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The variable exponent Hardy inequality 
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𝛽(𝑥)
𝑓





𝐿𝑝(.)(0,𝑙)

, 𝑓 ≥ 0 is proved assuming that the exponents
𝑝 : (0, 𝑙) → (1,∞), 𝛽 : (0, 𝑙) → R not rapidly oscilate near origin and 1/𝑝(0)−𝛽 > 0.Themain result is a necessary and sufficient
condition on 𝑝, 𝛽 generalizing known results on this inequality.

1. Introduction

There are a lot of examples in the theory of differential equ-
ations and analysis, in which the boundedness of the Hardy
operator in some spaces is used essentially (a weighted
Lebesgue space, Lorentz space, their weak spaces, and so
on; see, e.g., [1–4]). The aim of present paper is to study a
necessary and sufficient condition for the boundedness of
Hardy operator in theweighted Lebesgue space𝐿𝑝(⋅)(0, 𝑙)with
variable exponent 𝑝 : (0, 𝑙) → (1,∞). The investigation of
variable exponent Lebesgue spaces is stimulated with the
modeling of electrorhelogical fluids (see [5, 6]). That led to
the development of regularity theory for the nonlinear elliptic
and parabolic equations with partial derivatives (see, e.g., the
bibliography in [7, 8]). Also, the requiredmathematicalmeth-
ods of analysis were elaborated to study the boundedness
of principal integral operators (maximal operator, fractional
operators, singular operator, commutators, and so on) in
spaces 𝐿𝑝(⋅) (see the recent monographs [9, 10]).

In all probability, the first investigation of the variable
exponent Hardy inequality was started in the works [11–
15], subsequently in [16–20]. The variable exponent Hardy
inequality was considered also in the recent works [21–
25]. Since the Hardy operator is the simplest one among
other integral operators, it seems logical to investigate the
necessary and sufficient conditions for this operator in the

first place. Though we have not so far succeeded in obtaining
appropriate results in the general weighted space and in
the case of general exponential functions, the representation
of our results in presenting here form seems to us more
attractive for comparisionwith the known results (see below).

More precisely, the subject of present paper is to study the
norm inequality







𝑥

𝛽(𝑥)−1
𝐻𝑓





𝐿𝑝(⋅)(0,𝑙)

≤ 𝐶







𝑥

𝛽(𝑥)
𝑓





𝐿𝑝(⋅)(0,𝑙)

; 𝑓 ≥ 0 (1)

for the Hardy operator

𝐻𝑓 (𝑥) = ∫

𝑥

0
𝑓 (𝑡) 𝑑𝑡. (2)

Due to the cited above results, a necessary and sufficient
condition for (1) take place if a regularity condition is
assumed on 𝑝, 𝛽 at the origin. Namely, let 1 < 𝑝

−
= inf 𝑝,

𝑝

+
= sup𝑝 < ∞, −∞ < 𝛽

−, 𝛽+ < ∞, both functions 𝑝, 𝛽
satisfy the condition

lim sup
𝑥→0





𝑔 (𝑥) − 𝑔 (0)





log 1

𝑥

< ∞; (3)

then inequality (1) holds if and only if 𝛽(0) < 1/𝑝(0).
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2 Abstract and Applied Analysis

In our results, the exponent functions 𝑝(⋅), 𝛽(⋅) satisfy the
following oscillation condition near origin:

lim sup
𝑥→+0

[ sup
|𝑦−𝑥|<𝑥/2





𝑔 (𝑥) − 𝑔 (𝑦)





] ln 1

𝑥

< ∞. (4)

This condition is weaker than known logarithmic condi-
tion (3); that is, (3) implies (4). We can give an example of
exponential function 𝑝(⋅) for which condition (4) is satisfied
but (3) fails: 𝑝(𝑥) = 𝑝(0) + (𝜖/(ln(1/𝑥))𝛼); 0 < 𝛼 < 1, 𝜖 > 0.
Also using L’Hopital’s rule, it is not difficult to check that such
a function 𝑝 satisfies the condition (5). Therefore, applying
the assertion of our results below, we get new results on
existence of inequality (1) (compare with the known results
in [17] or [24]; the condition (3) was imposed there).

The following main result is obtained in this paper.

Theorem 1. Let 𝛽 : (0, 𝑙) → R and 𝑝 : (0, 𝑙) → (1,∞) be
measurable functions such that 𝛽(0) < 1/𝑝


(0). Suppose there

are limits lim𝑥→+0𝑝(𝑥) = 𝑝(0) ∈ (1,∞) and lim𝑥→+0𝛽(𝑥) =
𝛽(0) ∈ R and the functions 𝛽, 𝑝 satisfy condition (4) near
origin.

