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Two efficient iterative algorithms are presented to solve a system of matrix equations 𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸, 𝐶

1
𝑋
1
𝐷
1
+

𝐶
2
𝑋
2
𝐷
2
= 𝐹 over generalized reflexive and generalized antireflexive matrices. By the algorithms, the least norm generalized

reflexive (antireflexive) solutions and the unique optimal approximation generalized reflexive (antireflexive) solutions to the system
can be obtained, too. For any initial value, it is proved that the iterative solutions obtained by the proposed algorithms converge to
their true values. The given numerical examples demonstrate that the iterative algorithms are efficient.

1. Introduction

Throughout the paper, we denote the set of all 𝑚 × 𝑛 real
matrices by 𝑅𝑚×𝑛, the transpose matrix of 𝐴 by 𝐴𝑇, the
identity matrix of order 𝑛 by 𝐼

𝑛
, the Kronecker product of

𝐴 and 𝐵 by 𝐴 ⊗ 𝐵, the 𝑚𝑛 × 1 vector formed by the vertical
concatenation of the respective columns of amatrix𝐴 ∈ 𝑅𝑚×𝑛
by vec(𝐴), the trace of a matrix𝐴 by tr(𝐴), and the Frobenius
norm of a matrix 𝐴 by ‖𝐴‖, where ‖𝐴‖ = √tr(𝐴𝑇𝐴). Let
𝑃 ∈ 𝑅

𝑚×𝑚 and 𝑄 ∈ 𝑅𝑛×𝑛 be two real generalized reflection
matrices, that is; 𝑃𝑇 = 𝑃, 𝑃2 = 𝐼

𝑚
and 𝑄𝑇 = 𝑄,

𝑄
2
= 𝐼
𝑛
. A matrix 𝐴 ∈ 𝑅𝑚×𝑛 is called generalized reflexive

(antireflexive) matrix with respect to the matrix pair (𝑃, 𝑄) if
𝐴 = 𝑃𝐴𝑄 (𝐴 = −𝑃𝐴𝑄). The set of all 𝑚 × 𝑛 real generalized
reflexive (generalized antireflexive) matrices with respect to
matrix pair (𝑃, 𝑄) is denoted by𝑅𝑚×𝑛

𝑟
(𝑃, 𝑄) (𝑅𝑚×𝑛

𝑎
(𝑃, 𝑄)).The

generalized reflexive and generalized antireflexive matrices
have been widely used in engineering, scientific computa-
tions, and various other fields.

The linear matrix equation pair 𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹 is encountered in many systems and

control applications. In this paper, we consider it with real
generalized reflexive and generalized antireflexive constraint

on the solutions. Let𝑇
1
, 𝑇
2
, 𝑇
3
, and𝑇

4
be four real generalized

reflection matrices; the following four problems are studied.

Problem 1. For given matrices 𝐴
1
∈ 𝑅
𝑝×𝑘, 𝐴

2
∈ 𝑅
𝑝×𝑚, 𝐵

1
∈

𝑅
𝑟×𝑞, 𝐵
2
∈ 𝑅
𝑛×𝑞, 𝐶

1
∈ 𝑅
𝑠×𝑘, 𝐶
2
∈ 𝑅
𝑠×𝑚, 𝐷

1
∈ 𝑅
𝑟×𝑡, 𝐷

2
∈ 𝑅
𝑛×𝑡,

𝐸 ∈ 𝑅
𝑝×𝑞, and 𝐹 ∈ 𝑅𝑠×𝑡, find 𝑋

1
∈ 𝑆
1
⊂ 𝑅
𝑘×𝑟

𝑟
(𝑇
1
, 𝑇
2
) and

𝑋
2
∈ 𝑆
2
⊂ 𝑅
𝑚×𝑛

𝑟
(𝑇
3
, 𝑇
4
) such that

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹.

(1)

Problem 2. When Problem 1 is consistent, let 𝑆
𝑟
denote the set

of its solutions. For the given matrices𝑋
1
∈ 𝑅
𝑘×𝑟,𝑋

2
∈ 𝑅
𝑚×𝑛,

find {𝑋
1
, 𝑋
2
} ∈ 𝑆
𝑟
such that

󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
2

󵄩󵄩󵄩󵄩󵄩

2

= min
{𝑋1 ,𝑋2}∈𝑆𝑟

(
󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
2

󵄩󵄩󵄩󵄩󵄩

2

) .

(2)

Problem 3. For given matrices 𝐴
1
∈ 𝑅
𝑝×𝑘, 𝐴

2
∈ 𝑅
𝑝×𝑚, 𝐵

1
∈

𝑅
𝑟×𝑞, 𝐵
2
∈ 𝑅
𝑛×𝑞, 𝐶

1
∈ 𝑅
𝑠×𝑘, 𝐶
2
∈ 𝑅
𝑠×𝑚, 𝐷

1
∈ 𝑅
𝑟×𝑡, 𝐷

2
∈ 𝑅
𝑛×𝑡,
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𝐸 ∈ 𝑅
𝑝×𝑞 and 𝐹 ∈ 𝑅𝑠×𝑡, find 𝑋

1
∈ 𝑆
3
⊂ 𝑅
𝑘×𝑟

𝑎
(𝑇
3
, 𝑇
4
) and

𝑋
2
∈ 𝑆
4
⊂ 𝑅
𝑚×𝑛

𝑎
(𝑇
3
, 𝑇
4
) such that

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹.

