
Research Article
Mathematical Analysis of a Cholera Model with Vaccination

Jing’an Cui,1 Zhanmin Wu,1 and Xueyong Zhou2

1 School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 College of Mathematics and Information Science, Xinyang Normal University, Xinyang, Henan 464000, China

Correspondence should be addressed to Jing’an Cui; cuijingan@bucea.edu.cn

Received 14 March 2013; Revised 18 May 2013; Accepted 26 September 2013; Published 13 February 2014

Academic Editor: Tin-Tai Chow

Copyright © 2014 Jing’an Cui et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a SVR-B cholera model with imperfect vaccination. By analyzing the corresponding characteristic equations, the local
stability of a disease-free equilibrium and an endemic equilibrium is established. We calculate the certain threshold known as the
control reproduction numberRV. IfRV < 1, we obtain sufficient conditions for the global asymptotic stability of the disease-free
equilibrium; the diseases will be eliminated from the community. By comparison of arguments, it is proved that if RV > 1, the
disease persists and the unique endemic equilibrium is globally asymptotically stable, which is obtained by the second compound
matrix techniques and autonomous convergence theorems. We perform sensitivity analysis of RV on the parameters in order to
determine their relative importance to disease transmission and show that an imperfect vaccine is always beneficial in reducing
disease spread within the community.

1. Introduction

Cholera is an acute intestinal infection caused by the inges-
tion of food or water contaminated with the bacteriumVibrio
cholera. Among the 200 serogroups of Vibrio cholera, it is
only Vibrio cholera o1 and o139 that are known to be the
cause of the cholera disease [1]. The etiological agent, Vibrio
cholera o1 (and more recently vibrio cholera o139), passes
through and survives the gastric acid barrier of the stomach
and then penetrates the mucus lining that coats the intestinal
epithelial [2]. Once they colonise the intestinal gut, then
produce enterotoxin (which stimulates water and electrolyte
secretion by the endothelial cells of the small intestine) that
leads to copious, painless, and watery diarrhoea that can
quickly lead to severe dehydration and death if treatment is
not promptly given. Vomiting also occurs in most patients.
In human volunteer studies, the infection was determined
to be 102–103 [3]. Cholera can either be transmitted through
interaction between humans (i.e., fecal-oral) or through
interaction between humans and their environment (i.e.,
ingestion of contaminated water and food from the environ-
ment). To come on urgent, transmission fast, sweeping range
widely are the characteristics of cholera which is one of the
international quarantine infectious diseases as stipulated by

the International Health Regulations (IHR), as well as one of
a class of infectious diseases as stipulated by law for infectious
diseases prevention and control of China.

Globally, cholera incidence has increased steadily since
2005 with cholera outbreaks affecting several continents
(see Figure 1). Cholera continues to pose a serious public
health problem among developing world populations which
have no access to adequate water and sanitation resources.
In 2011, 32% of cases were reported from Africa whereas
between 2001 and 2009, 93% to 98% of total cases worldwide
were reported from that continent [4]. In 2011, 61.2% of cases
were reported from Americas where a large outbreak that
started in Haiti at the end of October 2010 also affected
the Dominican Republic. The outbreak was still ongoing at
the end of 2011 with 522335 cases including 7001 deaths
that were reported by 25 December in Haiti [4]. So, cholera
remains a global threat and is one of the key indicators of
social development. The history and reality have warned: we
are facing the serious threat of cholera, the importance for
the study of cholera’s pathogenesis, regular transmission and
prevention and control strategy have become increasingly
prominent, which has also become a major problem that
needs to be solved. Up till now, a number of mathematical
models have been used to study the transmission dynamics
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Figure 1: In 1989–2011, cholera cases were reported toWorld Health
Organization by year and by continent [4].

of cholera. Capasso and Serio [5] introduced an incidence
rate in the form of 𝑘𝑆𝐼/(1 + 𝛼𝐼) (with human-to-human
transmission model only) in 1973 [6]. Codeço [7] proposed
an incidence form of 𝑎𝑆𝐵/(𝐾 + 𝐵) (with environment-to-
human transmission model only) in 2001 which, in the
first time, explicitly incorporated the pathogen concentration
into cholera modeling. Mukandavire et al. [8] included both
transmission pathways in the form of 𝛽

ℎ
𝑆𝐼 + (𝛽

𝑒
𝑆𝐵/(𝐾 +

𝐵)). In 2012, Liao and Wang [9] generalised Codeco’s model
[7], incorporating the theory of Volterra-Lyapunov stable
matrices into the classic method of Lyapunov functions; they
studied the global dynamics of the mathematical model.

Vaccination is a major factor in the resurgence and
epidemic outbreaks of some infectious diseases. Since the
pioneering work of Edward Jenner on smallpox [10], vaccina-
tion has been a commonly used method for diseases control
[11–13] and works by reducing the number of susceptible
individuals in a population. In modern times, vaccination
has a large impact on the incidence and persistence of chil-
dren infections, such as measles and whooping cough [14].
Hethcote [11] investigated a pertussis infectious model and
showed that the vaccination can make the infection undergo
fluctuation. Although vaccination offers a very powerful tool
for disease control, generally, vaccines are not 100% affective
and sometimes they only provide limited immunity due to the
natural waning of immunity in the host or antigenic variation
in the pathogen [15].

Here, we develop a cholera model with an additional
equation for the vaccinated individuals in the population.
Since Koch found Vibrio cholera in 1883, the research for
cholera vaccine had been going on for over one hun-
dred years. People have developed a variety of vaccines.
However, these vaccines were parenteral, which have short
effective protection and big side effects. In 1973, the World
Health Organization canceled the vaccine inoculation which
attracted a major concern to oral vaccines. At present, there
are three kinds of oral vaccines (i.e.,WC/BS vaccine,WC/rBS
vaccine, and CVD

103
-HgR vaccine) have been proved to be

safe, effective, and immunogenic, which were approved to
apply in some countries [16].

In this paper, according to the natural history of cholera,
we improve the model of [9] in the following two aspects.
Firstly, if the cholera persists for a long time, it will cause
death [17], especially in the area where water and sanitation
resources are not adequate [4]; a parameter 𝑑 is added
to describe the rate of disease-related death. Secondly, we
propose a proportion of the vaccination in susceptible indi-
viduals as shown in the following differential equations:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇
1
−

𝛽
1
𝑆 (𝑡) 𝐵 (𝑡)

1 + 𝛼
1
𝐵 (𝑡)

−

𝛽
2
𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− 𝜙𝑆 (𝑡) − 𝜇
1
𝑆 (𝑡) + 𝜃𝑉 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡

= 𝜙𝑆 (𝑡) − 𝜃𝑉 (𝑡) − 𝜇
1
𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

=

𝛽
1
𝑆 (𝑡) 𝐵 (𝑡)

1 + 𝛼
1
𝐵 (𝑡)

+

𝛽
2
𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− (𝑑 + 𝛼 + 𝜇
1
) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡) − 𝜇
1
𝑅 (𝑡) ,

𝑑𝐵 (𝑡)

𝑑𝑡

= 𝜂𝐼 (𝑡) − 𝜇
2
𝐵 (𝑡) .

(1)

The flow diagram of the model is depicted in Figure 2.
Since the first three and last equations in (1) are independent
of the variable 𝑅, it suffices to consider the following reduced
model:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇
1
−

𝛽
1
𝑆 (𝑡) 𝐵 (𝑡)

1 + 𝛼
1
𝐵 (𝑡)

−

𝛽
2
𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− 𝜙𝑆 (𝑡)

− 𝜇
1
𝑆 (𝑡) + 𝜃𝑉 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡

= 𝜙𝑆 (𝑡) − 𝜃𝑉 (𝑡) − 𝜇
1
𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

=

𝛽
1
𝑆 (𝑡) 𝐵 (𝑡)

1 + 𝛼
1
𝐵 (𝑡)

+

𝛽
2
𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− (𝑑 + 𝛼 + 𝜇
1
) 𝐼 (𝑡) ,

𝑑𝐵 (𝑡)

𝑑𝑡

= 𝜂𝐼 (𝑡) − 𝜇
2
𝐵 (𝑡) .

(2)

Here, 𝑆, 𝐼, 𝑉, and 𝑅 refer to the susceptible individuals,
infected individuals, vaccinated individuals, and recovered
individuals, respectively. The pathogen population at time 𝑡
is given by 𝐵(𝑡).The parameter 𝜇

1
denotes the natural human

birth and death rate, 𝛼 denotes the rate of recovery from the
disease, 𝜂 represents the rate of human contribution to the
growth of the pathogen, and 𝜇

2
represents the death rate of

the pathogen in the environment. The coefficients 𝛽
1
and

𝛽
2
represent the contact rates for the human-environment

and human-human interactions, respectively. Constants
𝛼
1
and 𝛼

2
adjust the appropriate form of the incidence

which determines the rate of new infection. If 𝛼
2
= 0, the

corresponding incidence is reduced to the standard bilinear
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Figure 2: Progression of infection from susceptible (𝑆) and vaccinated (𝑉) individuals through the infected (𝐼) and recovered (𝑅)
compartments for the combined human-environment epidemiological model with an environmental component.

form based on the mass action law, which is most common
in epidemiological models. If 𝛼

2
> 0, then the corresponding

incidence represents a consequence of saturation effects:
when the infected number is high, the incidence rate will
respondmore slowly than linearly to the increase in 𝐼. Similar
meanings stand for 𝛼

1
. The rate at which the susceptible

population is vaccinated is𝜙, and the rate atwhich the vaccine
wears off is 𝜃. All parameters are assumed nonnegative.

The organization of this paper is as follows: the positivity
and boundedness of solutions are obtained in Section 2. In
Section 3, we obtain the existence of the endemic equilib-
rium. We get the local and global stability of the disease-
free equilibrium in Section 4. In Section 5, we present the
persistence of the system. In Section 6, we show the local
and global stability of the endemic equilibrium. We analyze
the sensitivity of RV on the parameters, and we present the
numerical simulation in Section 7. The paper ends with a
conclusion in Section 8.

