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The main purpose of this paper is to derive a new criterion for meromorphic starlike functions of order 𝛼.

1. Introduction and Preliminaries

Let Σ
𝑛
denote the class of functions of the form

𝑓 (𝑧) =

1

𝑧

+

∞

∑

𝑘=𝑛

𝑎
𝑘−1
𝑧
𝑘−1

(𝑛 ∈ N := {1, 2, . . .}) , (1)

which are analytic in the punctured open unit disk
U
∗

:= {𝑧 : 𝑧 ∈ C and 0 < |𝑧| < 1} =: U \ {0} . (2)
A function 𝑓 ∈ Σ

𝑛
is said to be in the class MS∗

𝑛
(𝛼)

of meromorphic starlike functions of order 𝛼 if it satisfies the
condition

R(

𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)

) < −𝛼 (𝑧 ∈ U; 0 ≦ 𝛼 < 1) . (3)

For simplicity, we writeMS∗
𝑛
(0) =:MS∗

𝑛
.

For two functions 𝑓 and 𝑔, analytic in U, we say that the
function 𝑓 is subordinate to 𝑔 in U and write

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U) , (4)
if there exists a Schwarz function 𝜔, which is analytic in U

with
𝜔 (0) = 0, |𝜔 (𝑧)| < 1 (𝑧 ∈ U) , (5)

such that
𝑓 (𝑧) = 𝑔 (𝜔 (𝑧)) (𝑧 ∈ U) . (6)

Indeed, it is known that
𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U)

󳨐⇒ 𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) .
(7)

Furthermore, if the function 𝑔 is univalent inU, then we have
the following equivalence:

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U)

⇐⇒ 𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) .
(8)

In a recent paper, Miller et al. [1] proved the following
result.

Theorem A. Let 𝑛 ∈ N, 0 ≦ 𝜆 ≦ 1, and

𝑀
0
(𝜆, 𝑛) =

𝑛 + 1 − 𝜆

√(𝑛 + 1 − 𝜆)
2

+ 𝜆
2
+ 1 − 𝜆

. (9)

If 𝑓 ∈ Σ
𝑛
satisfies the condition

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
2

𝑓
󸀠

(𝑧) + (1 − 𝜆) 𝑧𝑓 (𝑧) + 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑀
0
(𝜆, 𝑛) (𝑧 ∈ U) ,

(10)

then 𝑓 ∈MS∗
𝑛
.

More recently, Catas [2] improvedTheorem A as follows.

Theorem B. Let 𝑛 ∈ N, 0 ≦ 𝜆 < 1, and

𝑀(𝜆, 𝑛) = max {𝑀
0
(𝜆, 𝑛) ,𝑀

1
(𝜆, 𝑛)} , (11)

where𝑀
0
(𝜆, 𝑛) is given by (9) and
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𝑀
1
(𝜆, 𝑛) =

2 (𝑛 + 1 − 𝜆) (1 − 𝜆)

(1 − 𝜆) (𝑛 − 1) + √(𝑛 + 1 − 𝜆)
2

(1 − 𝜆) + [(𝑛 − 1) (1 − 𝜆)]
2

. (12)

If 𝑓 ∈ Σ
𝑛
satisfies the condition

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
2

𝑓
󸀠

(𝑧) + (1 − 𝜆) 𝑧𝑓 (𝑧) + 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑀 (𝜆, 𝑛) (𝑧 ∈ U) , (13)

then 𝑓 ∈MS∗
𝑛
.

In this paper, we aim at finding the conditions for
starlikeness of the expression |𝑧2𝑓󸀠(𝑧) + 𝜆𝑧𝑓(𝑧) + 1 − 𝜆| for
𝜆 > 1.

For some recent investigations of meromorphic func-
tions, see, for example, the works of [3–12] and the references
cited therein.

In order to prove our main results, we require the follow-
ing subordination result due to Hallenbeck and Ruscheweyh
[13].

Lemma 1. Let 𝜙 be a convex function with 𝜙(0) = 1, and let
𝛾 ̸= 0 be a complex number withR(𝛾) ≧ 0. If a function

p (𝑧) = 1 + p
𝑛
𝑧
𝑛

+ p
𝑛+1
𝑧
𝑛+1

+ ⋅ ⋅ ⋅ (14)

satisfies the condition

p (𝑧) +
1

𝛾

𝑧p
󸀠

(𝑧) ≺ 𝜙 (𝑧) , (15)

then

p (𝑧) ≺ 𝜒 (𝑧) :=
𝛾

𝑛𝑧
𝛾/𝑛

∫

𝑧

0

𝜙 (𝑡) 𝑡
(𝛾/𝑛)−1

𝑑𝑡 ≺ 𝜙 (𝑧) . (16)

2. Main Results

We begin by stating the following result.