(3)

Problem4. WhenProblem3 is consistent, let 𝑆
𝑎
denote the set

of its solutions. For the given matrices𝑋
1
∈ 𝑅
𝑘×𝑟,𝑋

2
∈ 𝑅
𝑚×𝑛,

find {𝑋
1
, 𝑋
2
} ∈ 𝑆
𝑎
such that

󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
2

󵄩󵄩󵄩󵄩󵄩

2

= min
{𝑋1 ,𝑋2}∈𝑆𝑎

(
󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1
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+
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𝑋
2
− 𝑋
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󵄩󵄩󵄩󵄩󵄩

2

) .
(4)

Problem 2 (4) is to find the optimal approximation
generalized reflexive (antireflexive) solution to the given
generalized reflexive (antireflexive) matrices 𝑋

1
and 𝑋

2
in

the solution set of Problem 1 (3); it is occurs frequently in
experiment design (see, e.g., [1]). In recent years, the matrix
optimal approximation problem has been studied extensively
(e.g., [2–12]).

Research on solving matrix equation pair has been
actively ongoing for the last 30 years or more. For instance,
Mitra [13] gave conditions for the existence of a solution and
a representation of the general common solution to𝐴𝑋𝐵 = 𝐸,
𝐶𝑋𝐷 = 𝐹. Shinozaki and Sibuya [14] and van derWoude [15]
discussed conditions for the existence of a common solution
to 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Navarra et al. [5] derived sufficient
and necessary conditions for the existence of a common solu-
tion to 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Yuan [11] obtained an analytical
expression of the least-squares solutions of𝐴𝑋𝐵 = 𝐸,𝐶𝑋𝐷 =
𝐹 by using the generalized singular value decomposition
(GSVD) of matrices. Dehghan and Hajarian [32] presented
some examples to show amotivation for studying the general
coupled matrix equations ∑𝑙

𝑗=1
𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗
= 𝐶
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

and they [17] constructed an iterative algorithm to solve the
general coupled matrix equations ∑𝑝

𝑗=1
𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗
= 𝑀
𝑖
, 𝑖 =

1, 2, . . . , 𝑝. Wang [18, 19] gave the centrosymmetric solution
to the system of quaternion matrix equations 𝐴

1
𝑋 = 𝐶

1
,

𝐴
3
𝑋𝐵
3
= 𝐶
3
. Wang [16] also solved a system of matrix

equations over arbitrary regular rings with identity.
Recently, some finite iterative algorithms have also been

developed to solve matrix equations. Ding et al. [20–23]
studied the iterative solutions of matrix equations 𝐴𝑋𝐵 =
𝐹 and 𝐴

𝑖
𝑋𝐵
𝑖
= 𝐹
𝑖
, generalized Sylvester matrix equations

𝐴𝑋𝐵 + 𝐶𝑋𝐷 = 𝐹 and 𝐴𝑋𝐵 + 𝐶𝑋𝑇𝐷 = 𝐹. They presented
gradient based and least-squares based iterative algorithms
for the solution. Duan et al. [24–27] considered iterative
method for some coupled linear matrix equations. Deng et
al. [28] studied the consistent conditions and the general
expressions about the Hermitian solutions of the matrix
equations (𝐴𝑋,𝑋𝐵) = (𝐶,𝐷) and designed an iterative
method for its Hermitian minimum norm solutions. Li and
Wu [29] gave symmetric and skew-antisymmetric solutions
to certain matrix equations 𝐴

1
𝑋 = 𝐶

1
, 𝑋𝐵
3
= 𝐶
3
over

the real quaternion algebra 𝐻. For more studies on iterative
algorithms on coupled matrix equations, we refer to [3, 8–
10, 30–36]. Peng et al. [12] presented iterative methods to

obtain the symmetric solutions of 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹.
Sheng and Chen [7] presented a finite iterative method for
solving 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Liao and Lei [37] presented
an analytical expression of the least-squares solution and an
algorithm for 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹 with the minimum norm.
Peng et al. [6] presented an algorithm for the least-squares
reflexive solution. Dehghan and Hajarian [2] presented an
iterative algorithm for solving a pair of matrix equations
𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹 over generalized matrices; they
[31] also presented an algorithm for solving a pair of matrix
equations 𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐽, 𝐸𝑋𝐹 + 𝐺𝑌𝐻 = 𝐾 over
generalized reflexive (antireflexive) matrices. Cai and Chen
[38] presented an iterative algorithm for the least-squares
bisymmetric solutions of the matrix equations 𝐴𝑋𝐵 = 𝐸,
𝐶𝑋𝐷 = 𝐹. Yin and Huang [39] presented an iterative
algorithm to solve the least-squares generalized reflexive
solutions of the matrix equations 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Lin
and Wang [40] presented an iterative algorithm to solve a
system of linear matrix equations 𝐴

1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹 with real matrices𝑋

1
and𝑋

2
.

However, to our knowledge, there has been little informa-
tion on finding the solutions to the Problems 1–4 by iterative
algorithm. In this paper, two efficient iterative algorithms
are presented to solve the Problems 1–4. The suggested
iterative algorithms automatically determine the solvability
of equations pair (1) with the constraint. When the pair
of equations is consistent, then, for any initial generalized
reflexive (antireflexive) matrices𝑋1

1
and𝑋1

2
, the solution can

be obtained in the absence of round errors, and the least
norm solution can be obtained by choosing a special kind of
initial matrix. In addition, the unique optimal approximation
solution pair𝑋

1
,𝑋
2
to givenmatrix pair𝑋

1
,𝑋
2
in Frobenius

norm can be obtained by finding the least norm solution of
a new pair of matrix equations 𝐴

1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹, where 𝑋

𝑖
= 𝑋
𝑖
− 𝑋
𝑖
, (𝑖 = 1, 2),

𝐸 = 𝐸 − 𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
, 𝐹 = 𝐹 − 𝐶

1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
.

The given numerical examples demonstrate that our iterative
algorithms are efficient. In particular, when the numbers of
the parameter matrices 𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐶
1
, 𝐶
2
, 𝐷
1
, and𝐷

2
are

large, our algorithms are efficient as well while the algorithm
of [31] is not convergent. That is, our algorithms have merits
of good numerical stability and ease to program.