2. Positivity and Boundedness of Solutions

In the following, we show that the solutions of system (2) are
positive with the nonnegative initial conditions.

Theorem 1. The solutions (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡), 𝐵(𝑡)) of model (2)
are nonnegative for all 𝑡 > 0 with the non-negative initial
conditions.

Proof. System (2) can be put into the matrix form

𝑋
󸀠
= 𝑀(𝑋) , (3)

where𝑋 = (𝑆, 𝑉, 𝐼, 𝐵)
𝑇
∈ 𝑅
4 and𝑀(𝑋) is given by

𝑀(𝑋) = (

𝑀
1
(𝑋)

𝑀
2
(𝑋)

𝑀
3
(𝑋)

𝑀
4
(𝑋)

)

=

(
(
(
(
(
(

(

𝜇
1
−

𝛽
1
𝑆𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝑆𝐼

1 + 𝛼
2
𝐼

− 𝜙𝑆 − 𝜇
1
𝑆 + 𝜃𝑉

𝜙𝑆 − 𝜃𝑉 − 𝜇
1
𝑉

𝛽
1
𝑆𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝑆𝐼

1 + 𝛼
2
𝐼

− (𝑑 + 𝛼 + 𝜇
1
) 𝐼

𝜂𝐼 − 𝜇
2
𝐵

)
)
)
)
)
)

)

.

(4)

We have
𝑑𝑆 (𝑡)

𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑆=0

= 𝜇
1
+ 𝜃𝑉 > 0,

𝑑𝑉 (𝑡)

𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑉=0

= 𝜙𝑆 > 0,

𝑑𝐼 (𝑡)

𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐼=0

=

𝛽
1
𝑆𝐵

1 + 𝛼
1
𝐵

≥ 0,

𝑑𝐵 (𝑡)

𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐵=0

= 𝜂𝐼 ≥ 0.

(5)

Therefore,

𝑀
𝑖

󵄨
󵄨
󵄨
󵄨𝑋𝑖(𝑡)=0,𝑋𝑡∈𝐶

4

+

≥ 0, 𝑖 = 1, 2, 3, 4. (6)

Due to Lemma 2 in [18], any solution of system (2) is such that
𝑋(𝑡) ∈ 𝑅

4

+
for all 𝑡 ≥ 0.This completes the proof ofTheorem 1.

Theorem 2. All solutions (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡), 𝐵(𝑡)) of model (2)
are bounded.

Proof. System (2) is split into two parts, the human popula-
tion (i.e., 𝑆(𝑡), 𝑉(𝑡), and 𝐼(𝑡)) and pathogen population (i.e.,
𝐵(𝑡)). It follows from the first three equations of system (2)
that

𝑑 (𝑆 + 𝑉 + 𝐼)

𝑑𝑡

= 𝜇
1
(1 − 𝑆 − 𝐼 − 𝑉) − 𝑑𝐼 − 𝛼𝐼

≤ 𝜇
1
(1 − 𝑆 − 𝐼 − 𝑉) ,

(7)
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then it follows that lim sup
𝑡→+∞

(𝑆+𝑉+𝐼) ≤ 1. From the first
equation, we can get

𝑑𝑆 (𝑡)

𝑑𝑡

≤ 𝜇
1
− 𝜇
1
𝑆 − 𝜙𝑆 + 𝜃𝑉

≤ 𝜇
1
+ 𝜃 − (𝜇

1
+ 𝜃 + 𝜙) 𝑆.

(8)

Thus 𝑑𝑆(𝑡)/𝑑𝑡 ≤ 0, as 𝑆(𝑡) ≥ (𝜇
1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙). It is easy to

obtain

𝑑𝑉 (𝑡)

𝑑𝑡

≤ 𝜙 (1 − 𝑉) − (𝜇
1
+ 𝜃)𝑉

= 𝜙 − (𝜇
1
+ 𝜃 + 𝜙)𝑉.

(9)

Thus 𝑑𝑉(𝑡)/𝑑𝑡 ≤ 0, as 𝑉(𝑡) ≥ 𝜙/(𝜇
1
+ 𝜃 + 𝜙). From the last

equation, we can obtain

𝑑𝐵 (𝑡)

𝑑𝑡

≤ 𝜂 − 𝜇
2
𝐵. (10)

Hence, 𝑑𝐵(𝑡)/𝑑𝑡 ≤ 0, when 𝐵 ≥ 𝜂/𝜇
2
. Therefore, all solutions

(𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡), 𝐵(𝑡)) of model (2) are bounded.

From above discussion, we can see that the feasible region
of human population for system (2) is

Ω
𝐻
= {(𝑆, 𝑉, 𝐼) | 𝑆 + 𝑉 + 𝐼 ≤ 1, 0 ≤ 𝑆 ≤

𝜇
1
+ 𝜃

𝜇
1
+ 𝜃 + 𝜙

,

0 ≤ 𝑉 ≤

𝜙

𝜇
1
+ 𝜃 + 𝜙

, 𝐼 ≥ 0} ,

(11)

and the feasible region of pathogen population for system (2)
is

Ω
𝐵
= {𝐵 | 0 ≤ 𝐵 ≤

𝜂

𝜇
2

} . (12)

Define Ω = Ω
𝐻
× Ω
𝐵
. Let int Ω denote the interior of Ω.

It is easy to verify that the region Ω is a positively invariant
region (i.e., the solutions with initial conditions in Ω remain
in Ω) with respect to system (2). Hence, we will consider the
global stability of (2) in regionΩ.

3. Equilibria

In this section, we investigate the existence of equilibria of
system (2). Solving the right hand side of model system (2)
by equating it to zero, we obtain the following biologically
relevant equilibria.

It is easy to see that model (2) always has a disease-free
equilibrium (the absence of infection, i.e., 𝐼 = 𝐵 = 0)
𝐸
0
(𝑆
0
, 𝑉
0
, 0, 0), where 𝑆

0
= (𝜇
1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙) and 𝑉

0
=

𝜙/(𝜇
1
+ 𝜃 + 𝜙).

In the following, wewill discuss the existence and unique-
ness of the endemic equilibrium. The components of the
endemic equilibrium 𝐸

∗
(𝑆
∗
, 𝑉
∗
, 𝐼
∗
, 𝐵
∗
) satisfy

𝜇
1
−

𝛽
1
𝑆
∗
𝐵
∗

1 + 𝛼
1
𝐵
∗
−

𝛽
2
𝑆
∗
𝐼
∗

1 + 𝛼
2
𝐼
∗
− 𝜙𝑆
∗
+ 𝜃𝑉
∗
− 𝜇
1
𝑆
∗
= 0, (13a)

𝜙𝑆
∗
− 𝜃𝑉
∗
− 𝜇
1
𝑉
∗
= 0, (13b)

𝛽
1
𝑆
∗
𝐵
∗

1 + 𝛼
1
𝐵
∗
+

𝛽
2
𝑆
∗
𝐼
∗

1 + 𝛼
2
𝐼
∗
− (𝑑 + 𝛼 + 𝜇

1
) 𝐼
∗
= 0, (13c)

𝜂𝐼
∗
− 𝜇
2
𝐵
∗
= 0. (13d)

Substituting (13a), (13b), and (13d) into (13c), we obtain a
single equation for 𝐼∗:

(

𝛽
1
𝜂

𝜇
2
+ 𝛼
1
𝜂𝐼
∗
+

𝛽
2

1 + 𝛼
2
𝐼
∗
)

(𝜇
1
+ 𝜃) [𝜇

1
− (𝑑 + 𝛼 + 𝜇

1
) 𝐼
∗
]

𝜇
1
(𝜇
1
+ 𝜃 + 𝜙)

𝐼
∗

− (𝑑 + 𝛼 + 𝜇
1
) 𝐼
∗
= 0.

(14)

After dropping the solution 𝐼∗ = 0, we obtain

𝑔
1
(𝐼
∗
) = 𝑔
2
(𝐼
∗
) , (15)

where

𝑔
1
(𝐼) =

(𝜇
1
+ 𝜃) [𝜇

1
− (𝑑 + 𝛼 + 𝜇

1
) 𝐼]

𝜇
1
(𝜇
1
+ 𝜃 + 𝜙)

,

𝑔
2
(𝐼) =

𝑑 + 𝛼 + 𝜇
1

(𝛽
1
𝜂/ (𝜇
2
+ 𝛼
1
𝜂𝐼)) + (𝛽

2
/ (1 + 𝛼

2
𝐼))

.

(16)

Note that 𝑔
1
(𝐼) represents a straight line with a negative slope

and a vertical intercept 𝑔
1
(0) = (𝜇

1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙).

Meanwhile, we have

𝑔
󸀠

2
(𝐼) =

𝑑 + 𝛼 + 𝜇
1

((𝛽
1
𝜂/ (𝜇
2
+ 𝛼
2
𝜂𝐼)) + (𝜇

2
/ (1 + 𝛼

2
𝐼)))
2

× [

𝛽
1
𝛼
2
𝜂
2

(𝜇
2
+ 𝛼
2
𝜂𝐼)
2
+

𝛽
2
𝛼
2

(1 + 𝛼
2
𝐼)
2
] > 0.

(17)

We see that 𝑔
2
(𝐼) is increasing for 𝐼 ≥ 0, and 𝑔

2
(0) = ((𝜇

1
+

𝜃)/(𝜇
1
+ 𝜃 + 𝜙))(1/RV), where

RV =
(𝜇
1
+ 𝜃) (𝛽

2
𝜇
2
+ 𝛽
1
𝜂)

𝜇
2
(𝜇
1
+ 𝜃 + 𝜙) (𝑑 + 𝛼 + 𝜇

1
)

(18)

is the control reproduction number of infection. When
𝑅V > 1, 𝑔

2
(0) < 𝑔

1
(0). Hence, there is one and only one

intersection between the curves of 𝑔
1
(𝐼) and 𝑔

2
(𝐼); that is,

there is a unique solution 𝐼∗ to the equation 𝑔
1
(𝐼
∗
) = 𝑔
2
(𝐼
∗
).