Then inequality (1) holds if and only if

∫

𝑙

𝑎
𝑥

𝛽(𝑥)−1/𝑝(𝑥) 𝑑𝑥

𝑥

≤ 𝐶𝑎

𝛽(𝑎)−1/𝑝(𝑎)
, 𝑎 ∈ (0, 𝑙) . (5)

2. Notation

As to the basic properties of spaces 𝐿𝑝(⋅), we refer to [26, 27].
Throughout this paper, it is assumed that𝑝(𝑥) is ameasurable
function in (0, 𝑙) taking its values from the interval [1,∞)

with 𝑝+ = sup{𝑝(𝑥) : 𝑥 ∈ (0, 𝑙)} < ∞. The space of functions
𝐿

𝑝(⋅)
(0, 𝑙) is introduced as the class of measurable functions

𝑓(𝑥) in (0, 𝑙) which has a finite 𝐼𝑝(⋅)(𝑓) = ∫

𝑙

0
|𝑓(𝑥)|

𝑝(𝑥)
𝑑𝑥

modular (put also 𝐼𝑝(⋅);𝐸(𝑓) = ∫

𝐸
|𝑓(𝑡)|

𝑝(𝑡)
𝑑𝑡). A norm in

𝐿

𝑝(⋅)
(0, 𝑙) is given in the form





𝑓




𝑝(⋅) = inf {𝜆 > 0 : 𝐼𝑝(⋅) (

𝑓

𝜆

) ≤ 1} . (6)

(By ‖𝑓‖𝑝(⋅);𝐸 or simply ‖𝑓‖𝑝(⋅), we denote the 𝑝(⋅) norm over
set 𝐸.)

For 1 < 𝑝

−
, 𝑝

+
< ∞, the space 𝐿𝑝(⋅)(0, 𝑙) is a reflexive

Banach space.The relation between the modular and norm is
expressed by the following inequalities (see, e.g., [12]):





𝑓






𝑝+

𝑝(⋅) ≤ 𝐼𝑝 (𝑓) ≤




𝑓






𝑝−

𝑝(⋅)
,





𝑓




𝑝(⋅), ≤ 1,





𝑓






𝑝−

𝑝(⋅) ≤ 𝐼𝑝 (𝑓) ≤




𝑓






𝑝+

𝑝(⋅),




𝑓




𝑝(⋅) > 1.

(7)

These inequalities allowus to performour normestimates
in terms of a modular.

For the function 1 ≤ 𝑝(𝑥) < ∞, 𝑝(𝑥) denotes the con-
jugate function of 𝑝(𝑥), (1/𝑝(𝑥))+(1/𝑝(𝑥)) = 1, and 𝑝(𝑥) =
∞ if 𝑝(𝑥) = 1. We denote by 𝐶, 𝐶1, 𝐶2, . . . various positive
constants whose values may vary at each appearance. We
write 𝑢 ∼ V if there exist positive constants 𝐶1, 𝐶2 such that

𝐶1𝑢(𝑥) ≤ V(𝑥) ≤ 𝐶2𝑢(𝑥). By 𝜒𝐸, we denote the characteristic
function of set 𝐸.

We say a function 𝑢 : (0, 𝑙) → (−∞, +∞) is almost incr-
easing (decreasing) if there exists a constant 𝐶 > 0 such that
𝑢(𝑡1) ≤ 𝐶𝑢(𝑡2) and (𝑢(𝑡2) ≤ 𝐶𝑢(𝑡1)) for 0 < 𝑡1 ≤ 𝑡2 < 𝑙.

3. Proofs

Throughout the section, we assume that 𝑝 : (0, 𝑙) → [1,∞)

and 𝛽 : (0, 𝑙) → (−∞ + ∞) are measurable functions such
that 𝑝+ < ∞, −∞ < 𝛽

−, and 𝛽+ < ∞.

Lemma 2. Suppose 𝑠 : (0, 𝑙) → R is a measurable function
such that −∞ < 𝑠

−, 𝑠+ < +∞. and the condition (4) be sat-
isfied. Then there exists a constant 𝐶 > 1 such that

1

𝐶

𝑦

−𝑠(𝑦)
≤ 𝑥

−𝑠(𝑥)
≤ 𝐶𝑦

−𝑠(𝑦) (8)

for any 0 < 𝑥 < 𝑙, 𝑦 ∈ (𝑥/2, 3𝑥/2), where the constant 𝐶
depends on 𝑠−, 𝑠+, and the constant from the condition (4).