The rest of this paper is outlined as follows. In Section 2,
we first propose an efficient iterative algorithm for solving
Problems 1 and 2; then we give some properties of this
iterative algorithm. We show that the algorithm can obtain
a solution group for any (special) initial generalized reflexive
matrix group in the absence of round-off errors. In Section 3,
Problems 3 and 4 are solved similarly. In Section 4 numerical
examples are given to illustrate that our algorithms are quite
efficient.

2. Iterative Algorithm for Solving
Problems 1 and 2

In this section, we present an iterative algorithm for solving
Problems 1 and 2.
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Algorithm 5. (1) Input matrices 𝐴
1
∈ 𝑅
𝑝×𝑘, 𝐴

2
∈ 𝑅
𝑝×𝑚, 𝐵

1
∈

𝑅
𝑟×𝑞, 𝐵
2
∈ 𝑅
𝑛×𝑞, 𝐶

1
∈ 𝑅
𝑠×𝑘, 𝐶
2
∈ 𝑅
𝑠×𝑚, 𝐷

1
∈ 𝑅
𝑟×𝑡, 𝐷

2
∈ 𝑅
𝑛×𝑡,

𝐸 ∈ 𝑅
𝑝×𝑞, 𝐹 ∈ 𝑅𝑠×𝑡,𝑋1

1
∈ 𝑅
𝑘×𝑟

𝑟
, and𝑋1

2
∈ 𝑅
𝑚×𝑛

𝑟
(where𝑋1

1
, 𝑋
1

2

are any initial generalized reflexive matrices).
(2) Calculate

𝐸
1
= 𝐸; 𝐹

1
= 𝐹;

𝑄
1

1
= 𝐴
𝑇

1
𝐸
1
𝐵
𝑇

1
+ 𝐶
𝑇

1
𝐹
1
𝐷
𝑇

1
; 𝑄

1

2
= 𝐴
𝑇

2
𝐸
1
𝐵
𝑇

2
+ 𝐶
𝑇

2
𝐹
1
𝐷
𝑇

2
;

𝑃
1

1
= 𝑄
1

1
+ 𝑇
1
𝑄
1

1
𝑇
2
; 𝑃

1

2
= 𝑄
1

2
+ 𝑇
3
𝑄
1

2
𝑇
4
;

𝛽
1
= (tr [(𝐸1)

𝑇

(𝐴
1
𝑃
1

1
𝐵
1
+ 𝐴
2
𝑃
1

2
𝐵
2
)]

+ tr [(𝐹1)
𝑇

(𝐶
1
𝑃
1

1
𝐷
1
+ 𝐶
2
𝑃
1

2
𝐷
2
)])

× (
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑃
1

1
𝐵
1
+ 𝐴
2
𝑃
1

2
𝐵
2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶
1
𝑃
1

1
𝐷
1
+ 𝐶
2
𝑃
1

2
𝐷
2

󵄩󵄩󵄩󵄩󵄩

2

)

−1

;

Δ𝑋
1

1
= 𝛽
1
𝑃
1

1
; Δ𝑋

1

2
= 𝛽
1
𝑃
1

2
; 𝑘 = 1.

(5)

(3) If Δ𝑋 = diag(Δ𝑋𝑘
1
, Δ𝑋
𝑘

2
) = 0 (𝑘 = 1, 2, . . .), then stop.

Otherwise,

𝑋
𝑘+1

1
= 𝑋
𝑘

1
+ Δ𝑋
𝑘

1
;

𝑋
𝑘+1

2
= 𝑋
𝑘

2
+ Δ𝑋
𝑘

2
.

(6)

(4) Calculate

𝐸
𝑘+1
= 𝐸
𝑘
− (𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
) ;

𝐹
𝑘+1
= 𝐹
𝑘
− (𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) ;

𝑄
𝑘+1

1
= 𝐴
𝑇

1
𝐸
𝑘+1
𝐵
𝑇

1
+ 𝐶
𝑇

1
𝐹
𝑘+1
𝐷
𝑇

1
;

𝑄
𝑘+1

2
= 𝐴
𝑇

2
𝐸
𝑘+1
𝐵
𝑇

2
+ 𝐶
𝑇

2
𝐹
𝑘+1
𝐷
𝑇

2
;

𝑃
𝑘+1

1
= 𝑄
𝑘+1

1
+ 𝑇
1
𝑄
𝑘+1

1
𝑇
2
; 𝑃

𝑘+1

2
= 𝑄
𝑘+1

2
+ 𝑇
3
𝑄
𝑘+1

2
𝑇
4
;

𝛽
𝑘+1
= (tr [(𝐸𝑘+1)

𝑇

(𝐴
1
𝑃
𝑘+1

1
𝐵
1
+ 𝐴
2
𝑃
𝑘+1

2
𝐵
2
)]

+ tr [(𝐹𝑘+1)
𝑇

(𝐶
1
𝑃
𝑘+1

1
𝐷
1
+ 𝐶
2
𝑃
𝑘+1

2
𝐷
2
)])

× (
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑃
𝑘+1

1
𝐵
1
+ 𝐴
2
𝑃
𝑘+1

2
𝐵
2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶
1
𝑃
𝑘+1

1
𝐷
1
+ 𝐶
2
𝑃
𝑘+1

2
𝐷
2

󵄩󵄩󵄩󵄩󵄩

2

)

−1

;

Δ𝑋
𝑘+1

1
= 𝛽
𝑘+1
𝑃
𝑘+1

1
; Δ𝑋

𝑘+1

2
= 𝛽
𝑘+1
𝑃
𝑘+1

2
;

𝑘 = 𝑘 + 1.

(7)

Go to (3).

Lemma 6. In Algorithm 5, the choice of 𝛽𝑘 makes
‖ diag(𝐸𝑘+1, 𝐹𝑘+1)‖ reach a minimum and diag(𝐸𝑘+1, 𝐹𝑘+1)

and diag(𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)

orthogonal to each other.