Theorem 2. Let 𝑛 ∈ N, 𝜆 > 1, and 0 ≦ 𝛼 < 1. If 𝑓 ∈ Σ
𝑛

satisfies the inequality
󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
2

𝑓
󸀠

(𝑧) + 𝜆𝑧𝑓 (𝑧) + 1 − 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑀, (17)

where

𝑀 := 𝑀(𝜆, 𝛼, 𝑛) =

(1 − 𝛼) (𝜆 + 𝑛 − 1)

𝜆 − 𝛼 + √(1 − 𝜆)
2

+ (𝜆 + 𝑛 − 1)
2

,

(18)

then 𝑓 ∈MS∗
𝑛
(𝛼).

Proof. Suppose that

𝑞 (𝑧) := 𝑧𝑓 (𝑧) (𝑧 ∈ U) . (19)

It follows from (19) that

𝑧𝑞
󸀠

(𝑧) = 𝑧𝑓 (𝑧) + 𝑧
2

𝑓
󸀠

(𝑧) . (20)

By combining (17), (19), and (20), we easily get

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞 (𝑧) +

1

𝜆 − 1

𝑧𝑞
󸀠

(𝑧) − 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

𝑀

𝜆 − 1

, (21)

or equivalently

𝑞 (𝑧) +

1

𝜆 − 1

𝑧𝑞
󸀠

(𝑧) ≺ 1 +

𝑀

𝜆 − 1

𝑧. (22)

An application of Lemma 1 yields

𝑞 (𝑧) ≺

𝜆 − 1

𝑛𝑧
(𝜆−1)/𝑛

∫

𝑧

0

(1 +

𝑀

𝜆 − 1

𝑡) 𝑡
[(𝜆−1)/𝑛] −1

𝑑𝑡

= 1 +

𝑀

𝜆 + 𝑛 − 1

𝑧.

(23)

The subordination (23) is equivalent to

󵄨
󵄨
󵄨
󵄨
𝑞 (𝑧) − 1

󵄨
󵄨
󵄨
󵄨
<

𝑀

𝜆 + 𝑛 − 1

=: 𝑁. (24)

From (18) and (24), we know that

𝑁 <

1 − 𝛼

𝜆 − 𝛼

< 1. (25)

We suppose that

−

𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)

:= (1 − 𝛼) 𝑝 (𝑧) + 𝛼. (26)

By virtue of (19) and (26), we get

𝑧
2

𝑓
󸀠

(𝑧) = −𝑞 (𝑧) [(1 − 𝛼) 𝑝 (𝑧) + 𝛼] , (27)

which implies that (17) can be written as
󵄨
󵄨
󵄨
󵄨
𝑞 (𝑧) [(1 − 𝛼) 𝑝 (𝑧) + 𝛼 − 𝜆] + 𝜆 − 1

󵄨
󵄨
󵄨
󵄨
< 𝑀 = (𝜆 + 𝑛 − 1)𝑁.

(28)

We now only need to show that (28) impliesR(𝑝(𝑧)) > 0
in U. Indeed, if this is false, since 𝑝(0) = 1, then there exists a
point 𝑧

0
∈ U such that 𝑝(𝑧

0
) = 𝛽𝑖, where 𝛽 is a real number.

Thus, in order to show that (28) impliesR(𝑝(𝑧)) > 0 in U, it
suffices to obtain the contradiction from the inequality

󵄨
󵄨
󵄨
󵄨
𝑞 (𝑧
0
) [(1 − 𝛼) 𝛽𝑖 + 𝛼 − 𝜆] + 𝜆 − 1

󵄨
󵄨
󵄨
󵄨

≧ (𝜆 + 𝑛 − 1)𝑁 (𝛽 ∈ R) .
(29)

By setting

𝑞 (𝑧
0
) = 𝑢 + 𝑖V (𝑢, V ∈ R) , (30)
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we have

𝐸 =
󵄨
󵄨
󵄨
󵄨
𝑞 (𝑧
0
) [(1 − 𝛼) 𝛽𝑖 + 𝛼 − 𝜆] + 𝜆 − 1

󵄨
󵄨
󵄨
󵄨

2

= (𝑢
2

+ V2) [(1 − 𝛼)2𝛽2 + (𝛼 − 𝜆)2]