Proof. Since 𝑠 satisfies the condition (4), it follows that, if
𝑠(𝑦) ≥ 0, then

𝑦

−𝑠(𝑦)
≤ (

𝑥

2

)

−𝑠(𝑦)+𝑠(𝑥)

(

𝑥

2

)

−𝑠(𝑥)

≤ 𝑒

(𝑠(𝑥)−𝑠(𝑦)) ln(2/𝑥)
2

𝑠(𝑥)
𝑥

−𝑠(𝑥)
≤ 𝐶𝑥

−𝑠(𝑥)
,

(9)

and if 𝑠(𝑦) < 0 then 𝑦−𝑠(𝑦) ≤ ((3/2)𝑥)

−𝑠(𝑦)
≤ 𝐶𝑥

−𝑠(𝑥). By the
same arguments,

𝑥

−𝑠(𝑥)
≤ 𝐶𝑦

−𝑠(𝑦)
. (10)

Proof of Theorem 1. Consider the following.

Necessity. First, show that the function 𝑥𝛽(𝑥)−(1/𝑝
(𝑥)) is almost

decreasing if inequality (1) holds and the functions𝑝, 𝛽 satisfy
(4). In this way, we will show that

𝑡

𝛽(𝑡)−1/𝑝(𝑡)
≤ 𝐶1𝑎

𝛽(𝑎)−1/𝑝(𝑎)
, 0 < 𝑎 < 𝑡 < 𝑙 < ∞, (11)

where the constant 𝐶 does not depend on 𝑎, 𝑡. For fixed 𝑡, 𝑎,
there exists an𝑚 ∈ N such that

2

𝑚−1
𝑎 < 𝑡 ≤ 2

𝑚
𝑎. (12)

Let 𝑛0 ∈ N, 𝑛0 ≥ 𝑚, be such that 2𝑛0𝑎 ≤ 𝑙 < 2

𝑛0+1
𝑎. Insert a

test function

𝑓0 (𝑥) = 𝑥
−𝛽(𝑥)−1/𝑝(𝑥)

𝜒(𝑎/2,𝑎) (𝑥) , 𝑥 ∈ (0, 𝑙) , (13)

into inequality (1). Then

𝐼𝑝(⋅) (𝑥
𝛽(𝑥)

𝑓0) = ∫

𝑎

𝑎/2
𝑥

−1
𝑑𝑡 = ln 2, (14)
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and, therefore, ‖𝑥𝛽𝑓0‖𝑝(⋅) ≤ 1. It follows from (1) that
‖𝑥

𝛽−1
𝐻𝑓0‖𝑝(⋅) ≤ 𝐶. This means that 𝐼𝑝(⋅)(𝑥

𝛽(𝑥)−1
𝐻𝑓0) ≤ 𝐶2.

Therefore,

∫

𝑙

𝑎
[𝑥

𝛽(𝑥)−1/𝑝(𝑥)
∫

𝑎

𝑎/2
𝑢

−𝛽(𝑢)+1/𝑝(𝑢) 𝑑𝑢

𝑢

]

𝑝(𝑥)
𝑑𝑥

𝑥

≤ 𝐶2.
(15)

Hence,
𝑛0

∑

𝑛=1

∫

2𝑛𝑎

2𝑛−1𝑎
[𝑥

𝛽(𝑥)−1/𝑝(𝑥)
∫

𝑎

𝑎/2
𝑢

−𝛽(𝑢)+1/𝑝(𝑢) 𝑑𝑢

𝑢

]

𝑝(𝑥)
𝑑𝑥

𝑥

≤ 𝐶2,

(16)

∫

2𝑚𝑎

2𝑚−1𝑎
[𝑥

𝛽(𝑥)−1/𝑝(𝑥)
∫

𝑎

𝑎/2
𝑢

−𝛽(𝑢)+1/𝑝(𝑢) 𝑑𝑢

𝑢

]

𝑝(𝑥)
𝑑𝑥

𝑥

≤ 𝐶2.

