

1

3

√𝑇




𝑓(𝑥, 𝑡)




𝐿
2
(𝐷
𝑇
)

+






ℎ
−1

(𝑡)





𝐶[0,𝑇]











ℎ

(𝑡) − 𝑓 (

1

2

, 𝑡) − ∫

1

0

𝑓 (𝑥, 𝑡) 𝑑𝑥









𝐶[0,𝑇]

+ (

√6

2

+

4𝑎

𝑏
2
𝑇 +

√3𝑎

3𝑏






ℎ
−1

(𝑡)





𝐶[0,𝑇]

)






𝜑


(𝑥)





𝐿
2
(0,1)

+ (

√6𝑇

2𝑏

+ 4 (

1

𝑏

+

𝑎

𝑏
3
𝑇)√𝑇 +

√3𝑇𝑎

3𝑏
2






ℎ
−1

(𝑡)





𝐶[0,𝑇]

)

×




𝑓
𝑥
(𝑥, 𝑡)




𝐿
2
(𝐷
𝑇
)

+ 2






𝑥𝜑


(𝑥) + 3𝜑

(𝑥)





𝐿
2
(0,1)

+

√3

3






ℎ
−1

(𝑡)





𝐶[0,𝑇]

×











𝑓
𝑥
(𝑥, 𝑡)




𝐶[0,𝑇]





𝐿
2
(0,1)

,

𝐵 (𝑇) = (1 +

1

𝑏

(2√2 + √3) +

4√2

𝑏

(1 +

𝑎

𝑏
2
𝑇))𝑇

+(

𝑎

𝑏

𝑇 + 𝑏)






ℎ
−1
(𝑡)





𝐶[0,𝑇]

.

(52)

So, the following theorem can be proved.

Theorem 6. Let conditions (1)–(3) be satisfied, and

(𝐴 (𝑇) + 2)
2
𝐵 (𝑇) < 1. (53)

Then problem (1)–(4), (6) has a unique solution in the ball
𝐾 = 𝐾

𝑅
(‖𝑧‖
𝐸
3

𝑇

≤ 𝑅 = 𝐴(𝑇) + 2) of the space 𝐸3
𝑇
.

Remark 7. Inequality (53) is satisfied for sufficiently small
values at 𝑇 + ‖ℎ

−1
(𝑡)‖
𝐶[0,𝑇]

.

Proof. Consider the equation

𝑧 = Φ𝑧 (54)

in the space 𝐸
3

𝑇
, where 𝑧 = {𝑢, 𝑝} and the components

Φ
𝑖
(𝑢, 𝑝) (𝑖 = 1, 2) of the operator Φ(𝑢, 𝑝) are defined from

the right sides of (42), (45). Consider the operatorΦ(𝑢, 𝑝) in
the ball𝐾 = 𝐾

𝑅
from 𝐸

3

𝑇
.

Similar to (51), for any 𝑧, 𝑧
1
, 𝑧
2
∈ 𝐾
𝑅
the following esti-

mates hold:

‖Φ𝑧‖
𝐸
3

𝑇

≤ 𝐴 (𝑇) + 𝐵 (𝑇)




𝑝 (𝑡)




𝐶[0,𝑇]

‖𝑢 (𝑥, 𝑡)‖
𝐵
3

2,𝑇

,





Φ𝑧
1
− Φ𝑧
2




𝐸
3

𝑇

≤ 𝐵 (𝑇) 𝑅 (




𝑝
1
(𝑡) − 𝑝

2
(𝑡)




𝐶[0,𝑇]

+




𝑢
1
(𝑥, 𝑡) − 𝑢

2
(𝑥, 𝑡)




𝐵
3

2,𝑇

) .

(55)

Then taking into account (53) in (55), it follows that the
operator Φ acts in the ball 𝐾 = 𝐾

𝑅
and is contractive.

Therefore, in the ball 𝐾 = 𝐾
𝑅
the operator Φ has a unique

fixed point {𝑢, 𝑝} that is a unique solution of (54) in the ball
𝐾 = 𝐾

𝑅
; that is, it is a unique solution of system (42), (45) in

the ball𝐾 = 𝐾
𝑅
.

The function 𝑢(𝑥, 𝑡) as an element of the space 𝐵
3

2,𝑇

is continuous and has continuous derivatives 𝑢
𝑥
(𝑥, 𝑡) and

𝑢
𝑥𝑥
(𝑥, 𝑡) in𝐷

𝑇
.
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From (35), (36) it is easy to see that

(

∞

∑

𝑘=1

(𝜆
3

𝑘






𝑢


2𝑘
(𝑡)





𝐶[0,𝑇]

)

2

)

1/2

≤

√2𝑎

𝑏

(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘

(𝑡)



𝐶[0,𝑇]

)

2

)

1/2

+

1

𝑏











𝑓
𝑥
(𝑥, 𝑡) + 𝑝 (𝑡) 𝑢

𝑥
(𝑥, 𝑡)




𝐶[0,𝑇]





𝐿
2
(0,1)

,

(

∞

∑

𝑘=1

(𝜆
3

𝑘






𝑢


2𝑘−1
(𝑡)





𝐶[0,𝑇]

)

2

)

1/2

≤

√5𝑎

𝑏

(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘
(𝑡)




𝐶[0,𝑇]

)

2

)

1/2

+

√10

2𝑏

×











𝑥𝑓
𝑥
(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) + 𝑝 (𝑡) 𝑢

𝑥
(𝑥, 𝑡) 𝑥

+𝑝 (𝑡) 𝑢 (𝑥, 𝑡)



𝐶[0,𝑇]





𝐿
2
(0,1)

+ 2√5(

∞

∑

𝑘=1

(𝜆
3

𝑘






𝑢


2𝑘
(𝑡)





𝐶[0,𝑇]

)

2

)

1/2

+

2√5𝑎

𝑏

(

∞

∑

𝑘=1

(𝜆
3

𝑘





𝑢
2𝑘
(𝑡)




𝐶[0,𝑇]

)

2

)

1/2

.

(56)

From the last relation it is obvious that 𝑢
𝑡
(𝑥, 𝑡), 𝑢

𝑡𝑥
(𝑥, 𝑡),

and 𝑢
𝑡𝑥𝑥

(𝑥, 𝑡) are continuous in𝐷
𝑇
.

It is easy to verify that (1) and conditions (2), (3), (4), and
(6) are satisfied in the ordinary sense.

Consequently, {𝑢(𝑥, 𝑡), 𝑝(𝑡)} is a solution of problem (1)–
(4), (6) and by Lemma 4 this solution is unique in the ball
𝐾 = 𝐾

𝑅
. The theorem is proved.

By means of Lemma 3 the uniqueness of the solution of
the initial problem (1)–(5) follows from Theorem 6 and the
following theorem takes place.

Theorem 8. Suppose that all the conditions of Theorem 6 are
satisfied and

𝜑(

1

2

) + ∫

1

0

𝜑 (𝑥) 𝑑𝑥 = ℎ (0) . (57)

Then problem (1)–(5) has a unique classical solution in the
ball 𝐾 = 𝐾

𝑅
(‖𝑧‖
𝐸
3

𝑇

⩽ 𝑅 = 𝐴(𝑇) + 2) of the space 𝐸3
𝑇
.
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