− 2 (1 − 𝜆)R ((𝑢 + 𝑖V) [(1 − 𝛼) 𝛽𝑖 + 𝛼 − 𝜆]) + (1 − 𝜆)2

= (𝑢
2

+ V2) (1 − 𝛼)2𝛽2 + 2 (1 − 𝜆) (1 − 𝛼) 𝛽V

+ |(𝑢 + 𝑖V) (𝛼 − 𝜆) − (1 − 𝜆)|2.
(31)

By means of (24), we obtain

|(𝑢 + 𝑖V) (𝛼 − 𝜆) − (1 − 𝜆)|

= |(𝑢 + 𝑖V) (𝛼 − 𝜆) − (𝛼 − 𝜆) + 𝛼 − 𝜆 − 1 + 𝜆|

= |(𝛼 − 𝜆) (𝑢 + 𝑖V − 1) − (1 − 𝛼)|

≧ 1 − 𝛼 − (𝜆 − 𝛼) |𝑢 + 𝑖V − 1|

≧ 1 − 𝛼 − (𝜆 − 𝛼)𝑁.

(32)

It follows from (31) and (32) that

𝐸 ≧ (𝑢
2

+ V2) (1 − 𝛼)2𝛽2 + 2 (1 − 𝜆) (1 − 𝛼) 𝛽V

+ [1 − 𝛼 − (𝜆 − 𝛼)𝑁]
2

.

(33)

We now set

𝐹 (𝛽) := 𝐸 −𝑀
2

≧ (𝑢
2

+ V2) (1 − 𝛼)2𝛽2 + 2 (1 − 𝜆) (1 − 𝛼) V𝛽

+ [1 − 𝛼 − (𝜆 − 𝛼)𝑁]
2

− (𝜆 + 𝑛 − 1)
2

𝑁
2

.

(34)

If 𝐹(𝛽) ≧ 0, then (29) holds true. Since (𝑢2 + V2)(1 − 𝛼)2 > 0,
the inequality 𝐹(𝛽) ≧ 0 holds if the discriminant Δ ≦ 0; that
is,

Δ = (1 − 𝛼)
2

× {(1 − 𝜆)
2V2 − (𝑢2 + V2)

× [(1 − 𝛼 − (𝜆 − 𝛼)𝑁)
2

− (𝜆 + 𝑛 − 1)
2

𝑁
2

]} ≦ 0,

(35)

and the last inequality is equivalent to

V2 [(1 − 𝜆)2 − (1 − 𝛼 − (𝜆 − 𝛼)𝑁)2 + (𝜆 + 𝑛 − 1)2𝑁2]

≦ 𝑢
2

[(1 − 𝛼 − (𝜆 − 𝛼)𝑁)
2

− (𝜆 + 𝑛 − 1)
2

𝑁
2

] .

(36)

Furthermore, in view of (24) and (36), after a geometric
argument, we deduce that

V2

𝑢
2
≦

𝑁
2

1 − 𝑁
2

≦

(1 − 𝛼 − (𝜆 − 𝛼)𝑁)
2

− (𝜆 + 𝑛 − 1)
2

𝑁
2

(1 − 𝜆)
2

− (1 − 𝛼 − (𝜆 − 𝛼)𝑁)
2

+ (𝜆 + 𝑛 − 1)
2

𝑁
2

.

(37)

It follows from (37) that Δ ≦ 0, which implies that 𝐹(𝛽) ≧ 0.
But this contradicts (28). Therefore, we know thatR(𝑝(𝑧)) >
0 in U. By virtue of (26), we conclude that

R(

𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)

) < −R ((1 − 𝛼) 𝑝 (𝑧) + 𝛼) < −𝛼. (38)

This evidently completes the proof of Theorem 2.

Taking 𝛼 = 0 in Theorem 2, we obtain the following
result.

Corollary 3. Let 𝑛 ∈ N and 𝜆 > 1. If 𝑓 ∈ Σ
𝑛
satisfies the

inequality

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
2

𝑓
󸀠

(𝑧) + 𝜆𝑧𝑓 (𝑧) + 1 − 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
<

(𝜆 + 𝑛 − 1)

𝜆 + √(1 − 𝜆)
2

+ (𝜆 + 𝑛 − 1)
2

,

(39)

then 𝑓 ∈MS∗
𝑛
.
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