Proof. From Algorithm 5, we have

󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘+1, 𝐹𝑘+1)󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘 − (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
) ,

𝐹
𝑘
− (𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
))
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩diag (𝐸

𝑘
− (𝐴
1
𝛽
𝑘
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝛽
𝑘
𝑃
𝑘

2
𝐵
2
) ,

𝐹
𝑘
− (𝐶
1
𝛽
𝑘
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝛽
𝑘
𝑃
𝑘

2
𝐷
2
))
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑘
− (𝐴
1
𝛽
𝑘
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝛽
𝑘
𝑃
𝑘

2
𝐵
2
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑘
− (𝐶
1
𝛽
𝑘
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝛽
𝑘
𝑃
𝑘

2
𝐷
2
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑘󵄩󵄩󵄩󵄩󵄩

2

− 2 [tr((𝐸𝑘)
𝑇

(𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2
))

+ tr((𝐹𝑘)
𝑇

(𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2
))] 𝛽

𝑘

+ [
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2

󵄩󵄩󵄩󵄩󵄩

2

] (𝛽
𝑘
)
2

.

(8)

From the above, the condition of ‖ diag(𝐸𝑘+1, 𝐹𝑘+1)‖ reaching
a minimum is

𝛽
𝑘
= (tr [(𝐸𝑘)

𝑇

(𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2
)]

+ tr [(𝐹𝑘)
𝑇

(𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2
)])

× (
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2

󵄩󵄩󵄩󵄩󵄩

2

)

−1

.

(9)

On the other side, if the choice of 𝛽𝑘 makes
diag(𝐸𝑘+1, 𝐹𝑘+1) and diag(𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+

𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) orthogonal to each other, that is,

tr[diag(𝐸𝑘+1, 𝐹𝑘+1)𝑇 diag(𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+

𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)] = 0, we can have the same 𝛽𝑘 as (3).

Theorem 7. Algorithm 5 is bound to be convergent.
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Proof. From Algorithm 5 and Lemma 6 we have

diag (𝐸𝑘, 𝐹𝑘)

= diag (𝐸𝑘+1, 𝐹𝑘+1)

+ diag (𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) ,

⇐⇒
󵄩󵄩󵄩󵄩󵄩
diag(𝐸𝑘, 𝐹𝑘)󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘+1, 𝐹𝑘+1)

+ diag (𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘+1, 𝐹𝑘+1)󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
diag (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)
󵄩󵄩󵄩󵄩󵄩

2

(10)

such that

󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘+1, 𝐹𝑘+1)󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘, 𝐹𝑘)󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
diag (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
diag (𝐸𝑘, 𝐹𝑘)󵄩󵄩󵄩󵄩󵄩

2

.

(11)

From (11), we know that Algorithm 5 is convergent.

Lemma 8 (see [41]). Suppose that the consistent system of
linear equations 𝑀𝑦 = 𝑏 has a solution 𝑦

0
∈ 𝑅(𝑀

𝑇
); then

𝑦
0
is the least Frobenius norm solution of the system of linear

equations.

Theorem 9. Assume that the system (1) is consistent. Let𝑋1
1
=

𝐴
𝑇

1
𝑌𝐵
𝑇

1
+𝐶
𝑇

1
𝑍𝐷
𝑇

1
+ 𝑇
1
(𝐴
𝑇

1
𝑌𝐵
𝑇

1
+𝐶
𝑇

1
𝑍𝐷
𝑇

1
)𝑇
2
,𝑋1
2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+

𝐶
𝑇

2
𝑍𝐷
𝑇

2
+ 𝑇
3
(𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
)𝑇
4
be initial matrices, where

𝑌 ∈ 𝑅
𝑝×𝑞,𝑍 ∈ 𝑅𝑠×𝑡 are any initial matrices, or, especially,𝑋1

1
=

0, 𝑋1
2
= 0; then the solution generated by Algorithm 5 is the

least Frobenius norm solution to (1).

Proof. If (1) is consistent, from 𝑋1
1
= 𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
+

𝑇
1
(𝐴
𝑇

1
𝑌𝐵
𝑇

1
+𝐶
𝑇

1
𝑍𝐷
𝑇

1
)𝑇
2
,𝑋1
2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
+𝑇
3
(𝐴
𝑇

2
𝑌𝐵
𝑇

2
+

𝐶
𝑇

2
𝑍𝐷
𝑇

2
)𝑇
4
, using Algorithm 5, we have the generalized

reflexive iterative solution pair𝑋𝑘
1
,𝑋𝑘
2
of (1) as the following:

𝑋
𝑘

1
= 𝑋
𝑘−1

1
+ Δ𝑋
𝑘−1

1

= 𝑋
1

1
+ Δ𝑋
1

1
+ ⋅ ⋅ ⋅ + Δ𝑋

𝑘−1

1

= 𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
+ 𝑇
1
(𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
) 𝑇
2

+ 𝐴
𝑇

1
[𝛽
1
𝐸
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐸
𝑘−1
] 𝐵
𝑇

1

+ 𝐶
𝑇

1
[𝛽
1
𝐹
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐹
𝑘−1
]𝐷
𝑇

1

+ 𝑇
1
𝐴
𝑇

1
[𝛽
1
𝐸
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐸
𝑘−1
] 𝐵
𝑇

1
𝑇
2

+ 𝑇
1
𝐶
𝑇

1
[𝛽
1
𝐹
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐹
𝑘−1
]𝐷
𝑇

1
𝑇
2

= 𝐴
𝑇

1
𝑀𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑁𝐷
𝑇

1
+ 𝑇
1
(𝐴
𝑇

1
𝑀𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑁𝐷
𝑇

1
) 𝑇
2
,

𝑋
𝑘

2
= 𝑋
𝑘−1

2
+ Δ𝑋
𝑘−1

2

= 𝑋
1

2
+ Δ𝑋
1

2
+ ⋅ ⋅ ⋅ + Δ𝑋

𝑘−1

2

= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
+ 𝑇
3
(𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
) 𝑇
4