(17)

In the integral term, it easily follows from Lemma 2 and (4)
for 𝑝, 𝛽 that

𝐶3𝑢
−𝛽(𝑢)+1/𝑝(𝑢)

≥ 𝑎

−𝛽(𝑎)+1/𝑝(𝑎)
, 𝑢 ∈ (𝑎/2, 𝑎) . (18)

Using this estimate and (17), (15), we see that

∫

2𝑚𝑎

2𝑚−1𝑎
[

ln 2
𝐶3

𝑎

1/𝑝(𝑎)−𝛽(𝑎)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)
]

𝑝(𝑥)
𝑑𝑥

𝑥

≤ 𝐶2, (19)

∫

𝑙

𝑎
[𝑥

𝛽(𝑥)−1/𝑝(𝑥)
𝑎

−𝛽(𝑎)+1/𝑝(𝑎)
]

𝑝(𝑥)
𝑑𝑥

𝑥

≤ 𝐶4,
(20)

respectively.
Using the Holder inequality for 𝑝(⋅)-norms, we see that

∫

2𝑚𝑎

2𝑚−1𝑎
[𝑎

1/𝑝(𝑎)−𝛽(𝑎)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)
]

𝑑𝑥

𝑥

≤ 𝐶0








𝜒(2𝑚−1𝑎,2𝑚𝑎)𝑥
−1/𝑝(⋅)




𝑝(⋅)

×








𝜒(2𝑚−1𝑎,2𝑚𝑎)𝑥
−1/𝑝(⋅)

𝐶𝑎

1/𝑝(𝑎)−𝛽(𝑎)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)



𝑝(⋅)

≤ 𝐶0𝐶

(21)

since

𝐼𝑝(⋅) (𝜒(2𝑚−1𝑎,2𝑚𝑎)𝑥
−1/𝑝(⋅)

) = ∫

2𝑚𝑎

2𝑚−1𝑎

𝑑𝑥

𝑥

= ln 2, (22)

and by (19)

𝐼𝑝(⋅) (𝑥
−1/𝑝(⋅)

𝐶𝑎

1/𝑝(𝑎)−𝛽(𝑎)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)
⋅ 𝜒(2𝑚−1𝑎,2𝑚𝑎) (𝑥))

≤ 𝐶5.

(23)

Hence

∫

2𝑚𝑎

2𝑚−1𝑎
[𝑎

1/𝑝(𝑎)−𝛽(𝑎)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)
]

𝑑𝑥

𝑥

≤ 𝐶, (24)

and then

∫

2𝑚𝑎

2𝑚−1𝑎
𝑥

𝛽(𝑥)−1/𝑝(𝑥) 𝑑𝑥

𝑥

≤ 𝐶𝑎

𝛽(𝑎)−1/𝑝(𝑎)
. (25)

On the other hand, by Lemma 2 and (4) for 𝑝, 𝛽, we have

𝑥

𝛽(𝑥)−1/𝑝(𝑥)
≥ 𝐶𝑡

𝛽(𝑡)−1/𝑝(𝑡)
, 𝑥 ∈ (2

𝑚−1
𝑎, 2

𝑚
𝑎) . (26)

Using this inequality from (25), we get (11). Inequity (11) has
been proved; that is, the function 𝑥𝛽(𝑥)−(1/𝑝

(𝑥)) is almost dec-
reasing.

Now, it follows from (11) and (20) that

𝐶 ≥ ∫

𝑙

𝑎
[

𝑥

𝛽(𝑥)−1/𝑝(𝑥)
𝑎

−𝛽(𝑎)+1/𝑝(𝑎)

𝐶1

]

𝑝(𝑥)

𝐶

𝑝(𝑥)
1

𝑑𝑥

𝑥

≥ ∫

𝑙

𝑎
[

𝑥

𝛽(𝑥)−1/𝑝(𝑥)
𝑎

−𝛽(𝑎)+1/𝑝(𝑎)

𝐶1

]

𝑝+

𝐶1

𝑑𝑥

𝑥

.

(27)

Hence,

∫

𝑙

𝑎
𝑥

(𝛽(𝑥)−1/𝑝(𝑥))𝑝+ 𝑑𝑥

𝑥

≤ 𝐶𝑎

(𝛽(𝑎)−1/𝑝(𝑎))𝑝+
. (28)

Now, using (28), we will derive a Bari-Stechkin [28] type
assertion in order to prove that the function 𝑥(𝛽(𝑥)−1/𝑝

(𝑥))𝑝++𝜀

is almost decreasing by some 𝜀 > 0.
Indeed, put 𝑔(𝑥) = ∫𝑙

𝑥
𝑡

(𝛽(𝑡)−1/𝑝(𝑡))𝑝+
(𝑑𝑡/𝑡). Then, by (28),

−𝑥𝑔


(𝑥) ≥

1

𝐶

𝑔 (𝑥) , 0 < 𝑥 < 𝑙. (29)

Integrating this inequality,

𝑥

1/𝐶
1 𝑔 (𝑥1) ≥ 𝑥

1/𝐶
2 𝑔 (𝑥2) , 0 < 𝑥1 ≤ 𝑥2 ≤

1

2

𝑙. (30)

Using (28),

𝐶𝑥

1/𝐶+𝑝+(𝛽(𝑥1)−1/𝑝
(𝑥1))

1 ≥ 𝑥

1/𝐶
2 𝑔 (𝑥2) .