Consequently, 𝑆∗,𝑉∗, and 𝐵∗ are uniquely determined by 𝐼∗.

Theorem 3. System (2) has a unique endemic equilibrium
when RV > 1 and no positive endemic equilibrium when
RV < 1.
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4. Stability of Disease-Free Equilibrium

Now, we will discuss the local and global stability of the
disease-free equilibrium.

Theorem 4. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable forRV < 1 and unstable forRV > 1.

Proof. The Jacobian matrix of system (2) at𝑋 = 𝐸
0
is

𝐽 (𝐸
0
)

= (

−𝜇
1
− 𝜙 𝜃 −𝛽

2
𝑆
0

−𝛽
1
𝑆
0

𝜙 −𝜃 − 𝜇
1

0 0

0 0 𝛽
2
𝑆
0
− (𝑑 + 𝛼 + 𝜇

1
) 𝛽
1
𝑆
0

0 0 𝜂 −𝜇
2

).

(19)

The characteristic polynomial of the matrix 𝐽(𝐸
0
) is given by

det (𝜆𝐼 − 𝐽 (𝐸
0
)) = 𝑎

0
𝜆
4
+ 𝑎
1
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
3
𝜆 + 𝑎
4
, (20)

where

𝑎
0
= 1,

𝑎
1
= 2𝜇
1
+ 𝜇
2
+ 𝜃 + 𝜙 + 𝜉

1
,

𝑎
2
= (𝜃 + 2𝜇

1
+ 𝜙) 𝜉

1
+ 𝜉
2
+ 𝜇
2

1

+ 2𝜇
1
𝜇
2
+ (𝜃 + 𝜙) (𝜇

1
+ 𝜇
2
) ,

𝑎
3
= (2𝜇

1
+ 𝜙 + 𝜃) 𝜉

2
+ (𝜇
1
𝜃 + 𝜇
2

1
+ 𝜇
1
𝜙) 𝜉
1

+ 𝜇
1
𝜇
2
(𝜇
1
+ 𝜃 + 𝜙) ,

𝑎
4
= 𝜇
1
𝜇
2
(𝜃 + 𝜙 + 𝜇

1
) (𝑑 + 𝛼 + 𝜇

1
) (1 −RV) ,

𝑎
1
𝑎
2
− 𝑎
3
= 𝜉
1
((2𝜇
1
+ 𝜙)
2

+ 4𝜇
1
(𝜃 + 𝜇

2
)

+ 2𝜇
2
(𝜙 + 𝜃) + 𝜃

2
+ 2𝜃𝜙)

+ 𝜉
2
𝜇
2
+ 𝜉
2

1
(𝜃 + 2𝜇

1
+ 𝜙) + 4𝜇

1
𝜇
2
(𝜃 + 𝜙 + 𝜇

1
)

+ (2𝜇
1
+ 𝜃) 𝜇

2

2
+ 3𝜇
2

1
(𝜙 + 𝜃)

+ (𝜙
2
+ 𝜃
2
) (𝜇
1
+ 𝜇
2
) + 2𝜃𝜙𝜇

2
+ 2𝜃𝜙𝜇

1
+ 2𝜇
3

1
.

𝜉
1
= 𝑑 + 𝛼 + 𝜇

1
− 𝛽
2
𝑆
0
,

𝜉
2
= 𝜇
2
(𝑑 + 𝛼 + 𝜇

1
) − (𝛽

2
𝑆
0
𝜇
2
+ 𝛽
1
𝑆
0
𝜂) .

(21)

IfRV < 1, then

𝜇
2
(𝑑 + 𝛼 + 𝜇

1
) > 𝛽
2
𝑆
0
𝜇
2
+ 𝛽
1
𝑆
0
𝜂, i.e 𝜉

2
> 0. (22)

Further,

𝑑 + 𝛼 + 𝜇
1
> 𝛽
2
𝑆
0
, i.e 𝜉
1
> 0. (23)

So 𝑎
1
> 0, 𝑎

2
> 0, 𝑎

3
> 0, 𝑎

4
> 0, 𝑎

1
𝑎
2
− 𝑎
3
> 0, and

𝑎
1
𝑎
2
𝑎
3
> 𝑎
2

3
+ 𝑎
2

1
𝑎
4
(see Appendix A). Thus, using the Routh-

Hurwitz criterion, all eigenvalues of 𝐽(𝐸
0
) have negative real

part; 𝐸
0
is local asymptotically stable for system (2). If RV ≥

1, then 𝑎
4
≤ 0 and we show that 𝐽(𝐸

0
) has at least one

eigenvalue with nonnegative real parts. Consequently, 𝐸
0
is

not asymptotically stable.

Theorem 5. When RV < 1, the disease-free equilibrium is
globally asymptotically stable.

We will prove the global stability of the disease-free
equilibrium using Lemma 6.

Lemma 6 (see [19]). If a model system can be written in the
form

𝑑X

𝑑𝑡

= 𝑃 (X,Z) ,

𝑑Z

𝑑𝑡

= 𝐺 (X,Z) , 𝐺 (Z, 0) = 0,

(24)

where X ∈ 𝑅
𝑚 denotes (its components) the number of

uninfected individuals and Z ∈ 𝑅
𝑛 denotes (its components)

the number of infected individuals including latent and so
forth, 𝑈

0
= (X∗, 0) denotes the disease-free equilibrium of the

system.
Assume that

(H1) for 𝑑X/𝑑𝑡 = 𝑃(X, 0), X∗ is globally asymptotically
stable;

(H2) 𝐺(X,Z) = AZ − 𝐺(X,Z), 𝐺(X,Z) ≥ 0 for
(X,Z) ∈ Ω, where the Jacobian matrix A =

(𝜕𝐺/𝜕Z)(X∗, 0) is anMetzlermatrix (the off-diagonal
elements of A are nonnegative) and Ω is the region
where the model makes biological sense. Then the fixed
point 𝑈

0
= (X∗, 0) is a globally asymptotically stable

equilibrium of cholera model system (2) provided that
RV < 1.

We begin by showing condition (H1) as

𝑃 (X, 0) = (
𝜇
1
− 𝜇
1
𝑆 − 𝜙𝑆 + 𝜃𝑉

𝜙𝑆 − 𝜃𝑉 − 𝜇
1
𝑉

) . (25)

For the equilibrium 𝑈
0
= (X∗, 0), the system reduces to

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇
1
− 𝜙𝑆 (𝑡) − 𝜇

1
𝑆 (𝑡) + 𝜃𝑉 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡

= 𝜙𝑆 (𝑡) − 𝜃𝑉 (𝑡) − 𝜇
1
𝑉 (𝑡) .

(26)

The characteristic polynomial of the system is given by

(𝜆 + 𝜇
1
) (𝜆 + 𝜃 + 𝜙 + 𝜇

1
) = 0. (27)

There are two negative characteristic foots: 𝜆
1
= −𝜇
1
, 𝜆
2
=

−𝜃−𝜙−𝜇
1
. Hence,X∗ is always globally asymptotically stable.
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Next, applying Lemma 6 to the cholera model system (2)
gives

𝐺 (X,Z)

= AZ − 𝐺 (X,Z)

= (
𝛽
2
𝑆
0
− (𝑑 + 𝛼 + 𝜇

1
) 𝛽
1
𝑆
0

𝜂 −𝜇
2

)(
𝐼

𝐵
)

− (
𝛽
1
𝐵(𝑆
0
−

𝑆

1 + 𝛼
1
𝐵

) + 𝛽
2
𝐼 (𝑆
0
−

𝑆

1 + 𝛼
2
𝐼

)

0

) .

(28)

So A is a Metzler matrix. Meanwhile, we find 𝐺(X,Z) ≥ 0.
Hence, the disease-free equilibrium is globally asymptotically
stable.

5. Persistence

Persistence is an important property of dynamical systems
and of the systems in ecology, epidemics, and so forth, they
are modeling. Biologically, persistence means the survival of
all populations in future time. Mathematically, persistence of
a systemmeans that strictly positive solutions do not have any
omega limit points on the boundary of the nonnegative cone
[20]. In this section, we will present the persistence of system
(2).

For various definitions of persistence [21, 22], we utilize
the definitions of persistence developed by Freedman et al.
[23]. System (2) can be defined to be uniformly persistent if

min {lim inf
𝑡→∞

𝑆 (𝑡) , lim inf
𝑡→∞

𝑉 (𝑡) , lim inf
𝑡→∞

𝐼 (𝑡) ,

lim inf
𝑡→∞

𝐵 (𝑡)} > 𝜖

(29)

for some 𝜖 > 0 for all initial points in int Ω.
A uniform persistence result given in [23] requires the

following hypothesis (H) to be satisfied.
We denote that 𝐸 is a closed positively invariant subset

of 𝑋 on which a continuous flow F is defined and 𝑁 is the
maximal invariant set of 𝜕F on 𝜕𝐸. Suppose 𝑁 is a closed
invariant set and there exists a cover {𝑁

𝛼
}
𝛼∈𝐴

of𝑁, where𝐴 is
a nonempty index set;𝑁

𝛼
⊂ 𝜕𝐸, 𝑁 ⊂ ∪

𝛼∈𝐴
𝑁
𝛼
, and {𝑁

𝛼
}(𝛼 ∈

𝐴) are pairwise disjoint closed invariant sets. Furthermore,
we propose the following hypothesis.