+ 𝐴
𝑇

2
[𝛽
1
𝐸
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐸
𝑘−1
] 𝐵
𝑇

2

+ 𝐶
𝑇

2
[𝛽
1
𝐹
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐹
𝑘−1
]𝐷
𝑇

2

+ 𝑇
3
𝐴
𝑇

2
[𝛽
1
𝐸
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐸
𝑘−1
] 𝐵
𝑇

2
𝑇
4

+ 𝑇
3
𝐶
𝑇

2
[𝛽
1
𝐹
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐹
𝑘−1
]𝐷
𝑇

2
𝑇
4

= 𝐴
𝑇

2
𝑀𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑁𝐷
𝑇

2
+ 𝑇
3
(𝐴
𝑇

2
𝑀𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑁𝐷
𝑇

2
) 𝑇
4
.

(12)

We know that (1) is equivalent to the system

(

𝐵
𝑇

1
⊗ 𝐴
1

𝐵
𝑇

2
⊗ 𝐴
2

𝐷
𝑇

1
⊗ 𝐶
1

𝐷
𝑇

2
⊗ 𝐶
2

(𝑇
2
𝐵
1
)
𝑇

⊗ (𝐴
1
𝑇
1
) (𝑇
4
𝐵
2
)
𝑇

⊗ (𝐴
2
𝑇
3
)

(𝑇
2
𝐷
1
)
𝑇

⊗ (𝐶
1
𝑇
1
) (𝐷
2
𝑇
4
)
𝑇

⊗ (𝐶
2
𝑇
3
)

)(

vec (𝑋
1
)

vec (𝑋
2
)
)

=(

vec (𝐸)
vec (𝐹)
vec (𝐸)
vec (𝐹)

) .

(13)
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From (12) and (13) we have

(
vec (𝐴𝑇

1
𝑀𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑁𝐷
𝑇

1
+ 𝑇
1
(𝐴
𝑇

1
𝑀𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑁𝐷
𝑇

1
) 𝑇
2
)

vec (𝐴𝑇
2
𝑀𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑁𝐷
𝑇

2
+ 𝑇
3
(𝐴
𝑇

2
𝑀𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑁𝐷
𝑇

2
) 𝑇
4
)
)

= (
𝐵
1
⊗ 𝐴
𝑇

1
𝐷
1
⊗ 𝐶
𝑇

1
(𝑇
2
𝐵
1
) ⊗ (𝑇

1
𝐴
𝑇

1
) (𝑇
2
𝐷
1
) ⊗ (𝑇

1
𝐶
𝑇

1
)

𝐵
2
⊗ 𝐴
𝑇

2
𝐷
2
⊗ 𝐶
𝑇

2
(𝑇
4
𝐵
2
) ⊗ (𝑇

3
𝐴
𝑇

2
) (𝑇
4
𝐷
2
) ⊗ (𝑇

3
𝐶
𝑇

2
)
)(

vec (𝑀)
vec (𝑁)
vec (𝑀)
vec (𝑁)

)

=(

𝐵
𝑇

1
⊗ 𝐴
1

𝐵
𝑇

2
⊗ 𝐴
2

𝐷
𝑇

1
⊗ 𝐶
1

𝐷
𝑇

2
⊗ 𝐶
2

(𝐵
𝑇

1
𝑇
2
) ⊗ (𝐴

1
𝑇
1
) (𝐵
𝑇

2
𝑇
4
) ⊗ (𝐴

2
𝑇
3
)

(𝐷
𝑇

1
𝑇
2
) ⊗ (𝐶

1
𝑇
1
) (𝐷
𝑇

2
𝑇
4
) ⊗ (𝐶

2
𝑇
3
)

)

𝑇

(

vec (𝑀)
vec (𝑁)
vec (𝑀)
vec (𝑁)

)

∈ 𝑅((

𝐵
𝑇

1
⊗ 𝐴
1

𝐵
𝑇

2
⊗ 𝐴
2

𝐷
𝑇

1
⊗ 𝐶
1

𝐷
𝑇

2
⊗ 𝐶
2

(𝐵
𝑇

1
𝑇
2
) ⊗ (𝐴

1
𝑇
1
) (𝐵
𝑇

2
𝑇
4
) ⊗ (𝐴

2
𝑇
3
)

(𝐷
𝑇

1
𝑇
2
) ⊗ (𝐶

1
𝑇
1
) (𝐷
𝑇

2
𝑇
4
) ⊗ (𝐶

2
𝑇
3
)

)

𝑇

),

(14)

where 𝑅(∗) is the column space of matrix ∗.
Considering Lemma 8, with the initial matrices 𝑋1

1
=

𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
+ 𝑇
1
(𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
)𝑇
2
,𝑋1
2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+

𝐶
𝑇

2
𝑍𝐷
𝑇

2
+𝑇
3
(𝐴
𝑇

2
𝑌𝐵
𝑇

2
+𝐶
𝑇

2
𝑍𝐷
𝑇

2
)𝑇
4
, where 𝑌 ∈ 𝑅𝑝×𝑞, 𝑍 ∈ 𝑅𝑠×𝑡

are arbitrary, or, especially, 𝑋1
1
= 0 and 𝑋1

2
= 0, then the

solution pair 𝑋𝑘
1
, 𝑋
𝑘

2
, generated by Algorithm 5, is the least

Frobenius norm solution of the matrix equations (1).