(31)

Now, it follows from Lemma 2 and (4) for 𝑝, 𝛽 that

𝑔 (𝑥2) ≥ ∫

2𝑥2

𝑥2

𝑥

(𝛽(𝑥)−1/𝑝(𝑥))𝑝+ 𝑑𝑥

𝑥

≥ 𝐶𝑥

(𝛽(𝑥2)−1/𝑝
(𝑥2))𝑝

+

2 .

(32)

Therefore,

𝐶𝑥

1/𝐶+(𝛽(𝑥1)−1/𝑝
(𝑥1))𝑝

+

1 ≥ 𝑥

1/𝐶+(𝛽(𝑥2)−1/𝑝
(𝑥2))𝑝

+

2 ; (33)

that is, the function 𝑥

𝜀+(𝛽(𝑥)−(1/𝑝(𝑥)))𝑝+ is almost decreasing
by 𝜀 = 1/𝐶. This implies almost decreasing of the function
𝑥

𝛽(𝑥)−1/𝑝(𝑥)+𝜀1 by 𝜀1 = 𝜀/𝑝

+. Then it is easily seen that the
condition (5) is satisfied.

This completes necessity of condition (5).

Sufficiency. Let the functions𝑝, 𝛽 satisfy (4) and the condition
(5). Show that (5) implies almost decreasing of 𝑥𝛽(𝑥)−1/𝑝

(𝑥)+𝜀

by some 𝜀 > 0. Put 𝑔(𝑥) = ∫

𝑙

𝑥
𝑡

𝛽(𝑡)−1/𝑝(𝑡)
𝑑𝑡/𝑡 and repeat the

arguments before.
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We have

−𝑥𝑔


(𝑥) ≥

1

𝐶

𝑔 (𝑥) , integrating,

𝑥

1/𝐶
1 𝑔 (𝑥1) ≥ 𝑥

1/𝐶
2 𝑔 (𝑥2) , 0 < 𝑥1 ≤ 𝑥2 ≤

1

2

𝑙.

(34)

Using (5),

𝐶𝑥

1/𝐶+𝛽(𝑥)−1/𝑝(𝑥1)
1 ≥ 𝑥

1/𝐶
2 𝑔 (𝑥2) .

(35)

By Lemma 2 and (4) for 𝑝, 𝛽, it follows that

𝑔 (𝑥2) ≥ ∫

2𝑥2

𝑥2

𝑥

𝛽(𝑥)−1/𝑝(𝑥) 𝑑𝑥

𝑥

≥ 𝐶𝑥

𝛽(𝑥2)−1/𝑝
(𝑥2)

2 . (36)

Hence,

𝑥

1/𝐶+𝛽(𝑥2)−1/𝑝
(𝑥2)

2 ≤ 𝐶𝑥

1/𝐶+𝛽(𝑥1)−1/𝑝
(𝑥1)

1 ; (37)

that is, 𝑥𝜀+𝛽(𝑥)−1/𝑝
(𝑥) is almost decreasing by 𝜀 = 1/𝐶.

Let 𝑓(𝑥) ≥ 0 be a measurable function such that
‖𝑥

𝛽(𝑥)
𝑓‖𝑝(⋅) ≤ 1. Then 𝐼𝑝(⋅)(𝑥

𝛽(𝑥)
𝑓) ≤ 1. We have to prove

‖𝑥

𝛽(𝑥)−1
𝐻𝑓‖𝑝(⋅) ≤ 𝐶1. By Minkowskii inequality for 𝐿𝑝(⋅)

norms,







𝑥

𝛽(𝑥)−1
𝐻𝑓





𝑝(⋅)

≤










𝑥

𝛽(𝑥)−1
∫

𝑥

0
𝑓 (𝑡) 𝑑𝑡








𝑝(⋅);(𝛿,𝑙)

+

∞

∑

𝑛=0












𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡










𝑝(⋅);(0,𝛿)

,

(38)

where 0 < 𝛿 < (1/2)𝑙 is a fixed number.
We will derive an estimate for every summand in (38). In

this way, wewill get amodular estimate for the corresponding
terms in modular.