Hypothesis (H):

(a) all𝑁
𝛼
are isolated invariant sets of the flowF;

(b) {𝑁
𝛼
}
𝛼∈𝐴

is acyclic; that is, any finite subset of {𝑁
𝛼
}
𝛼∈𝐴

does not form a cycle [24];
(c) any compact subset of 𝜕𝐸 contains, at most, finitely

many sets of {𝑁
𝛼
}
𝛼∈𝐴

.

Lemma 7 (see [24]). Let 𝐸 be a closed positively invariant
subset of 𝑋 on which a continuous flow F is defined. Suppose
there is a constant 𝜀 > 0 such that F is point dissipative on

{𝑋 : 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝜕𝐸) ≤ 𝜀} ∩ int𝐸 and the assumption (H)
holds. Then the flowF is uniformly persistent if and only if

𝑊
+
(𝑁
𝛼
) ∩ {𝑋 : 𝑥 ∈ 𝑋, 𝑑 (𝑥, 𝜕𝐸) ≤ 𝜀} ∩ int𝐸 = ⌀ (30)

for any 𝛼 ∈ 𝐴, where𝑊+(𝑁
𝛼
) = {𝑦 ∈ 𝑋 : Λ

+
(𝑦) ⊂ 𝑁

𝛼
}.

Now, we can obtain the following result.

Theorem8. System (2) is uniformly persistent in intΩ ifRV >

1.

Proof. SupposeRV > 1. We show that system (2) satisfies all
the conditions of Lemma 7. Choose 𝑋 = R4 and 𝐸 = Ω.
The vector field of system (2) is transversal to the boundary
of Ω on its faces except the S-axis and V-axis, which are
invariant with respect to system (2) and on the S-axis and V-
axis the equations for 𝑆 and 𝑉 are 𝑑𝑆(𝑡)/𝑑𝑡 = 𝜇

1
− 𝜙𝑆(𝑡) −

𝜇
1
𝑆(𝑡)+𝜃𝑉(𝑡), and𝑑𝑉(𝑡)/𝑑𝑡 = 𝜙𝑆(𝑡)−𝜃𝑉(𝑡)−𝜇

1
𝑉(𝑡), which

implies that 𝑆(𝑡) → (𝜇
1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙) and 𝑉(𝑡) →

𝜙/(𝜇
1
+ 𝜃 + 𝜙) as 𝑡 → ∞. Therefore, 𝐸

0
is the only 𝜔-

limit point on the boundary of Ω. As the maximal invariant
set on the boundary 𝜕Ω of Ω is the singleton {𝐸

0
} and 𝐸

0

is isolated when RV < 1, thus the hypothesis (H) holds for
system (2). The flow induced by 𝑓(𝑥) is point dissipative 𝜕𝐸
by the positive invariance of 𝐸. Because of𝑊+(𝑁) = {𝑦 ∈ 𝑋 :

Λ
+
(𝑦) ⊂ 𝑁}, where Λ+(𝑦) is the omega limit set of 𝑦, when

RV < 1, we have that 𝐸 is contained in the set𝑊+(𝑁) and for
RV > 1,𝑊+(𝑁) = ⌀. Therefore, the uniform persistence of
system (2) is equivalent to𝑃

0
being unstable, and the theorem

is proved.

Remark 9. Theorems 3 and 8 show that RV is a threshold
parameter for the model; that is, when RV < 1, its
epidemiological implication is that the infected fraction of
the population vanishes, so the cholera dies out; whenRV >

1, the disease is endemic and the infected fraction remains
above a certain positive level for sufficiently large time.

6. Stability of the Endemic Equilibrium

6.1. Local Stability of the Endemic Equilibrium. Now we
consider the case with RV > 1. The stability of the endemic
equilibrium is established as follows.

Theorem 10. If RV > 1, 𝐸∗(𝑆∗, 𝑉∗, 𝐼∗, 𝐵∗) is locally asymp-
totically stable.

Proof. Let

𝐽
1
=

𝛽
1
𝐵
∗

1 + 𝛼
1
𝐵
∗
+

𝛽
2
𝐼
∗

1 + 𝛼
2
𝐼
∗
,

𝐽
2
=

𝛽
2
𝑆
∗

(1 + 𝛼
2
𝐼
∗
)
2
,

𝐽
3
=

𝛽
1
𝑆
∗

(1 + 𝛼
1
𝐵
∗
)
2
.

(31)
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The Jacobian matrix at 𝐸∗(𝑆∗, 𝑉∗, 𝐼∗, 𝐵∗) is

𝐽 (𝐸
∗
)

= (

−𝐽
1
− 𝜇
1
− 𝜙 𝜃 −𝐽

2
−𝐽
3

𝜙 −𝜃 − 𝜇
1

0 0

𝐽
1

0 𝐽
2
− (𝑑 + 𝛼 + 𝜇

1
) 𝐽
3

0 0 𝜂 −𝜇
2

).

(32)

The characteristic polynomial of the matrix 𝐽(𝐸∗) is given by

det (𝜆𝐼 − 𝐽 (𝐸∗)) = 𝑏
0
𝜆
4
+ 𝑏
1
𝜆
3
+ 𝑏
2
𝜆
2
+ 𝑏
3
𝜆 + 𝑏
4
, (33)

where

𝑏
0
= 1,

𝑏
1
= 𝐽
1
+ 2𝜇
1
+ 𝜇
2
+ 𝜃 + 𝜙 + 𝜔

1
,

𝑏
2
= (𝜃 + 2𝜇

1
+ 𝜙)𝜔

1
+ 𝜔
2
+ 𝜇
2

1
+ 2𝜇
1
𝜇
2

+ (𝜃 + 𝜙) (𝜇
1
+ 𝜇
2
) + (𝛼 + 2𝜇

1
+ 𝜇
2
+ 𝑑) 𝐽

1
,

𝑏
3
= (𝜃 + 𝜇

1
+ 𝜙) 𝜇

1
𝜔
1
+ (2𝜇
1
+ 𝜃 + 𝜙) 𝜔

2

+ 𝜇
1
𝜇
2
(𝜃 + 𝜇

1
+ 𝜙) + 𝛼𝐽

1
(𝜃 + 𝜇

1
+ 𝜇
2
)

+ 𝐽
1
(𝜇
2

1
+ (𝑑 + 𝜃) (𝜇

1
+ 𝜇
2
) + 2𝜇

1
𝜇
2
+ 𝜃𝑑) ,

𝑏
4
= (𝜙 + 𝜃 + 𝜇

1
) 𝜇
1
𝜔
2
+ (𝑑 + 𝛼 + 𝜃 + 𝜇

1
) 𝜇
1
𝜇
2
𝐽
1

+ (𝑑 + 𝛼) 𝜃𝜇
2
𝐽
1
,

𝑏
1
𝑏
2
− 𝑏
3
= 𝜔
1
{4𝜇
1
(𝜃 + 𝜙 + 𝜇

1
+ 𝜇
2
) + (𝜙 + 𝜃)

2

+ 𝐽
1
(𝛼 + 2𝜃 + 𝜇

2
+ 𝑑 + 𝜙) 𝐽

1
+ 2𝜃𝜇

2

+ 𝐽
1
⋅ 𝜙 + 2𝜇

2
𝜙}

+ 𝜔
2

1
(𝜃 + 2𝜇

1
+ 𝜙) + 𝜔

1
𝜔
2
+ 𝜔
2
(𝜇
2
+ 𝐽
1
)

+ 𝜇
2

2
(2𝜇
1
+ 𝜃 + 𝐽

1
+ 𝜙)

+ 𝐽
2

1
(𝛼 + 2𝜇

1
+ 𝜇
2
+ 𝑑 + 𝜃) + 3𝜇

2

1
(𝜙 + 𝜃)

+ (𝜃 + 𝜙)
2

(𝜇
1
+ 𝜇
2
) + 𝜃
2
𝐽
1

+ 𝜙𝐽
1
(𝜃 + 𝛼 + 𝑑 + 3𝜇

1
)

+ 4𝜇
1
𝜇
2
(𝐽
1
+ 𝜃 + 𝜙) + 2𝐽

1
𝜇
2
(𝜃 + 𝜙)

+ 4𝜇
2

1
(𝐽
1
+ 𝜇
2
) + 2𝜇

3

1
+ 𝐽
1
𝜇
1
(𝑑 + 𝛼 + 4𝜃) .

𝜔
1
= 𝑑 + 𝛼 + 𝜇

1
− 𝐽
2
,

𝜔
2
= 𝜇
2
(𝑑 + 𝛼 + 𝜇

1
) − (𝐽
2
𝜇
2
+ 𝐽
3
𝜂) .

(34)

Based on (13c) and (13d), we have 𝜇
2
(𝑑+𝛼+𝜇

1
) = (𝛽

1
𝜂𝑆
∗
/(1+

𝛼
1
𝐵
∗
)) + (𝛽

2
𝜇
2
𝑆
∗
/(1 + 𝛼

2
𝐼
∗
)). It is then easy to observe that

𝜇
2
(𝑑 + 𝛼 + 𝜇

1
) > 𝜇
2
𝐽
2
+ 𝜂𝐽
3
, i.e 𝜔

2
> 0. (35)

Further,

𝑑 + 𝛼 + 𝜇
1
> 𝐽
2
, i.e 𝜔

1
> 0. (36)

So 𝑏
1
> 0, 𝑏
2
> 0, 𝑏
3
> 0, 𝑏
4
> 0, 𝑏
1
𝑏
2
−𝑏
3
> 0, and 𝑏

1
𝑏
2
𝑏
3
> 𝑏
2

3
+

𝑏
2

1
𝑏
4
(see Appendix B). Using the well-knownRouth-Hurwitz

criterion, the proof is thus complete.