Suppose that Problem 1 is consistent. Obviously the
solution set 𝑆

𝑟
of (1) is nonempty. For given matrices pair

𝑋
1
∈ 𝑅
𝑘×𝑟,𝑋

2
∈ 𝑅
𝑚×𝑛, we consider two case:

Case 1. Consider𝑋
1
∈ 𝑅
𝑘×𝑟

𝑟
(𝑇
1
, 𝑇
2
), 𝑋
2
∈ 𝑅
𝑚×𝑛

𝑟
(𝑇
3
, 𝑇
4
).

We have

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(15)

⇐⇒

{{{{

{{{{

{

𝐴
1
(𝑋
1
− 𝑋
1
) 𝐵
1
+ 𝐴
2
(𝑋
2
− 𝑋
2
) 𝐵
2

= 𝐸 − 𝐴
1
𝑋
1
𝐵
1
− 𝐴
2
𝑋
2
𝐵
2
,

𝐶
1
(𝑋
1
− 𝑋
1
)𝐷
1
+ 𝐶
2
(𝑋
2
− 𝑋
2
)𝐷
2

= 𝐹 − 𝐶
1
𝑋
1
𝐷
1
− 𝐶
2
𝑋
2
𝐷
2
.

(16)

Let 𝑋
1
= 𝑋
1
− 𝑋
1
, 𝑋
2
= 𝑋
2
− 𝑋
2
, 𝐸 = 𝐸 − 𝐴

1
𝑋
1
𝐵
1
−

𝐴
2
𝑋
2
𝐵
2
, and 𝐹 = 𝐹 − 𝐶

1
𝑋
1
𝐷
1
− 𝐶
2
𝑋
2
𝐷
2
; then Problem 2 is

equivalent to finding the least Frobenius norm solution pair
of the system

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(17)

which can be obtained using Algorithm 5 with the initial
matrix pair𝑋1

1
= 𝐴
𝑇

1
𝑌𝐵
𝑇

1
+𝐶
𝑇

1
𝑍𝐷
𝑇

1
+𝑇
1
(𝐴
𝑇

1
𝑌𝐵
𝑇

1
+𝐶
𝑇

1
𝑍𝐷
𝑇

1
)𝑇
2
,

𝑋
1

2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
+ 𝑇
3
(𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
)𝑇
4
, where

𝑌 ∈ 𝑅
𝑝×𝑞, 𝑍 ∈ 𝑅

𝑠×𝑡 are arbitrary, or, especially, 𝑋1
1
= 0,

𝑋
1

2
= 0, and the solution of thematrix optimal approximation

Problem 2 can be represented as𝑋
1
= 𝑋
𝑘

1
+𝑋
1
,𝑋
2
= 𝑋
𝑘

2
+𝑋
2
.

Case 2. 𝑋
1
∈ 𝑅
𝑘×𝑟, 𝑋

2
∈ 𝑅
𝑚×𝑛, and 𝑋

1
, 𝑋
2
are not

generalized reflexive matrices.

Lemma 10. Suppose 𝐻
1
∈ 𝑅
𝑘×𝑟

𝑟
(𝑇
1
, 𝑇
2
), 𝐻
2
∈ 𝑅
𝑚×𝑛

𝑎
(𝑇
1
, 𝑇
2
);

then 𝑡𝑟(𝐻𝑇
1
𝐻
2
) = 0.

Proof. Since𝐻
1
= 𝑇
1
𝐻
1
𝑇
2
,𝐻
2
= −𝑇
1
𝐻
2
𝑇
2
, we have

tr (𝐻𝑇
1
𝐻
2
) = tr [(𝑇

1
𝐻
1
𝑇
2
)
𝑇

(−𝑇
1
𝐻
2
𝑇
2
)]

= − tr (𝑇𝑇
2
𝐻
𝑇

1
𝑇
𝑇

1
𝑇
1
𝐻
2
𝑇
2
)

= − tr (𝑇𝑇
2
𝐻
𝑇

1
𝑇
𝑇

1
𝑇
1
𝐻
2
𝑇
2
) = − tr (𝑇𝑇

2
𝐻
𝑇

1
𝐻
2
𝑇
2
)

= − tr (𝐻𝑇
1
𝐻
2
𝑇
2
𝑇
𝑇

2
) = − tr (𝐻𝑇

1
𝐻
2
) .

(18)

So, tr(𝐻𝑇
1
𝐻
2
) = 0.

For {𝑋
1
, 𝑋
2
} ∈ 𝑆
𝑟
, by Lemma 10, we have

󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
1
− (
𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2
+
𝑋
1
− 𝑇
1
𝑋
1
𝑇
2

2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋
1
−
𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2
) −

𝑋
1
− 𝑇
1
𝑋
1
𝑇
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
1
−
𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
1
− 𝑇
1
𝑋
1
𝑇
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,
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󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
2

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
2
− (
𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2
+
𝑋
2
− 𝑇
3
𝑋
2
𝑇
4

2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋
2
−
𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2
) −

𝑋
2
− 𝑇
3
𝑋
2
𝑇
4

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
2
−
𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
2
− 𝑇
3
𝑋
2
𝑇
4

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(19)

For any {𝑋
1
, 𝑋
2
} ∈ 𝑆
𝑟
, we have

󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
2

󵄩󵄩󵄩󵄩󵄩

2

= min
{𝑋1 ,𝑋2}∈𝑆𝑟

(
󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
1

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
2

󵄩󵄩󵄩󵄩󵄩

2

)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
1
− 𝑇
1
𝑋
1
𝑇
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
2
− 𝑇
3
𝑋
2
𝑇
4

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ min
{𝑋1 ,𝑋2}∈𝑆𝑟

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
1
−
𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
2
−
𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

) .