Denote

𝑝

−
𝑥,𝑛 = inf {𝑝 (𝑡) : 𝑡 ∈ (2−𝑛−1𝑥, 2−𝑛𝑥)} ; 𝑛 = 1, 2, . . . .

(39)

By (37),

𝑥

𝛽(𝑥)−1/𝑝(𝑥)+𝜀
≤ 𝐶𝑡

𝛽(𝑡)−1/𝑝(𝑡)+𝜀 (40)

for any 𝑡 ∈ (2

−𝑛−1
𝑥, 2

−𝑛
𝑥), 0 < 𝑥 < 𝛿, where 𝐶 does not

depend on 𝑛, 𝑡, 𝑥. From (40) using 2−𝑛−1𝑥 < 𝑡 < 2−𝑛𝑥, we get

𝑡

1/𝑝(𝑡)−𝛽(𝑡)
= 𝑡

𝜖
𝑡

1/𝑝(𝑡)−𝛽(𝑡)−𝜖
≤ 𝐶𝑡

𝜖
𝑥

1/𝑝(𝑥)−𝛽(𝑥)−𝜖

≤ 𝐶2

−𝑛𝜖
𝑥

1/𝑝(𝑥)−𝛽(𝑥)
(41)

or

𝑥

−1/𝑝(𝑥)+𝛽(𝑥)
≤ 𝐶2

−𝑛𝜖
𝑡

−1/𝑝(𝑡)+𝛽(𝑡)
. (42)

If 𝑝−𝑥,𝑛 ≤ 𝑝(𝑥), then, due to Holder’s inequality, for 𝑥 ∈

(0, 𝛿) we have

𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡) 𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

≤ 𝑥

𝛽(𝑥)−1
(∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑡

1−𝛽(𝑡)𝑝(𝑡) 𝑑𝑡

𝑡

)

1/(𝑝−
𝑥,𝑛
)


× (∫

2−𝑛𝑥

2−𝑛−1𝑥
(𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝−
𝑥,𝑛

⋅ 𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡)

1/𝑝−
𝑥,𝑛

.

(43)

Using (4) for 𝑝, 𝛽 and Lemma 2, it is not difficult to see
the following estimate:

(∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑠

1−𝛽(𝑠)𝑝(𝑠) 𝑑𝑠

𝑠

)

1/(𝑝−
𝑥,𝑛
)


≤ 𝐶𝑡

1/𝑝(𝑡)−𝛽(𝑡)
,

(44)

where 𝑡 ∈ (2−𝑛−1𝑥, 2−𝑛𝑥) and 0 < 𝑥 < 𝛿, 𝑛 = 1, 2, . . ., with the
constant 𝐶 > 0 not depending on 𝑛, 𝑥, 𝑡.

Indeed, 𝑠1−𝛽(𝑠)𝑝
(𝑠)

∼ 𝑡

1−𝛽(𝑡)𝑝(𝑡) for 𝑝, 𝛽 and 𝑠, 𝑡 ∈

(2

−𝑛−1
𝑥, 2

−𝑛
𝑥). Then to prove (44), it suffices to show

𝑡

1/(𝑝−
𝑥,𝑛
)


∼ 𝑡

1/𝑝(𝑡), which is a simple consequence of (4) for
𝑝, Lemma 2, and the fact that there exists a point 𝑦 ∈

(2

−𝑛−1
𝑥, 2

−𝑛
𝑥) such that |𝑝−𝑥,𝑛 − 𝑝(𝑦)| ≤ 𝐶/| ln 𝑡|.

For the second multilayer (43), we have the estimates

∫

2−𝑛𝑥

2−𝑛−1𝑥
(𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝−
𝑥,𝑛

𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

≤ ∫

2−𝑛𝑥

2−𝑛−1𝑥
𝜒

{𝑡𝛽(⋅)𝑝
(⋅)𝑓≥1}

(𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝(𝑡)

𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

+ ∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

≤ ∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝(𝑡)

+ 1) 𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡.

(45)

Combining the estimates (43), (44), and (45) for 0 < 𝑥 < 𝛿

and 𝑡 ∈ (2−𝑛−1𝑥 < 𝑡 ≤ 2−𝑛𝑥) we have

𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡

≤ 𝐶𝑥

−1/𝑝(𝑥)
(𝑡

1/𝑝(𝑡)−𝛽(𝑡)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)
)

× {∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)
+ 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡}

1/𝑝−
𝑥,𝑛

.