6.2. Global Stability of the Endemic Equilibrium

Theorem 11. When RV > 1, 𝐸∗(𝑆∗, 𝑉∗, 𝐼∗, 𝐵∗) is globally
asymptotically stable in Ω \ Ω

0
if 𝑑 + 𝛼 ≤ 𝜇

1
+ 𝜃 and

(2𝛽
2
(𝜇
1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙)) + 𝜃 ≤ 𝜇

1
.

This approach to global dynamics is developed in the
papers of Smith [25] and Li and Muldowney [26–28]. Let
𝑓 = (𝑓

1
, 𝑓
2
, 𝑓
3
, 𝑓
4
)
𝑇, where 𝑓

1
,𝑓
2
,𝑓
3
, and 𝑓

4
represent the

right-hand sides of system (2), respectively. Furthermore, let
𝑥 = (𝑆, 𝑉, 𝐸, 𝐼)

𝑇. Then, the Jacobian matrix for system (2) is

𝐽 =

(
(
(
(
(
(
(
(
(

(

−(

𝛽
1
𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝐼

1 + 𝛼
2
𝐼

) − 𝜇
1
− 𝜙 𝜃 −

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

−

𝛽
1
𝑆

(1 + 𝛼
1
𝐵)
2

𝜙 −𝜃 − 𝜇
1

0 0

𝛽
1
𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝐼

1 + 𝛼
2
𝐼

0

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
− (𝑑 + 𝛼 + 𝜇

1
)

𝛽
1
𝑆

(1 + 𝛼
1
𝐵)
2

0 0 𝜂 −𝜇
2

)
)
)
)
)
)
)
)
)

)

. (37)

The second additive compound matrix (see Appendix C for
details) of 𝐽 is
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𝐽
[2]
=

(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑗
11

0 0

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

𝛽
1
𝑆

(1 + 𝛼
1
𝐵)
2

0

0 𝑗
22

𝛽
1
𝑆

(1 + 𝛼
1
𝐵)
2

𝜃 0

𝛽
1
𝑆

(1 + 𝛼
1
𝐵)
2

0 𝜂 𝑗
33

0 𝜃 −

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

−(

𝛽
1
𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝐼

1 + 𝛼
2
𝐼

) 𝜙 0 𝑗
44

𝛽
1
𝑆

(1 + 𝛼
1
𝐵)
2

0

0 0 𝜙 𝜂 𝑗
55

0

0 0

𝛽
1
𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝐼

1 + 𝛼
2
𝐼

0 0 𝑗
66

)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (38)

where

𝑗
11
= 𝑗
33
+ 𝜇
2
− 𝜇
1
− 𝜃,

𝑗
22
= 𝑗
44
+ 𝜃 −

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

− 𝜙,

𝑗
33
= −

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

− 𝜇
1
− 𝜙 − 𝜇

2
,

𝑗
44
=

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
− 2𝜇
1
− 𝜃 − 𝑑 − 𝛼,

𝑗
55
= − 𝜇

1
− 𝜇
2
− 𝜃,

𝑗
66
=

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
− 𝜇
2
− 𝑑 − 𝛼.

(39)

Let

𝑄 =

(
(
(
(
(
(
(
(
(

(

1

𝐼

0 0 0 0 0

0

1

𝐼

0 0 0 0

0 0 0

1

𝐼

0 0

0 0

1

𝐵

0 0 0

0 0 0 0

1

𝐵

0

0 0 0 0 0

1

𝐵

)
)
)
)
)
)
)
)
)

)

. (40)

Then we have

B = 𝑄
𝑓
𝑄
−1
+ 𝑄

𝜕𝑓
[2]

𝜕𝑥

𝑄
−1

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑔
11

0

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

0

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2

0

0 𝑔
22

𝜃

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2

0

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2

−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

𝜙 𝑔
33

0

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2

0

0

𝜂𝐼

𝐵

0 𝑔
44

𝜃 −

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

0 0

𝜂𝐼

𝐵

𝜙 𝑔
55

0

0 0 0

𝛽
1
𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝐼

1 + 𝛼
2
𝐼

0 𝑔
66

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(41)

where
𝑔
11
= −

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

− 𝜃 + 𝑑 + 𝛼 +

𝜂𝐼

𝐵

+ 𝑔
44
,

𝑔
22
= −

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
+

𝜂𝐼

𝐵

+ 𝑔
44
,

𝑔
33
= −

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
− 𝜃,

𝑔
44
= −

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

−

𝜂𝐼

𝐵

− 𝜇
1
− 𝜙,
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𝑔
55
= −

𝜂𝐼

𝐵

− 𝜇
1
− 𝜃,

𝑔
66
=

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
−

𝜂𝐼

𝐵

− 𝜇
1
− 𝑑 − 𝛼.

(42)

In (41), 𝑄
𝑓
is the directional derivative of 𝑄 in the direction

of the vector field 𝑓 in system (2).
Here, we will use the theorem in [28] to give a sufficient

condition on the parameters, which when satisfied, implies
that the endemic equilibrium is globally asymptotically sta-
ble.

Lemma 12 (see [28]). If Ω
1
is a compact absorbing subset in

the interior ofΩ and there exists ] > 0 and a Lozinskǐı measure
𝜇(B) ≤ −] for all 𝑥 ∈ Ω

1
, then every omega point of system (2)

in int Ω is an equilibrium in Ω.

For 𝑅V > 1, the disease-free equilibrium is repelling
towards the interior. In fact, there is a compact absorbing set
in intΩwhich attracts all orbits that intersect intΩ.This gives
the following results.

Corollary 13. If 𝑅V > 1 and there exists a Lozinskǐı measure
𝜇(B) such that 𝜇(B) < 0 for all 𝑥 ∈ int Ω, then each
orbit of system (2) which intersects int Ω limits to the endemic
equilibrium.

For a norm ‖ ⋅ ‖ onR𝑛, the Lozinskǐı measure 𝜇 associated
with ‖ ⋅ ‖ can be evaluated for an 𝑛 × 𝑛matrixT as

𝜇 (T)

= inf {𝜎 : 𝐷
+ ‖𝑧‖ ≤ 𝜎 ‖𝑧‖ , for all solutions of 𝑧

󸀠
= T𝑧} ,

(43)

where 𝐷
+
is the right-hand derivative [29]. Hence, if we can

find a normonR6 for which the associated Lozinskǐı measure
satisfied 𝜇(B) < 0 for all 𝑥 ∈ int Ω then the endemic
equilibrium is globally asymptotically stable forRV > 1.

We nowdefine a normonR6 [30] for which the definition
varies from one orthant to another. Let

‖𝑧‖ = max {𝑈
1
, 𝑈
2
} , (44)

where 𝑧 ∈ R6, with components 𝑧
𝑖
(𝑖 = 1, 2, 3, 4, 5, 6) and

𝑈
1
(𝑧
1
, 𝑧
2
, 𝑧
3
) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

max {󵄨󵄨󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
} ,

if sgn (𝑧
1
) = sgn (𝑧

2
) = sgn (𝑧

3
) ,

max {󵄨󵄨󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
} ,

if sgn (𝑧
1
) = sgn (𝑧

2
) = − sgn (𝑧

3
) ,

max {󵄨󵄨󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
} ,

if sgn (𝑧
1
) = − sgn (𝑧

2
) = sgn (𝑧

3
) ,

max {󵄨󵄨󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
} ,

if − sgn (𝑧
1
) = sgn (𝑧

2
) = sgn (𝑧

3
) ,

𝑈
2
(𝑧
4
, 𝑧
5
, 𝑧
6
) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨
,

if sgn (𝑧
4
) = sgn (𝑧

5
) = sgn (𝑧

6
) ,

max {󵄨󵄨󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨
} ,

if sgn (𝑧
4
) = sgn (𝑧

5
) = − sgn (𝑧

6
) ,

max {󵄨󵄨󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨
} ,

if sgn (𝑧
4
) = − sgn (𝑧

5
) = sgn (𝑧

6
) ,

max {󵄨󵄨󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨
} ,

if − sgn (𝑧
4
) = sgn (𝑧

5
) = sgn (𝑧

6
) .

(45)

Theorem 14. Assume that
𝑑 + 𝛼 ≤ 𝜇

1
+ 𝜃,

2𝛽
2
(𝜇
1
+ 𝜃)

(𝜇
1
+ 𝜃 + 𝜙)

+ 𝜃 ≤ 𝜇
1
.

(46)

Then there exits 𝜎 = max{−𝜇
1
, 𝑑+𝛼−𝜇

1
−𝜃, (2𝛽

2
(𝜇
1
+𝜃)/(𝜇

1
+

𝜃 + 𝜙)) + 𝜃 − 𝜇
1
} < 0, such that𝐷

+
‖𝑧‖ ≤ 𝜎‖𝑧‖ for all 𝑧 ∈ R6.

Proof. We should show that

𝐷
+ ‖𝑧‖

≤ max{−𝜇
1
, 𝑑 + 𝛼 − 𝜇

1
− 𝜃,

2𝛽
2
(𝜇
1
+ 𝜃)

(𝜇
1
+ 𝜃 + 𝜙)

+ 𝜃 − 𝜇
1
} ‖𝑧‖ .

(47)

Case 1 (𝑈
1
(𝑧) > 𝑈

2
(𝑧) and 𝑧

1
, 𝑧
2
, 𝑧
3
> 0). In this case, ‖𝑧‖ =

max{|𝑧
1
|, |𝑧
2
| + |𝑧
3
|}.

Subcase 1.1 (|𝑧
1
| > |𝑧

2
| + |𝑧
3
|). Then ‖𝑧‖ = |𝑧

1
| = 𝑧

1
and

𝑈
2
(𝑧) < |𝑧

1
|. Taking the right-hand derivative of ‖𝑧‖, we

obtain
𝐷
+ ‖𝑧‖ = 𝑧

󸀠

1

= (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃 − 𝜙)𝑧

1

+

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
𝑧
3
+

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2
𝑧
5
.