(20)

That is, Problem 2 is equivalent to finding {𝑋
1
, 𝑋
2
} ∈ 𝑆
𝑟
such

that ‖𝑋
1
− (𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2
)/2‖
2

+ ‖𝑋
2
− (𝑋
1
+ 𝑇
3
𝑋
2
𝑇
4
)/2‖
2

reach a minimum.
For any {𝑋

1
, 𝑋
2
} ∈ 𝑆
𝑟
, we have

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(21)

⇐⇒

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

𝐴
1
(𝑋
1
−
𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2
)𝐵
1

+𝐴
2
(𝑋
2
−
𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2
)𝐵
2

= 𝐸 − 𝐴
1

𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2
𝐵
1
−𝐴
2

𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2
𝐵
2
,

𝐶
1
(𝑋
1
−
𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2
)𝐷
1

+𝐶
2
(𝑋
2
−
𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2
)𝐷
2

=𝐹 − 𝐶
1

𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2

2
𝐷
1
− 𝐶
2

𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4

2
𝐷
2
.

(22)

Let 𝑋
1
= 𝑋
1
− (𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2
)/2, 𝑋

2
= 𝑋
2
− (𝑋

2
+

𝑇
3
𝑋
2
𝑇
4
)/2, 𝐸 = 𝐸 − 𝐴

1
((𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2
)/2)𝐵
1
− 𝐴
2
((𝑋
2
+

𝑇
3
𝑋
2
𝑇
4
)/2)𝐵
2
, and𝐹 = 𝐹−𝐶

1
((𝑋
1
+𝑇
1
𝑋
1
𝑇
2
)/2)𝐷

1
−𝐶
2
((𝑋
2
+

𝑇
3
𝑋
2
𝑇
4
)/2)𝐷

2
and then to finding {𝑋

1
, 𝑋
2
} ∈ 𝑆 such that

‖𝑋
1
− (𝑋
1
+ 𝑇
1
𝑋
1
𝑇
2
)/2‖
2

+ ‖𝑋
2
− (𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4
)/2‖
2 reach

a minimum is equivalent to finding the least Frobenius norm
generalized reflexive solution pair𝑋𝑘

1
, 𝑋
𝑘

2
of the system

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(23)

which can be obtained using Algorithm 5.
So we can have the least Frobenius norm generalized

reflexive solution of Problem 2 as𝑋
1
= 𝑋
𝑘

1
+(𝑋
1
+𝑇
1
𝑋
1
𝑇
2
)/2,

𝑋
2
= 𝑋
𝑘

2
+ (𝑋
2
+ 𝑇
3
𝑋
2
𝑇
4
)/2.

3. Iterative Algorithm for Solving
Problems 3 and 4

In this section, we present an iterative algorithm for solving
Problems 3 and 4.

Algorithm 11. (1) Input matrices 𝐴
1
∈ 𝑅
𝑝×𝑘, 𝐴

2
∈ 𝑅
𝑝×𝑚, 𝐵

1
∈

𝑅
𝑟×𝑞, 𝐵
2
∈ 𝑅
𝑛×𝑞, 𝐶

1
∈ 𝑅
𝑠×𝑘, 𝐶
2
∈ 𝑅
𝑠×𝑚, 𝐷

1
∈ 𝑅
𝑟×𝑡, 𝐷

2
∈ 𝑅
𝑛×𝑡,

𝐸 ∈ 𝑅
𝑝×𝑞, 𝐹 ∈ 𝑅𝑠×𝑡,𝑋1

1
∈ 𝑅
𝑘×𝑟

𝑎
, and𝑋1

2
∈ 𝑅
𝑚×𝑛

𝑎
(where𝑋1

1
, 𝑋
1

2

are any initial generalized antireflexive matrices).
(2) Calculate

𝐸
1
= 𝐸; 𝐹

1
= 𝐹;

𝑄
1

1
= 𝐴
𝑇

1
𝐸
1
𝐵
𝑇

1
+ 𝐶
𝑇

1
𝐹
1
𝐷
𝑇

1
; 𝑄

1

2
= 𝐴
𝑇

2
𝐸
1
𝐵
𝑇

2
+ 𝐶
𝑇

2
𝐹
1
𝐷
𝑇

2
;

𝑃
1

1
= 𝑄
1

1
− 𝑇
1
𝑄
1

1
𝑇
2
; 𝑃

1

2
= 𝑄
1

2
− 𝑇
3
𝑄
1

2
𝑇
4
;

𝛽
1
= (tr [(𝐸1)

𝑇

(𝐴
1
𝑃
1

1
𝐵
1
+ 𝐴
2
𝑃
1

2
𝐵
2
)]

+ tr [(𝐹1)
𝑇

(𝐶
1
𝑃
1

1
𝐷
1
+ 𝐶
2
𝑃
1

2
𝐷
2
)])

× (
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑃
1

1
𝐵
1
+ 𝐴
2
𝑃
1

2
𝐵
2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶
1
𝑃
1

1
𝐷
1
+ 𝐶
2
𝑃
1

2
𝐷
2

󵄩󵄩󵄩󵄩󵄩

2

)

−1

;

Δ𝑋
1

1
= 𝛽
1
𝑃
1

1
; Δ𝑋

1

2
= 𝛽
1
𝑃
1

2
; 𝑘 = 1.

(24)

(3) If Δ𝑋 = diag(Δ𝑋𝑘
1
, Δ𝑋
𝑘

2
) = 0 (𝑘 = 1, 2, . . .), then stop.

Otherwise,

𝑋
𝑘+1

1
= 𝑋
𝑘

1
+ Δ𝑋
𝑘

1
;

𝑋
𝑘+1

2
= 𝑋
𝑘

2
+ Δ𝑋
𝑘

2
.