(46)

Now, taking into the account (42), here, we see that the last
term is exceeded by

≤ 𝐶2

−𝑛𝜀
𝑥

−(1/𝑝(𝑥))

×
[

[

{∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)
+𝑡

−𝛽(𝑡)(𝑡)𝑝(𝑡)
)𝑑𝑡}

1/𝑝(𝑥)

]

]

𝑝(𝑥)/𝑝−
𝑥,𝑛

.

(47)
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On the other hand, using the assumptions𝛽(0) < 1/𝑝(0) and
𝐼𝑝(𝑥
𝛽
𝑓) ≤ 1,

∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)
+ 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡

≤ 1 + 𝐶𝑡

1−𝛽(𝑡)𝑝(𝑡)
≤ 𝐶1, 𝑡 ∈ (2

−𝑛−1
𝑥 < 𝑡 ≤ 2

−𝑛
𝑥) .

(48)

Using (48) and 𝑝−𝑥,𝑛 ≤ 𝑝(𝑥), it follows from (47) that

𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡

≤ 𝐶𝐶

𝑝+/𝑝−−1
1 2

−𝑛𝜀
𝑥

−1/𝑝(𝑥)
{∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓(𝑡))

𝑝(𝑡)

+𝑡

−𝛽(𝑡)(𝑡)𝑝(𝑡)
)𝑑𝑡}

1/𝑝(𝑥)

.

(49)

If𝑝−𝑥,𝑛 > 𝑝(𝑥), thenwe repeat all arguments with𝑝−𝑥,𝑛 changed
to 𝑝(𝑥). Indeed, it follows from the Holder inequality that

𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡

≤ 𝑥

𝛽(𝑥)−1
(∫

2−𝑛𝑥

2−𝑛−1𝑥
(𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝(𝑥)

𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡)

1/𝑝(𝑥)

× (∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑡

1−𝛽(𝑡)𝑝(𝑡) 𝑑𝑡

𝑡

)

1/𝑝(𝑥)

.

(50)

By (4), for 𝑝, 𝛽, we have (see similar arguments after (44))

(∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑠

1−𝛽(𝑠)𝑝(𝑠) 𝑑𝑠

𝑠

)

1/𝑝(𝑡)

≤ 𝐶𝑡

(1/𝑝(𝑡))−𝛽(𝑡)
,

𝑡 ∈ (2

−𝑛−1
𝑥 < 𝑡 ≤ 2

−𝑛
𝑥) .

(51)

Also,

∫

2−𝑛𝑥

2−𝑛−1𝑥
(𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝(𝑥)

𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

≤ ∫

2−𝑛𝑥

2−𝑛−1𝑥
𝜒

{𝑡𝛽(⋅)𝑝
(⋅)𝑓≥1}

(𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝(𝑡)

𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

+ ∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡

≤ 1 + 𝐶𝑡

1−𝛽(𝑡)𝑝(𝑡)
≤ 𝐶1, 𝑡 ∈ (2

−𝑛−1
𝑥 < 𝑡 ≤ 2

−𝑛
𝑥)

(52)

since the conditions 𝛽(0)𝑝(0) < 1, 𝑝(𝑥) < 𝑝

−
𝑥,𝑛, and

𝐼𝑝(⋅);(0,1)(𝑥
𝛽
𝑓) ≤ 1 are assumed.

Hence,

∫

2−𝑛𝑥

2−𝑛−1𝑥
(𝑡

𝛽(𝑡)𝑝(𝑡)
𝑓 (𝑡))

𝑝(𝑥)

𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡 ≤ 𝐶1.

(53)

Therefore, by use of (42) for 0 < 𝑥 < 𝛿 and 𝑡 ∈ (2−𝑛−1𝑥, 2−𝑛),
it follows that

𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡

≤ 𝐶[𝑡

(1/𝑝(𝑡)−𝛽(𝑡))𝑝(𝑡)
𝑥

𝛽(𝑥)−1/𝑝(𝑥)
]

1/𝑝(𝑥)

𝑥

−(1/𝑝(𝑥))

× {∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓(𝑡))

𝑝(𝑡)
+ 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡}

1/𝑝(𝑥)

≤ 𝐶2

−𝑛𝜀/𝑝(𝑥)
𝑡

(1/𝑝(𝑡)−𝛽(𝑡))((𝑝(𝑡)−1)/𝑝(𝑥))
𝑥

−(1/𝑝(𝑥))

× {∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)
𝑑𝑡 + 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡}

1/𝑝(𝑥)

.

