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The dynamics of the surface heterogeneities formation in low-dimensional phononic crystals is studied. It is shown that phononic
transverse perturbations in this medium are highly nonlinear. They can be described with the help of the Riemann wave and may
form stable wave structures of the finite amplitude. The Riemann wave deformation is described analytically. The Riemann wave
time existence up to the beginning of the gradient catastrophe is calculated.

1. Introduction

Interest to low-dimensional structures is caused by the
unique properties of these materials, allowing using them
in many areas and, first of all, in nanoelectronics includ-
ing active components of nanomechanical systems (NEMS)
[1]. The key role of phonon processes in low-dimensional
structures is well known [2, 3]. Transverse thermal vibrations
of atoms in low-dimensional structures in the direction
perpendicular to the plane structure can lead to the formation
of the complicated surface elevation, increase the effective
structure thickness, and affect its physical properties. For
example, in the transverse thermal vibrations of graphene
atom may reach relatively high amplitudes even in normal
conditions that is approximately an interatomic distance
[4, 5]. The additional structure strain often used in NEMS
complicates the transverse vibrations dynamics of the lattice
even more [6].

Therefore, phononic processes in low-dimensional struc-
tures have a complicated sometimes even a strongly nonlinear
character. Strong nonlinearity can lead to the formation of the
stable wave structures with a wide frequency spectrum. The
understanding of nonlinear features of the similar processes
even in the frames of some simplest models may presume
definite interest from the point of view of defining the

adequate restrictions to the application of low-dimensional
materials.

The process of the surface heterogeneity formation as a
result of nonlinearity of oscillations of the phononic crystal
lattice is considered in the paper. Nonlinear waves are studied
in the frames of the conceptual model of the atom chains
connected with the elastic bonds; the mentioned model is
described in Section 2. The nonlinearity of the model is
not limited. This model, though simplified from the point
of view of the physical processes in the phononic crystals,
allows identifying many features of the nonlinear behavior
of phononic crystals. The nonlinear Riemann travelling wave
is studied within the frame of this system in Section 3. The
results of the conditions of the travelling wave existence
up to the onset of the gradient catastrophe are obtained.
The definite example of the transformation of the initially
sinusoidal disturbance is analyzed in Section 4. The results
obtained are summarized in Conclusion.

2. The Discrete Model of the
Transverse Oscillations

A typical phononic crystal can be regarded as a spatially regu-
lated structure whose discreteness must be considered when
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Figure 1: Transverse oscillations of equalmass particles in an atomic
chain.

studying the dynamics of phonons. Discrete mathematical
models are an effective tool for theoretical and experimental
studies of the behavior of low-dimensional structures. The
basic discrete model for the study of transverse oscillations is
a chain of atoms the movement of which is limited by guides
in the formof parallel straight lines lying on one plane at equal
distance from each other (Figure 1) [7, 8].

The equation of motion for the atom with number 𝑛 can
be written as

𝑚

𝑑
2
𝜉
𝑛

𝑑𝑡
2

= 𝐹
𝑛−1

+ 𝐹
𝑛+1

, (1)

where𝑚 is the mass, 𝜉
𝑛
is the deviation of the mass along the

guideline from equilibrium position 𝜉
𝑛
= 0, and 𝐹

𝑛±1
is trans-

verse components of the forces acting from the neighboring
masses.The forces acting on the atoms in real phonon crystals
are determined by the interatomic interaction potential. In
the case of small perturbations of the chain, the harmonic
approximation of the interaction potential can be used, and
the forces can be calculated by Hooke’s law [9]:

𝐹
𝑛±1

= −𝐾Δ𝑙
𝑛±1

sin (𝛼
𝑛±1

) , (2)

where 𝐾 is the analogue of Hook’s constant, Δ𝑙
𝑛±1

is the
extension of the spring between themasses with 𝑛 and (𝑛±1),
and 𝛼

𝑛±1
is the local angle of the deviation from the chain on

axis. The extension Δ𝑙
𝑛+1

of the spring during the motion of
the masses can be calculated by a simple formula:

Δ𝑙
𝑛+1

= (Δ𝑙
0
+ √(𝜉

𝑛+1
− 𝜉
𝑛
)
2

+ 𝑎
2
− 𝑎) , (3)

where Δ𝑙
0
is the extension in the equilibrium position related

to the preliminary tension of the spring. The value sin(𝛼
𝑛±1

)

can be found from the geometric relations:

sin (𝛼
𝑛+1

) =

(𝜉
𝑛+1

− 𝜉
𝑛
)

√(𝜉
𝑛+1

− 𝜉
𝑛
)
2

+ 𝑎
2

. (4)

The extension Δ𝑙
𝑛−1

and the angle 𝛼
𝑛−1

are calculated in the
analogous way. As a result, we get

𝐹
𝑛+1

= −𝐾 (𝜉
𝑛+1

− 𝜉
𝑛
)

Δ𝑙
0
+ √(𝜉

𝑛+1
− 𝜉
𝑛
)
2

+ 𝑎
2
− 𝑎

√(𝜉
𝑛+1

− 𝜉
𝑛
)
2

+ 𝑎
2

. (5)

Let us consider the small vibrations (as it will be shown
below, this does not mean that the oscillations are weakly
nonlinear), using the approximation |𝜉

𝑛
− 𝜉
𝑛±1

| ≪ 𝑎 and
Δ𝑙
0
≪ 𝑎.
The nonlinearity introduced in this manner has a geo-

metrical character (see also [10]) and is not dependent on the
physical properties of the phonon crystal.

Then (1) can be rewritten in the following form:

𝑚

𝑑
2
𝜉
𝑛

𝑑𝑡
2

= − 𝐾

Δ𝑙
0

𝑎

(2𝜉
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2𝑎

[(𝜉
𝑛
− 𝜉
𝑛−1

)
3

− (𝜉
𝑛+1

− 𝜉
𝑛
)
3

] .

(6)

The elastic continuum model provides an adequate
description of acoustic phonons in nanostructures [2, 9]. To
describe the transverse perturbations let us pass over to the
continuum limit, assuming the wavelength is large compared
with the spatial period 𝑎 of the chain.The discrete coordinate
𝑛𝑎, determining the position of atoms in the chain, is replaced
by a continuous coordinate 𝑥.

Let us direct the axis 𝑥, along which the wave propagates,
perpendicular to the guideline (see Figure 1). We will con-
sider

𝜉
𝑛
= 𝜉 (𝑥) , 𝜉

𝑛+1
= 𝜉 (𝑥 + 𝑎) , 𝜉

𝑛−1
= 𝜉 (𝑥 − 𝑎) (7)

and expand variables in a small period 𝑎. In the long-
wave limit, the dispersion law of acoustic phonons is well
approximated by a linear dependence [9], so the expansion
will retain only the first two terms:

(𝜉
𝑛
− 𝜉
𝑛−1

)
3

− (𝜉
𝑛+1

− 𝜉
𝑛
)
3

≈ −3𝑎
4
(

𝜕𝜉

𝜕𝑥

)

2
𝜕
2
𝜉

𝜕𝑥
2
. (8)

As a result, we obtain the nonlinear wave equation (herein
after we will omit number 𝑛):

𝜕
2
𝜉

𝜕𝑡
2
− 𝑐
2 𝜕
2
𝜉

𝜕𝑥
2
= 𝛽(

𝜕𝜉

𝜕𝑥

)

2
𝜕
2
𝜉

𝜕𝑥
2
, (9)

where the nonlinear coefficient and the square of the sound
speed are given by the following expressions:

𝛽 = (

3𝐾

2𝑚

)𝑎
2
, 𝑐

2
= (

𝐾

𝑚

)Δ𝑙
0
𝑎. (10)

Let us perform the transformation of the variables for the
nonlinear wave equation (9) not to contain constants:

𝜕
2
𝑧

𝜕𝜏
2
−

𝜕
2
𝑧

𝜕𝑥
2
= (

𝜕𝑧

𝜕𝑥

)

2
𝜕
2
𝑧

𝜕𝑥
2
,

𝑧 = √
2Δ𝑙
0

3𝑎

𝜉, 𝜏 = √
𝐾Δ𝑙
0
𝑎

𝑚

𝑡.