(48)

Since |𝑧
5
| ≤ 𝑈
2
(𝑧) < |𝑧

1
|, |𝑧
3
| ≤ |𝑧
1
|, we have

𝐷
+ ‖𝑧‖ ≤ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃 − 𝜙)

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

+

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
+

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
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= (−

𝛽
1
𝛼
1
𝐵
2
𝑆

𝐼(1 + 𝛼
1
𝐵)
2
−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃 − 𝜙)

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
.

(49)

Hence,

𝐷
+ ‖𝑧‖ ≤ (−

𝛽
1
𝛼
1
𝐵
2
𝑆

𝐼(1 + 𝛼
1
𝐵)
2
−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃 − 𝜙) ‖𝑧‖ .

(50)

It is easy to see that (50) also holds for 𝑈
1
> 𝑈
2
and

𝑧
1
, 𝑧
2
, 𝑧
3
< 0 when |𝑧

1
| > |𝑧

2
| + |𝑧
3
|, which can be obtained

by linearity.

Subcase 1.2 (|𝑧
1
| < |𝑧
2
| + |𝑧
3
|). Then ‖𝑧‖ = |𝑧

2
| + |𝑧
3
| = 𝑧
2
+𝑧
3

and 𝑈
2
(𝑧) < |𝑧

2
| + |𝑧
3
|.

Since |𝑧
4
+ 𝑧
5
+ 𝑧
6
| ≤ 𝑈
2
(𝑧) < |𝑧

2
| + |𝑧
3
|, taking the right-

hand derivative of ‖𝑧‖, we obtain

𝐷
+ ‖𝑧‖ = 𝑧

󸀠

2
+ 𝑧
󸀠

3

= (−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

) 𝑧
1

+ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2

−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

− 𝜇
1
)𝑧
2

+ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)𝑧
3

+

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2
(𝑧
4
+ 𝑧
5
+ 𝑧
6
)

≤ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)(

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
)

+

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2
(
󵄨
󵄨
󵄨
󵄨
𝑧
4
+ 𝑧
5
+ 𝑧
6

󵄨
󵄨
󵄨
󵄨
)

≤ (−

𝛽
1
𝛼
1
𝐵
2
𝑆

𝐼(1 + 𝛼
1
𝐵)
2
−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)(

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
) .

(51)

Therefore,

𝐷
+ ‖𝑧‖ ≤ (−

𝛽
1
𝛼
1
𝐵
2
𝑆

𝐼(1 + 𝛼
1
𝐵)
2
−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)‖𝑧‖ . (52)

It is easy to see that (52) also holds for𝑈
1
> 𝑈
2
and 𝑧
1
, 𝑧
2
, 𝑧
3
<

0 when |𝑧
1
| < |𝑧
2
| + |𝑧
3
|, which can be obtained by linearity.

Case 2 (𝑈
1
(𝑧) > 𝑈

2
(𝑧) and 𝑧

1
< 0 < 𝑧

2
, 𝑧
3
). In this case,

‖𝑧‖ = max{|𝑧
1
| + |𝑧
3
|, |𝑧
2
| + |𝑧
3
|}.

Subcase 2.1 (|𝑧
1
| > |𝑧
2
|). Then ‖𝑧‖ = |𝑧

1
|+ |𝑧
3
| = −𝑧

1
+𝑧
3
and

𝑈
2
(𝑧) < |𝑧

1
| + |𝑧
3
|. Taking the right-hand derivative of ‖𝑧‖,

we obtain

𝐷
+ ‖𝑧‖ = −𝑧

󸀠

1
+ 𝑧
󸀠

3

= (

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

+

𝛽
2
𝑆

1 + 𝛼
2
𝐼

− 𝑑 − 𝛼 + 𝜇
1
+ 𝜃 + 𝜙)𝑧

1

+ 𝜙𝑧
2
+ (−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

− 𝜇
1
− 𝜃) 𝑧

3

≤ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃)

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

+ (−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

− 𝜇
1
− 𝜃)

󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨

≤ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃)

× (
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
) .

(53)

Therefore,

𝐷
+ ‖𝑧‖ ≤ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝑆

1 + 𝛼
2
𝐼

+ 𝑑 + 𝛼 − 𝜇
1
− 𝜃) ‖𝑧‖ .

(54)

It is easy to see that (54) also holds for 𝑈
1
> 𝑈
2
and 𝑧
2
, 𝑧
3
<

0 < 𝑧
1
when |𝑧

1
| > |𝑧
2
|, which can be obtained by linearity.

Subcase 2.2 (|𝑧
1
| < |𝑧
2
|). Then ‖𝑧‖ = |𝑧

2
| + |𝑧
3
| = 𝑧
2
+ 𝑧
3
and

𝑈
2
(𝑧) < |𝑧

2
| + |𝑧
3
|. Taking the right-hand derivative of ‖𝑧‖,

since |𝑧
4
+ 𝑧
5
+ 𝑧
6
| ≤ 𝑈
2
(𝑧) < |𝑧

2
| + |𝑧
3
|, we obtain

𝐷
+ ‖𝑧‖ = 𝑧

󸀠

2
+ 𝑧
󸀠

3

= (−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

) 𝑧
1

+ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

− 𝜇
1
)𝑧
2
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+ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)𝑧
3

+

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2
(𝑧
4
+ 𝑧
5
+ 𝑧
6
)

≤ (

𝛽
1
𝐵

1 + 𝛼
1
𝐵

+

𝛽
2
𝐼

1 + 𝛼
2
𝐼

)
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨

+ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

− 𝜇
1
)
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨

+ (−

𝛽
1
𝐵𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)𝑧
3

+

𝛽
1
𝐵𝑆

𝐼(1 + 𝛼
1
𝐵)
2
(
󵄨
󵄨
󵄨
󵄨
𝑧
4
+ 𝑧
5
+ 𝑧
6

󵄨
󵄨
󵄨
󵄨
)

≤ (−

𝛽
1
𝛼
1
𝐵
2
𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)(

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
) .

(55)

Therefore,

𝐷
+ ‖𝑧‖ ≤ (−

𝛽
1
𝛼
1
𝐵
2
𝑆

𝐼 (1 + 𝛼
1
𝐵)

−

𝛽
2
𝛼
2
𝑆𝐼

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)‖𝑧‖ . (56)

It is easy to see that (56) also holds for 𝑈
1
> 𝑈
2
and

𝑧
2
, 𝑧
3
< 0 < 𝑧

1
when |𝑧

1
| < |𝑧

2
|, which can be obtained by

linearity.

Case 3 (𝑈
2
(𝑧) > 𝑈

1
(𝑧) and 𝑧

6
< 0 < 𝑧

4
, 𝑧
5
). In this case,

‖𝑧‖ = max{|𝑧
4
| + |𝑧
5
|, |𝑧
4
| + |𝑧
6
|}.

Subcase 3.1 (|𝑧
5
| > |𝑧
6
|). Then ‖𝑧‖ = |𝑧

4
| + |𝑧
5
| = 𝑧
4
+ 𝑧
5
and

𝑈
1
(𝑧) < |𝑧

4
| + |𝑧
5
|. Taking the right-hand derivative of ‖𝑧‖,

we obtain

𝐷
+ ‖𝑧‖ = 𝑧

󸀠

4
+ 𝑧
󸀠

5
=

𝜂𝐼

𝐵

𝑧
2

+ (−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

−

𝜂𝐼

𝐵

− 𝜇
1
− 𝜙) 𝑧

4
+ 𝜃𝑧
5

+ (−

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
)𝑧
6
+

𝜂𝐼

𝐵

𝑧
3
+ 𝜙𝑧
4

+ (−

𝜂𝐼

𝐵

− 𝜇
1
− 𝜃) 𝑧

5

≤

𝜂𝐼

𝐵

(
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
3

󵄨
󵄨
󵄨
󵄨
)

+ (−

𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

𝛽
2
𝐼

1 + 𝛼
2
𝐼

−

𝜂𝐼

𝐵

− 𝜇
1
)
󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨

+ (−

𝜂𝐼

𝐵

− 𝜇
1
)
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
+

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2

󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨

≤ (

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)(

󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
) .

(57)

Recalling that ‖𝑧‖ = |𝑧
4
| + |𝑧
5
| yields

𝐷
+ ‖𝑧‖ ≤ (

𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
− 𝜇
1
)‖𝑧‖ . (58)

It is easy to see that (58) also holds for 𝑈
2
> 𝑈
1
and 𝑧
4
, 𝑧
5
<

0 < 𝑧
6
when |𝑧

5
| > |𝑧
6
|, which can be obtained by linearity.

Subcase 3.2 (|𝑧
5
| < |𝑧
6
|). Then ‖𝑧‖ = |𝑧

4
| + |𝑧
6
| = 𝑧
4
− 𝑧
6
and

𝑈
1
(𝑧) < |𝑧

4
| + |𝑧
6
|. Taking the right-hand derivative of ‖𝑧‖,

we obtain

𝐷
+ ‖𝑧‖ = 𝑧

󸀠

4
− 𝑧
󸀠

6
=

𝜂𝐼

𝐵

𝑧
2

+ (−

2𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

2𝛽
2
𝐼

1 + 𝛼
2
𝐼

−

𝜂𝐼

𝐵

− 𝜇
1
− 𝜙) 𝑧

4

+ 𝜃𝑧
5
− (

2𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
−

𝜂𝐼

𝐵

− 𝜇
1
− 𝑑 − 𝛼)𝑧

6

≤

𝜂𝐼

𝐵

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+ (−

2𝛽
1
𝐵

1 + 𝛼
1
𝐵

−

2𝛽
2
𝐼

1 + 𝛼
2
𝐼

−

𝜂𝐼

𝐵

− 𝜇
1
− 𝜙)

󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨

+ 𝜃
󵄨
󵄨
󵄨
󵄨
𝑧
5

󵄨
󵄨
󵄨
󵄨
+ (

2𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
−

𝜂𝐼

𝐵

− 𝜇
1
− 𝑑 − 𝛼)

󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨

≤ (

2𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
+ 𝜃 − 𝜇

1
)(

󵄨
󵄨
󵄨
󵄨
𝑧
4

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
6

󵄨
󵄨
󵄨
󵄨
) .