(54)

Let us note that

𝑡

(1/𝑝(𝑡)−𝛽(𝑡))(𝑝(𝑡)−1)/𝑝(𝑥)
≤ 𝐶, 2

−𝑛−1
𝑥 < 𝑡 < 2

−𝑛
𝑥 (55)

since 𝛽(0) < 1/𝑝(0). Therefore,

𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡

≤ 𝐶12
−𝑛𝜀1

𝑥

−1/𝑝(𝑥)
{∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)

+𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡}

1/𝑝(𝑥)

,

(56)

with 𝜀1 = 𝜀/𝑝

(0).

It follows from (56) and (49) that, in both cases 𝑝(𝑥) <
𝑝

−
𝑥,𝑛 and 𝑝(𝑥) ≥ 𝑝

−
𝑥,𝑛, we have the same estimates (with

different 𝐶, 𝜀 not depending on 𝑥, 𝑛.). Denote again by 𝜀 the
minimum of 𝜀 and 𝜀1 and, taking into account (56) and (49),
we get

𝐼𝑝(⋅);(0,𝛿) (𝑥
𝛽(𝑥)−1

∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡)

≤ 𝐶𝐶

𝑝+/𝑝−−1
1 2

−𝑛𝜀𝑝−

× ∫

𝛿

0
𝑥

−1
(∫

2−𝑛𝑥

2−𝑛−1𝑥
((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)
+ 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡)𝑑𝑥.

(57)
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Due to Fubini’s theorem, this is exceeded by

𝐶𝐶

𝑝+/𝑝−−1
1 2

−𝑛𝜀𝑝−
∫

𝛿2−𝑛

0
(∫

2𝑛𝑡

2𝑛−1𝑡
𝑥

−1
𝑑𝑥)

× ((𝑡

𝛽(𝑡)
𝑓 (𝑡))

𝑝(𝑡)
+ 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡

= 𝐶

𝑝+/𝑝−−1
1 2

−𝑛𝜀𝑝− ln 2∫
𝛿2−𝑛

0
((𝑡

𝛽
𝑓(𝑡))

𝑝(𝑡)
+ 𝑡

−𝛽(𝑡)𝑝(𝑡)
)𝑑𝑡

≤ 𝐶62
−𝑛𝜀𝑝−

.

(58)

We have used that 𝐼𝑝(⋅)(𝑡
𝛽(𝑥)

𝑓(⋅)) ≤ 1 and the estimate

∫

𝛿2−𝑛

0
𝑡

−𝛽(𝑡)𝑝(𝑡)
𝑑𝑡 ≤ 𝐶, (59)

which easily follows from 𝛽(0) < 1/𝑝


(0).

Therefore,












𝑥

𝛽(𝑥)−1
∫

2−𝑛𝑥

2−𝑛−1𝑥
𝑓 (𝑡) 𝑑𝑡










𝐿𝑝(⋅)(0,𝛿)

≤ 𝐶2

−𝑛𝜀𝑝−/𝑝+
. (60)

From this estimate and (38), it follows that







𝑥

𝛽(𝑥)−1
𝐻𝑓





𝑝(⋅);(0,𝛿)

≤ 𝐶

∞

∑

𝑛=0

2

−𝑛𝜀𝑝−/𝑝+
≤ 𝐶1. (61)

It remains to get an estimate of ‖𝑥𝛽(𝑥)−1 ∫𝑥
0
𝑓(𝑡)𝑑𝑡‖

𝑝(⋅);(𝛿,𝑙)
far

from origin. Since 𝑥𝛽(𝑥)−1 is separated from zero and infinity
in (𝛿, 𝑙), it suffices to note the estimate

∫

𝑥

0
𝑓 (𝑡) 𝑑𝑡 ≤







𝑡

𝛽(𝑡)
𝑓





𝑝(⋅);(0,𝑙)







𝑡

−𝛽(𝑡)


𝑝(⋅);(0,𝑙)

≤ 𝐶. (62)

Here, the boundedness of first multiplier follows from the
assumption. Boundedness of second multiplier follows from
the condition 𝛽(0) < 1/𝑝(0) and the assertion of Lemma 2.

Theorem 1 has been proved.
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[11] S. Samko, “Hardy inequality in the generalized Lebesgue
spaces,” Fractional Calculus & Applied Analysis, vol. 6, no. 4, pp.
355–362, 2003.

[12] S. G. Samko, “Convolution type operators in 𝐿𝑝(𝑥),” Integral Tra-
nsforms and Special Functions, vol. 7, no. 1-2, pp. 123–144, 1998.

[13] V.Kokilashvili and S. Samko, “Maximal and fractional operators
in weighted 𝐿𝑝(𝑥) spaces,” Revista Matemática Iberoamericana,
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