(25)

(4) Calculate

𝐸
𝑘+1
= 𝐸
𝑘
− (𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
) ;

𝐹
𝑘+1
= 𝐹
𝑘
− (𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) ;

𝑄
𝑘+1

1
= 𝐴
𝑇

1
𝐸
𝑘+1
𝐵
𝑇

1
+ 𝐶
𝑇

1
𝐹
𝑘+1
𝐷
𝑇

1
;
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𝑄
𝑘+1

2
= 𝐴
𝑇

2
𝐸
𝑘+1
𝐵
𝑇

2
+ 𝐶
𝑇

2
𝐹
𝑘+1
𝐷
𝑇

2
;

𝑃
𝑘+1

1
= 𝑄
𝑘+1

1
− 𝑇
1
𝑄
𝑘+1

1
𝑇
2
; 𝑃

𝑘+1

2
= 𝑄
𝑘+1

2
− 𝑇
3
𝑄
𝑘+1

2
𝑇
4
;

𝛽
𝑘+1
= (tr [(𝐸𝑘+1)

𝑇

(𝐴
1
𝑃
𝑘+1

1
𝐵
1
+ 𝐴
2
𝑃
𝑘+1

2
𝐵
2
)]

+ tr [(𝐹𝑘+1)
𝑇

(𝐶
1
𝑃
𝑘+1

1
𝐷
1
+ 𝐶
2
𝑃
𝑘+1

2
𝐷
2
)])

× (
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑃
𝑘+1

1
𝐵
1
+ 𝐴
2
𝑃
𝑘+1

2
𝐵
2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶
1
𝑃
𝑘+1

1
𝐷
1
+ 𝐶
2
𝑃
𝑘+1

2
𝐷
2

󵄩󵄩󵄩󵄩󵄩

2

)

−1

;

Δ𝑋
𝑘+1

1
= 𝛽
𝑘+1
𝑃
𝑘+1

1
; Δ𝑋

𝑘+1

2
= 𝛽
𝑘+1
𝑃
𝑘+1

2
; 𝑘 = 𝑘 + 1.

(26)

Go to (3).

The properties of Algorithm 11 can be proposed similarly
to Algorithm 5.

4. Examples

In this section, we show two numerical examples to illustrate
the efficiency of Algorithms 5 and 11. All computations are
performed by MATLAB 7. For the influence of the error of
calculation, we consider thematrix𝑅 as a zeromatrix if ‖𝑅‖ <
10
−10.

Example 12. Consider the generalized reflexive solution of
the linear matrix equations:

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(27)

where

𝐴
1
= (

139 105 54

124 176 50

159 35 175

191 196 147

) ,

𝐵
1
= (

13 117 103 87 116

198 85 67 45 152
) ,

𝐴
2
= (

27 60

2 132

179 57

40 94

) ,

𝐵
2
= (

106 76 92 12 83

128 157 114 121 61

42 136 159 10 175

) ,

𝐶
1
=(

3 88 192

154 100 145

194 43 82

198 129 149

158 64 54

), 𝐷
1
= (
88 31 140

71 135 146
) ,

𝐶
2
=(

4 63

115 3

90 77

9 137

5 19

), 𝐷
2
= (

96 90 55

111 143 51

24 179 173

) ,

𝑇
1
= (

−1 0 0

0 0 1

0 1 0

) , 𝑇
2
= (

0 −1

−1 0
) ,

𝑇
3
= (
0 1

1 0
) , 𝑇

4
= (

0 1 0

1 0 0

0 0 −1

) ,

𝐸=(

4079684 5931341 5257546 3760503 5978636

4507138 7309406 6800596 4204046 7209376

5983467 8290427 6916092 5829089 5964332

4470189 8583167 7694045 5535093 8046508

) ,

𝐹 =(

1148659 −415508 175592

5221721 3459626 5372914

6867542 6499561 7947258

6828512 5933355 8858444

3684631 3115265 5873214

).

(28)

Let

𝑋
1

1
= (

0 0

0 0

0 0

) , 𝑋
1

2
= (
0 0 0

0 0 0
) . (29)

Using Algorithm 5 and iterating 1214 steps, we obtain the
least Frobenius norm solution pair of the matrix equation in
Example 12 as follows:

𝑋
1
= (

122.0000 122.0000

86.0000 −29.0000

29.0000 −86.0000

) ,

𝑋
2
= (

57.0000 126.0000 −35.0000

126.0000 57.0000 35.0000
) .

(30)

Example 13. Consider the generalized antireflexive solution
of the linear matrix equations:

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸, 𝐶

1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(31)

where𝐴
1
, 𝐵
1
, 𝐴
2
, 𝐵
2
, 𝐶
1
, 𝐷
1
, 𝐶
2
, 𝐷
2
, 𝑇
1
, 𝑇
2
, 𝑇
3
, and 𝑇

4
are the

same matrices of Example 12:

𝐸 = (

−743633 6710933 7426284 2563311 8338860

1535166 7945314 9163408 1986230 12338200

982308 14732018 17074320 3775802 18238112

1999993 12662336 13364050 5402942 16219108

) ,

𝐹 = (

5228109 6926269 12710902

7508081 7671994 14810466

4201528 4853203 12104012

5302290 5127440 15650036

2867500 −410942 5039552

).

(32)



8 Journal of Applied Mathematics

Let

𝑋
1

1
= (

0 0

0 0

0 0

) , 𝑋
1

2
= (
0 0 0

0 0 0
) . (33)

Using Algorithm 11 and iterating 240 steps, we obtain the
least Frobenius norm solution pair of the matrix equation in
Example 13 as follows:

𝑋
1
= (

226.0000 −226.0000

59.0000 191.0000

191.0000 59.0000

) ,

𝑋
2
= (
189.0000 −63.0000 268.0000

63.0000 −189.0000 268.0000
) .

(34)

The numbers of the parameter matrices 𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
,

𝐶
1
, 𝐶
2
, 𝐷
1
, and 𝐷

2
in our examples are larger than the

numbers of the parameter matrices in the example of [31].
To our examples, the algorithm of [31] is not convergent.
The numerical examples demonstrate that our algorithm has
merits of good numerical stability and ease to program.
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