(11)
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The lattice oscillations in the framework of (9) can be
described in two ways—in the form of standing and traveling
waves. The solutions of (9) in the form of standing waves
of small amplitudes in a bounded system were obtained in
[8, 11], strongly nonlinear vibrations at large amplitudes in
[12]. However, the undoubted practical interest presumes the
transfer of energy in a rather long phononic crystal lattice
model, which should be described by the solutions of (9) in
the form of traveling waves.

3. Dynamics of Deformation in
the Approximation of Riemann Waves

In finding the solution, (11) will not assume linearity low.
To find solutions it is convenient to move from a nonlinear
wave equation (11) to a system of quasilinear equations using
substitutions:

𝜕𝑧

𝜕𝑥

= 𝑢,

𝜕𝑧

𝜕𝜏

= V.

(12)

Substituting (12) into (11), we obtain the nonlinear first-order
equation for two unknown functions:

𝜕V
𝜕𝜏

−

𝜕𝑢

𝜕𝑥

= 𝑢
2 𝜕𝑢

𝜕𝑥

. (13)

The second missing equation is obtained by cross-
differentiation (12)

𝜕𝑢

𝜕𝜏

=

𝜕V
𝜕𝑥

. (14)

The system of (13) and (14) is hyperbolic and, therefore,
admits solutions in the form of propagating waves. In each
wave, even nonlinear, the variables are linked, so we assume
that V = V(𝑢). Then, the system of (13) and (14) is reduced to

𝜕𝑢

𝜕𝜏

−

𝜕V
𝜕𝑢

𝜕𝑢

𝜕𝑥

= 0,

𝜕V
𝜕𝑢

𝜕𝑢

𝜕𝜏

− (1 + 𝑢
2
)

𝜕𝑢

𝜕𝑥

= 0.

(15)

System (15) is a system of linear equations with respect to the
derivatives 𝜕𝑢/𝜕𝜏 and 𝜕𝑢/𝜕𝑥. For the existence of a nontrivial
solution it is essential and enough that its determinant
be zero, which leads to the determination of the required
connection between the functions V = V(𝑢):

(

𝑑V
𝑑𝑢

)

2

= 1 + 𝑢
2
, (16)

Extracting only one root in (16), corresponding to the wave
traveling to the right, we obtain the equation:

𝑑V
𝑑𝑢

= √1 + 𝑢
2
. (17)
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Figure 2: Dependence V = V(𝑢) in (18).

Equation (17) is easily integrated into

V = ∫√1 + 𝑢
2
𝑑𝑢 =

𝑢√1 + 𝑢
2

2

+

Arsh (𝑢)

2

+ 𝐶, (18)

where 𝐶 is the arbitrary constant of the integration. From the
condition that at infinity 𝑢 → 0 and V → 0 the value is
𝐶 = 0. This curve is displayed in Figure 2.

In a traveling wave due to (18), the equations of system
(15) become identical; therefore, later either of them can be
used. It is conveniently rewritten as

𝜕𝑢

𝜕𝜏

+ 𝑈 (𝑢)

𝜕𝑢

𝜕𝑥

= 0, (19)

where

𝑈 (𝑢) =
√1 + 𝑢

2
. (20)

The solution of (19), satisfying the initial condition

𝑧 (𝑥, 𝜏 = 0) = 𝐹 (𝑥) ,

𝑢 (𝑥, 𝜏 = 0) =

𝑑𝐹 (𝑥)

𝑑𝑥

= 𝑓 (𝑥) ,

(21)

is expressed in the form of a simple wave or the Riemann
wave:

𝑢 = 𝑓 ⌊𝑥 − 𝑈 (𝑢) 𝜏⌋ , (22)

Formation of the Riemann waves in monatomic chain
with longitudinal displacement and first-neighbors interac-
tions is discussed in detail in the book [9]. The Riemann
waves inmonatomic chainwith transverse displacement have
not been studied previously. However, some experimental
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data, given in works [13, 14], can be considered an indirect
evidence of their existence.