(59)

Therefore,

𝐷
+ ‖𝑧‖ ≤ (

2𝛽
2
𝑆

(1 + 𝛼
2
𝐼)
2
+ 𝜃 − 𝜇

1
)‖𝑧‖ . (60)

It is easy to see that (60) also holds for 𝑈
2
> 𝑈
1
and 𝑧
4
, 𝑧
5
<

0 < 𝑧
6
when |𝑧

6
| > |𝑧
5
|, which can be obtained by linearity.
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Combing the results of the six cases presented here in
(50)–(60), as well as the remaining 10 cases, we obtain the
result

𝐷
+ ‖𝑧‖

≤ max{−𝜇
1
, 𝑑 + 𝛼 − 𝜇

1
− 𝜃,

2𝛽
2
(𝜇
1
+ 𝜃)

𝜇
1
+ 𝜃 + 𝜙

+ 𝜃 − 𝜇
1
} ‖𝑧‖ ,

(61)

when 𝐼 ≥ 0, 𝑆 ≤ (𝜇
1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙). Hence, 𝜇(B) ≤

max{−𝜇
1
, 𝑑 +𝛼−𝜇

1
−𝜃, ((2𝛽

2
(𝜇
1
+𝜃))/(𝜇

1
+𝜃+𝜙)) + 𝜃−𝜇

1
}.

Therefore, 𝜇(B) ≤ 0 in intΩ if 𝑑 + 𝛼 ≤ 𝜇
1
+ 𝜃 and ((2𝛽

2
(𝜇
1
+

𝜃))/(𝜇
1
+ 𝜃 + 𝜙)) + 𝜃 ≤ 𝜇

1
. Thus, Theorem 14 is satisfied.

From Corollary 13, we can obtain that all solutions intersect
the interior of Ω and the endemic equilibrium 𝐸

∗ is globally
asymptotically stable, completing the proof of Theorem 11.

7. Sensitivity Analysis of RV

To facilitate the interpretation of the sensitivity of RV, we
now present some numerical simulations by using the set of
parameters values in Table 1.

Now, we regard the vaccinated rate 𝜙 and the waning rate
𝜃 as the control parameters, while the other parameters are
fixed. From Figures 3 and 4, the effects of various parameters,
that is, 𝜙 and 𝜃 on the control reproduction numberRV have
been shown. It is noted that as the parameter 𝜙 increases,RV
decreases and as 𝜃 decreases, RV decreases. In fact, we can
obtain the critical values of 𝜙 and 𝜃 that reduceRV to 1:

𝜙 =

(𝜇
1
+ 𝜃) (𝜇

2
𝛽
2
+ 𝛽
1
𝜂) − 𝜇

2
(𝜇
1
+ 𝜃) (𝑑 + 𝛼 + 𝜇

1
)

𝜇
2
(𝑑 + 𝛼 + 𝜇

1
)

≜ 𝜙V,

𝜃 =

𝜇
1
(𝜇
2
𝛽
2
+ 𝛽
1
𝜂) − 𝜇

2
(𝜇
1
+ 𝜙) (𝑑 + 𝛼 + 𝜇

1
)

(𝜇
2
𝛽
2
+ 𝛽
1
𝜂) − 𝜇

2
(𝑑 + 𝛼 + 𝜇

1
)

≜ 𝜃V.

(62)

In Figure 3, we select 𝜃 = 0.07, 0.03, 0.007, 0.0001, corre-
sponding 𝜙V = 2.07, 0.89, 0.21, 0.01, respectively. We can
see that when the wanning rate 𝜃 has a greater value, then
there is no 𝜙V such that RV < 1. Similarly, in Figure 4,
we select 𝜙 = 0.01, 0.1, 0.3, 0.6, 0.99, corresponding 𝜃V =

0.0002, 0.003, 0.01, 0.02, 0.03, respectively. We can see that
when 𝜙 is smaller, then there is no 𝜃V such thatRV < 1. Thus,
the control reproduction number cannot reduce below unity
only by increasing 𝜃 or decreasing 𝜙. The critical values 𝜙V
and 𝜃V are important in regulating the infection magnitude.
In order to reduce RV to 1, a greater vaccinated rate than
𝜙V and a smaller wanning rate than 𝜃V have to be achieved
simultaneously. We will deduce RV below 1 by using both 𝜙
and 𝜃 at the same time, which can control cholera. Otherwise,
the cholera persists (see Figure 5).

8. Conclusion

In this paper, we have conducted global stability analysis of
a SVIR-B cholera model. Based on the imperfective vaccine,
with the environment component incorporated and multiple
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Figure 3:The contour diagram of the control reproduction number
RV with 𝜙 when 𝜃 has some fixed value.
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Figure 4:The contour diagram of the control reproduction number
RV with 𝜃 when 𝜙 has some fixed value.

transmission pathways coupled, the cholera models distin-
guish themselves from regular SIR epidemiological models.
The mathematical results show that the control reproduction
number RV satisfies a threshold property with threshold
value 1. When RV < 1, it has been proved that the disease-
free equilibrium 𝐸

0
is globally asymptotically stable under

some sufficient conditions. And, when RV > 1, the unique
endemic equilibrium𝐸

∗ is globally asymptotically stable.This
shows that cholera can be eliminated from the community if
the imperfect vaccine bringsRV to a value less than unity.
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Table 1: Estimation of parameters.

Parameters Meaning Values Reference
𝜇
1

Natural human birth and death rate 9.13 × 10
−5/day [3]

𝛽
1

Contact rates for the human-environment
interaction 0.214/day [3]

𝛽
2

Contact rates for the human-human
interaction 0.02/day [3]

𝑑 Disease-induced death rate 0.013/day [4]

𝛼
Recovery rate at which people recover from

environment 0.2/day [3]

𝜂
Contribution of infected individuals to the

population of Vibrio cholera 10 [7]

𝜇
2

Net death rate of Vibrio cholera 0.33/day [7]

ℛ
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Figure 5:The contour diagram of the control reproduction number
RV with 𝜙, 𝜃 variables. All the other parameter values are the same
as those in Figure 3.

Now, if we consider that the case there is no vaccination.
Model (1) can be written as follows:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇
1
−

𝛽
1
𝑆 (𝑡) 𝐵 (𝑡)

1 + 𝛼
1
𝐵 (𝑡)

−

𝛽
2
𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− 𝜇
1
𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

=

𝛽
1
𝑆 (𝑡) 𝐵 (𝑡)

1 + 𝛼
1
𝐵 (𝑡)

+

𝛽
2
𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
2
𝐼 (𝑡)

− (𝑑 + 𝛼 + 𝜇
1
) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡) − 𝜇
1
𝑅 (𝑡) ,

𝑑𝐵 (𝑡)

𝑑𝑡

= 𝜂𝐼 (𝑡) − 𝜇
2
𝐵 (𝑡) .

(∗)

According to Theorem 2 in [31], the basic reproduction
number of model (∗) is R

0
= (𝛽
2
𝜇
2
+ 𝛽
1
𝜂)/(𝜇
2
(𝑑 + 𝛼 +

𝜇
1
)). We can express the control reproduction number RV

as RV = R
0
((𝜇
1
+ 𝜃)/(𝜇

1
+ 𝜃 + 𝜙)). Note that RV ≤ R

0

with equality only if 𝜙 = 0. That is, despite being imperfect,

the vaccine will always reduce the reproduction number of
the disease, and in the absence of the vaccination, the disease
transmission will be high. Further simulations in Section 7
also show that the vaccinated rate (𝜙) and the wanning
rate (𝜃) play equal important roles in reducing the control
reproduction number. The disease can be controlled if and
only if the reproduction number is reduced to values less than
unity if the vaccinated rate (𝜙) exceed the threshold𝜙V and the
wanning rate (𝜃) less than the threshold 𝜃V simultaneously.
Therefore, vaccination is a good way to control cholera.

However, there are inherent disadvantages towards the
vaccination modeling. For cholera with incubation period, it
is hard to rapidly identify those with ambiguous symptoms
[4]. Moreover, the vaccination does not always work well
due to the limitations of medical development level and
financial budget (some vaccines are very expensive and some
portions of people cannot be covered) [32]. Nonetheless, [33]
indicated that during cholera outbreaks (periodic control)
vaccination campaigns can be a good strategy to control
cholera epidemics. Besides, they pointed out that vaccination
and improvement in the sanitation system and food/personal
hygiene are the most efficient control strategies to prevent
cholera transmission and outbreaks. Hence, incorporating
some other control strategies, we may consider the more
realistic ordinary differential equationmodel.The theoretical
study of cholera models has been in progress and is an
exciting area of future research.