To calculate the wave profile 𝑧(𝑥, 𝜏) let us move to the
implicit Riemann variable:

𝑦 = 𝑥 − 𝑈 (𝑢) 𝜏 = 𝑥 − √1 + 𝑢
2
𝜏. (23)

Then, the spatial derivative becomes the function of the new
variable 𝑢 = 𝑓(𝑦) and according to (12), the perturbation can
be found:

𝑧 (𝑥, 𝜏) = ∫𝑢 (𝑥, 𝜏) 𝑑𝑥 = ∫𝑢 (𝑦)

𝑑𝑥

𝑑𝑦

𝑑𝑦. (24)

From (23) it follows that

𝑑𝑦 = [1 − 𝜏

𝜕𝑈 (𝑢)

𝜕𝑢

𝜕𝑢

𝜕𝑥

] 𝑑𝑥. (25)

The derivative 𝜕𝑢/𝜕𝑥 entering (25) can be calculated as

𝜕𝑢

𝜕𝑥

=

𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕𝑥

=

𝜕𝑢

𝜕𝑦

[1 − 𝜏

𝜕𝑈 (𝑢)

𝜕𝑢

𝜕𝑢

𝜕𝑥

] . (26)

Then

𝜕𝑢

𝜕𝑥

=

𝜕𝑢/𝜕𝑦

1 + 𝜏 (𝜕𝑈 (𝑢) /𝜕𝑢) (𝜕𝑢/𝜕𝑦)

(27)

and the integral (24) is converted to

𝑧 (𝑥, 𝜏) = ∫𝑢 (𝑦) 𝑑𝑦 + 𝜏∫𝑢

𝑑𝑈 (𝑢)

𝑑𝑢

𝑑𝑢. (28)

The value of the second integral in (28) can be found by using
the explicit expression for 𝑈(𝑢), given by formula (23):

∫𝑢

𝑑𝑈 (𝑢)

𝑑𝑢

𝑑𝑢 = ∫

𝑢
2

√1 + 𝑢
2
𝑑𝑢 =

𝑢√1 + 𝑢
2

2

−

Arsh (𝑢)

2

(29)

and the arbitrary constant of the integrationwas obtained due
to the assumption that if𝑢 → 0, the value of the integralmust
also tend to zero.

As 𝑢(𝑥, 𝜏) = 𝜕𝑧(𝑥, 𝜏)/𝜕𝑥 the value of the first integral in
(28) is equal to

∫𝑢 (𝑦) 𝑑𝑦 = 𝐹 (𝑦) . (30)

Then we finally obtain the expression for the displacement

𝑧 (𝑥, 𝜏) = 𝐹 (𝑥 − √1 + 𝑓(𝑦)
2

𝜏)

+
[

[

[

𝑓 (𝑦)√1 + 𝑓(𝑦)
2

2

−

Arsh (𝑓 (𝑦))

2

]

]

]

𝜏,

(31)

where 𝑦 is represented by formula (23). Formulas (22),
(23), and (31) describe a propagating nonlinear deformable
wave in the phononic crystal. The concrete example of the

deformation of the original disturbance on the example of the
harmonic impulse is considered in Section 4.

The nonlinear deformation of the wave leads to the
formation of a steep front and subsequent ambiguity of
the solution. This process, called a gradient catastrophe, is
well known in nonlinear mathematical physics [15, 16]. Let
us define here the onset of the gradient catastrophe. It is
sufficient to use expression (26) for the spatial derivative of
the function 𝑢(𝑥, 𝜏), which is conveniently rewritten as

𝜕𝑢

𝜕𝑥

=

𝑑𝑓 (𝑦) /𝑑𝑦

[1 + (𝑑𝑓 (𝑦) /𝑑𝑦) (𝑓 (𝑦) /√1 + 𝑓(𝑦)
2

) 𝜏]

=

𝑑𝑓 (𝑦) /𝑑𝑦

[1 + (𝑑/𝑑𝑦)√1 + 𝑓(𝑦)
2

𝜏]

,

(32)

where 𝑦 again is defined by formula (23). As we can see,
the derivative increases in those sectors of the wave where
𝑑𝑓/𝑑𝑦 < 0 and it becomes infinite during the time

𝑇br =
1

Max
𝑥
[− (𝑑/𝑑𝑥)√1 + 𝑓(𝑥)

2
]

=

1

Max
𝑥
[− (𝑑/𝑑𝑥)√1 + ((𝑑/𝑑𝑥)𝐹 (𝑥))

2
]

.

(33)

The “breaking” of the front of the wave occurs at the point
where the coordinate𝑋br satisfies the following conditions:

(√1 + 𝑓(𝑥)
2
)

󸀠󸀠󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑋br

= 0, (√1 + 𝑓(𝑥)
2
)

󸀠󸀠󸀠󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑋br

< 0.

(34)

From the first equation (33) it follows that the breaking
coordinate𝑋br is the solution of the equation:

(𝑓(𝑥)
󸀠
)

2

+ 𝑓 (𝑥) (1 + 𝑓(𝑥)
2
) 𝑓(𝑥)

󸀠󸀠
= 0. (35)

Using (32) and (34) the breaking time can be calculated as

𝑇br =
1

√−𝑓(𝑥)
3
𝑓(𝑥)
󸀠󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑋br

. (36)

In the transition to the physical time it is

̃
𝑇br = √

𝑚

𝑘Δ𝑙
0
𝑎

𝑇br. (37)

Thus, the wave breaking time, which can be interpreted
as the accumulation time of nonlinear effects in the envi-
ronment, depends not only on the profile of the initial
disturbance, but also on the parameters of the medium and
the initial mass chain tension.
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In the case of small perturbations (the weakly nonlinear
Riemann wave) the approximate formula follows from (31):

𝑧 (𝑥, 𝜏) = 𝐹 (𝑥 − (1 + [𝑓 (𝑦)]
2

) 𝜏) ,

𝑦 = 𝑥 − (1 + [𝑓 (𝑦)]
2

) 𝜏

(38)

and in the case of strongly nonlinear Riemann wave

𝑧 (𝑥, 𝜏) = 𝐹 (𝑥 −
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝜏) +

𝑓 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨

2

𝜏,

𝑦 = 𝑥 −
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝜏.

(39)

4. The Propagation of Harmonic Perturbation

Surface structuring in a phononic crystal can be considered
on the basis of the model of the temporal wave evolution in
a chain of masses, perturbed at the initial moment following
the harmonic law:

𝐹 (𝑥) = 𝐴 sin (𝑘𝑥) (40)

with the constant amplitude 𝐴 and the wave number 𝑘. Let
the wave with the initial profile get distributed in the positive
axis 𝑥 direction. Then the Riemann wave for the given initial
perturbation is of the following form:

𝑢 = 𝐴𝑘 cos ⌊𝑥 − √1 + 𝑢
2
𝜏⌋ . (41)

Following the conditions from (34), we find that the wave
breaking will occur in two points of the profile and this
pattern will be repeated across the length of the wave

𝑋br =
1

𝑘

arc cos
[

[

[

[

±

√√1 + (𝐴𝑘)
2
− 1

𝐴𝑘

]

]

]

]

=

1

𝑘

arc sin(±

√
1 + 𝐴
2
𝑘
2
− √1 + 𝐴

2
𝑘
2

𝐴𝑘

) .

(42)

Formula (42) allows us to estimate the position of the
“breaking” point depending on its amplitude. When the
amplitude tends to zero, this formula (42) can be approxi-
mated by the following expression:

𝑋br ≈ ±

1

𝑘

arc cos(
√2

2

) = ±

𝜋

4𝑘

= ±

𝜆

8

, (43)

where 𝜆 = 2𝜋/𝑘 is the wavelength. At large amplitudes
formula (42) may be replaced by

𝑋br ≈ ±

1

𝑘

arc cos (0) = ±

𝜋

2𝑘

= ±

𝜆

4

. (44)

Thus, the position of the point with the unlimited slope
is relatively weakly dependent on the wave amplitude, and it
varies from 𝜆/8 to 𝜆/4.
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Figure 3: Dependence of the normalized breaking values 𝑍br and
𝑢br on the value 𝑘𝐴.

The “breaking” time according to formula (36) can be
calculated explicitly:

𝑇br =
1

𝐴
2
𝑘
3 cos (𝑘𝑋br)

2 (45)

or

𝑘𝑇br =
1

√1 + 𝐴
2
𝑘
2
− 1

. (46)

Accordingly (46) the wave of a small amplitude “breaks”
for a very long time, and with the increasing amplitude the
onset of the gradient catastrophe decreases rapidly.