Appendices

A. The Proof of 𝑎
1
𝑎
2
𝑎
3
> 𝑎
2

3
+𝑎2
1
𝑎
4

The proof of 𝑎
1
𝑎
2
𝑎
3
− 𝑎
2

3
− 𝑎
2

1
𝑎
4
= 𝜉
3

1
𝜇
1
{(𝜃 + 𝜙)

2
+ 𝜇
1
(3𝜃 +

2𝜇
1
+ 3𝜙)} + 𝜉

2

1
{(4𝜇
1
(𝜃 + 𝜇

1
+ 𝜙) + (𝜃 + 𝜙)

2
+ 𝜉
2
+ 𝜇
1
(𝜃 + 𝜙)

3
+

3𝜇
1
𝜇
2
(𝜙+𝜃)

2
+𝜇
2

1
(8𝜇
1
+9𝜇
2
)(𝜃+𝜙)+5𝜇

2

1
𝜙(𝜙+2𝜃)+𝜇

2

1
(4𝜇
2

1
+

5𝜃
2
+6𝜇
1
𝜇
2
)} + 𝜉
1
{(4𝜇
3

1
+𝜇
1
(8𝜇
2
+6𝜇
1
)(𝜃 +𝜙) + 4𝜇

1
(𝜃 +𝜙)

2
+

𝜙𝜇
2
(2𝜙+1+4𝜃)+(𝜃+𝜙)

3
+𝜇
2
(2𝜃
2
+8𝜇
2

1
))𝜉
2
+(𝜙+𝜃+2𝜇

1
)𝜉
2

2
+

𝜇
2

1
(4𝜇
1
+10𝜇
2
)(𝜃+𝜙)

2
+7𝜃𝜙𝑑𝜇

1
+𝜇
1
𝜇
2
(2𝜃
3
+6𝜃
2
𝜙+2𝜙

3
+5𝑑𝜙)+

𝜇
3

1
(6𝜇
2

2
+ 2𝜇
2

1
) + 3𝜇

1
𝜇
2

2
(𝜃
2
+ 𝜙
2
) + (9𝜇

2

1
𝜇
2

2
+ 16𝜇

3

1
𝜇
2
+ 5𝜇
4

1
)(𝜃 +
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𝜙)+𝜇
2

1
(4𝜃
2
+𝜙
3
+3𝜃𝜙

2
+𝜃
3
+8𝜇
2

1
𝜇
2
+3𝜃
2
𝜙)}+ 𝜉

2

2
𝜇
2
{𝜙+2𝜇

1
+

𝜃}+𝜉
2
{𝜇
2
(𝜃+𝜙)

3
+𝜇
2
(4𝜇
1
+𝜇
2
)(𝜃+𝜙)

2
+𝜇
1
𝜇
2
(4𝜇
2
+6𝜇
1
)(𝜃+

𝜙) + 4𝜇
2

1
𝜇
2

2
} + 𝜇
1
𝜇
2
(𝜇
1
+ 𝜇
2
)(𝜃 + 𝜙)

3
+ 4𝜇
3

1
𝜇
2
(4𝜇
2

1
+ 5𝜇
1
𝜇
2
+

𝜇
2

2
)(𝜃+𝜙)

2
+𝜇
2

1
𝜇
2
(5𝜇
2

1
+8𝜇
1
𝜇
2
+3𝜇
2

2
)(𝜃+𝜙)+𝜇

3

1
𝜇
2

2
(2𝜇
2
+4𝜇
1
).

From Section 4, we know that 𝜉
1
> 0, 𝜉
2
> 0. After some

algebraicmanipulations, we have 𝑎
1
𝑎
2
𝑎
3
−𝑎
2

3
−𝑎
2

1
𝑎
4
> 0.Thus,

𝑎
1
𝑎
2
𝑎
3
> 𝑎
2

3
+ 𝑎
2

1
𝑎
4
, whenRV < 1.

B. The Proof of 𝑏
1
𝑏
2
𝑏
3
> 𝑏
2

3
+𝑏2
1
𝑏
4

The proof of 𝑏
1
𝑏
2
𝑏
3
−𝑏
2

3
−𝑏
2

1
𝑏
4
= 𝜔
3

1
𝜇
1
{(𝜃 +𝜙)

2
+3𝜇
1
(𝜃 +𝜙)+

2𝜇
2

1
}+𝜔
2

1
{𝜔
2
((𝜃+𝜙)

2
+4𝜇
1
(𝜃+𝜙+𝜇

1
))+𝜇
1
𝜇
2
((4𝜇
1
+𝛼+4𝜃+

3𝜙+𝑑)𝐽
1
+3(𝜃+𝜙)

2
+(6+9𝜙)𝜇

1
)+𝜇
1
(𝜃+𝜙)

3
+(𝜃+𝛼+𝑑)⋅𝜙𝐽

1
𝜇
2
+

5𝜇
2

1
(𝜃 +𝜙)

2
+9𝜃𝜇
2

1
(𝜇
2
+ 𝐽
1
) + (𝜙+ 2𝑑)𝜙𝐽

1
𝜇
1
+𝜃
2
𝐽
1
(𝜇
2
+3𝜇
1
) +

𝜇
3

1
(4𝜇
1
+8𝜃)+3𝐽

1
𝜇
2

1
(𝑑+𝛼+2𝜙)+𝜃𝐽

1
(𝜃+𝜙+4𝜇

1
)(𝑑+𝛼)+4𝜃𝜙𝜇

1
+

6𝐽
1
𝜇
3

1
+2𝛼𝜙𝜇

1
𝐽
1
+8𝜙𝜇
3

1
}+𝜔
1
⋅{𝜔
2

2
(𝜙+2𝜇

1
+𝜃)+𝜔

2
(4𝜇
1
(𝜙+𝜃)

2
+

4𝜇
1
𝜇
2
(2𝜇
1
+2𝜃+2𝜙+𝐽

1
)+𝜙𝜇
2
(2𝜙+𝐽

1
+4𝜃)+6⋅𝜇

2

1
(𝜃+𝜙)+3𝜃𝜙𝐽

1
+

2𝜃𝐽
1
(𝑑+𝛼+𝜃+𝜇

2
)+(3𝛼+3𝑑+5𝜙)𝜇

1
𝐽
1
+𝐽
1
𝜙(𝜙+𝛼+𝑑)+2𝜃

2
⋅

𝜇
2
+8𝜃𝜇
1
𝐽
1
+(𝜃+𝜙)

3
+4𝜇
2

1
(2𝐽
1
+𝜇
1
)+𝐽
1
𝜇
2
(𝑑+𝛼))+𝜇

1
(𝜇
2
+𝜇
1
+

2𝐽
1
)(𝜃+𝜙)

3
+(4⋅𝜇

3

1
+(𝑑+𝛼+𝜃)𝜇

2
𝐽
1
+𝜇
1
𝜇
2
(10𝜇
1
+3𝜇
2
)+(𝑑𝜃

2
+

4𝜇
2

1
+𝛼𝜃)𝐽

1
)(𝜃+𝜙)

2
+𝜇
2

1
(9𝜇
2

2
+4𝜇
2

1
)(𝜃+𝜙)+8𝜇

4

1
(𝜇
2
+𝐽
1
)+2𝜇
5

1
+

𝜇
3

1
(5𝑑+16𝜃+6𝐽

1
+5𝛼+11𝜙)𝐽

1
+3𝜇
2

1
𝐽
1
((2𝛼𝐽
1
+6𝑑+𝜙)𝐽

1
+2𝜃
2
+

3𝜃(𝑑+𝛼+𝐽
1
)+2(𝑑+𝛼+𝜃)𝜙)+𝜇

1
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2
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+(3𝑑𝜃
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𝐽
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𝐽
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𝜇
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From Section 6, we know that 𝜔
1
> 0, 𝜔
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> 0. After some

algebraic manipulations, we have 𝑏
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𝑏
2
𝑏
3
−𝑏
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𝑏
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> 0. Thus,
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, whenRV > 1.

C. The Second Additive Compound Matrix

If 𝐴 = [𝑎
𝑖𝑗
] is an 𝑛 × 𝑛matrix, its second additive compound

𝐴
[2] is ( 𝑛2 ) × (

𝑛

2 ) matrix defined as follows. For any integer
𝑖 = 1, . . . , (

𝑛

2 ), let (𝑖) = (𝑖
1
, 𝑖
2
) such that 1 ≤ 𝑖

1
< 𝑖
2
≤ 𝑛. Then

the element in the 𝑖-row and 𝑗-column of 𝐴[2] is

𝑎
𝑖1𝑖1

+ 𝑎
𝑖2𝑖2
, if (𝑗) = (𝑖) ,

(−1)
𝑟+𝑠
𝑎
𝑖𝑟𝑖𝑠
, if exactly one entry 𝑖

𝑟
of (𝑖)

does not occur in (𝑗) and 𝑗
𝑠

does not occur in (𝑖) ,

0, if neither entry from (𝑖) occurs in (𝑗) .

(C.1)

In the special case when 𝑛 = 2, we have 𝐴[2]
2×2

= 𝑎
11
+ 𝑎
22
=

tr𝐴. In general, each entry of 𝐴[2] is a linear expression of
those of 𝐴. For instance, when 𝑛 = 3, the second additive
compound matrix of 𝐴 = (𝑎

𝑖𝑗
) is

𝐴
[2]
= (

𝑎
11
+ 𝑎
22

𝑎
23

−𝑎
13

𝑎
32

𝑎
11
+ 𝑎
33

𝑎
12

−𝑎
31

𝑎
21

𝑎
22
+ 𝑎
33

) , (C.2)

when 𝑛 = 4, the second additive compound matrix of 𝐴 =

(𝑎
𝑖𝑗
) is

𝐴
[2]
=

(
(
(
(
(
(
(
(
(

(

𝑎
11
+ 𝑎
22

𝑎
23

𝑎
24

−𝑎
13

−𝑎
14

0

𝑎
32

𝑎
11
+ 𝑎
33

𝑎
34

𝑎
12

0 −𝑎
14

𝑎
42

𝑎
43

𝑎
11
+ 𝑎
44

0 𝑎
12

𝑎
13

−𝑎
31

𝑎
21

0 𝑎
22
+ 𝑎
33

𝑎
34

−𝑎
24

−𝑎
41

0 𝑎
21

𝑎
43

𝑎
22
+ 𝑎
44

𝑎
23

0 −𝑎
41

𝑎
31

−𝑎
42

𝑎
32

𝑎
33
+ 𝑎
44

)
)
)
)
)
)
)
)
)

)

. (C.3)
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For detailed discussions of compound matrices and their
properties, readers can refer to [34, 35]. A comprehension
survey on compound matrices and their relations to differ-
ential equations is given in [34].
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