The corresponding value of the breaking point 𝑢(𝑥, 𝜏) can
be found from (40):

𝑢br =
√√1 + 𝐴

2
𝑘
2
− 1.

(47)

Then the value of the function 𝑧(𝑥, 𝜏) at the moment of
breaking can be calculated by formula (31) provided by (41),
(42), and (47):

𝑧br =
√
1 + 𝐴
2
𝑘
2
− √1 + 𝐴

2
𝑘
2

𝑘

+

1

2

[((1 + 𝐴
2
𝑘
2
)

1/4
√√1 + 𝐴

2
𝑘
2
− 1

−Arsh(
√√1 + 𝐴

2
𝑘
2
− 1))

×(
√√1 + 𝐴

2
𝑘
2
− 1)

−1

] .

(48)
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Figure 4: Shapes of the 𝑧(𝑘𝐴)/𝐴 and 𝑢(𝑘𝐴)/𝐴𝑘 at the initial time and the breaking time: (a)-(b) 𝑘𝑇br = 200.5 and 𝑘𝐴 = 0.1; (c)-(d) 𝑘𝑇br = 2.41

and 𝑘𝐴 = 1; (e)-(f) 𝑘𝑇br = 0.11 and 𝑘𝐴 = 10.

The plot of points of breaking 𝑧br and 𝑢br, normalized
to the value of the amplitude and value of the amplitude
multiplied wave number 𝑘, respectively, depending on the
values of the quantity 𝐴𝑘 is shown in Figure 3.

Temporal evolution of the transverse perturbations
𝑧(𝑥, 𝜏), normalized to the amplitude of the initial pertur-
bation, calculated by formulas (18), (20), (22), and (31) for
the harmonic initial perturbation with the values 𝐴𝑘 = 0.1,
𝐴𝑘 = 1, and 𝐴𝑘 = 10, is represented in Figure 4.

From Figure 4 it is seen that with the propagation of the
harmonic perturbation the wave profile becomes asymmetric

and the asymmetry for the functions 𝑧(𝑥) and 𝑢(𝑥) is shown
differently. With the time and the increase of the propagated
distance, the steepening of the wave front 𝑢(𝑥) takes place.
Initially sinusoidal wave profile 𝑧(𝑥) is transformed into a
trapezoidal one. This agrees well with the results of the wave
transformation in a cubic nonlinear medium obtained in
[17, 18]. The transformation of the profile appears faster and
is more pronounced for large-amplitude waves.

It is worth mentioning that at the moment of the onset of
the gradient catastrophe in the profile 𝑢(𝑥) the singularity of
type 𝑥

1/3 is formed, as it was recently shown for hyperbolic
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equations of a relatively general form [18, 19]. Since the
function 𝑧(𝑥) is the integral of𝑢(𝑥), then at the breaking point
the singularity is very weak (𝑥

4/3
) and that is why it is not

visible in Figures 4(a), 4(c), and 4(e) in contrast to the graphs
in Figures 4(b), 4(d), and 4(f).

5. Conclusion

The considered discrete model of the phononic crystal
helps to reveal certain consistent patterns of energy transfer
of thermal motion in low-dimensional phononic crystals.
Collective displacements of transverse phonons in a long-
phononic crystal lead to the formation of traveling waves. As
a result of the nonlinearity of the transverse lattice oscillations
stable wave structures of the finite amplitude can be formed
on the surface of the phononic crystal. In the long-wave
approximation, the nature of transverse deformation of the
lattice of the phononic crystal can be described by Riemann
waves. The analytical expression of such Riemann wave
allows establishing the dependence of the transverse defor-
mation of the phononic crystal on its parameters allowing
us to control the formation of surface structures. The time
existence of the Riemann is determined. This time can be
interpreted as the characteristic time of the accumulation
of nonlinear effects that should be taken into consideration
when determining the appropriate limitations on the use
of low-dimensional materials. The stronger appearance of
nonlinearity is, the greater the amplitude of thewave is, which
is demonstrated by the propagation of the sinusoidal wave
and the distortion of its shape. The results obtained may be
of practical interest, since the behavior of transverse phonons
has a crucial importance in all the effects connected with the
scattering of the conduction electron on the surface of the
crystal [20, 21].
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