
Research Article
Optimal Algorithms and the BFGS Updating Techniques for
Solving Unconstrained Nonlinear Minimization Problems

Chein-Shan Liu

Department of Civil Engineering, National Taiwan University, Taipei 106-17, Taiwan

Correspondence should be addressed to Chein-Shan Liu; liucs@ntu.edu.tw

Received 5 November 2013; Revised 21 January 2014; Accepted 29 January 2014; Published 12 March 2014

Academic Editor: Jung-Fa Tsai

Copyright © 2014 Chein-Shan Liu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To solve an unconstrained nonlinear minimization problem, we propose an optimal algorithm (OA) as well as a globally optimal
algorithm (GOA), by deflecting the gradient direction to the best descent direction at each iteration step, and with an optimal
parameter being derived explicitly. An invariant manifold defined for the model problem in terms of a locally quadratic function
is used to derive a purely iterative algorithm and the convergence is proven. Then, the rank-two updating techniques of BFGS are
employed, which result in several novel algorithms as being faster than the steepest descent method (SDM) and the variable metric
method (DFP). Six numerical examples are examined and compared with exact solutions, revealing that the new algorithms of OA,
GOA, and the updated ones have superior computational efficiency and accuracy.

1. Introduction

The steepest descent method (SDM), which can be traced
back to Cauchy (1847), is the simplest gradient method for
solving unconstrained minimization problems. However, the
SDM performs well during earlier stages and as approaching
to a stationary point it converges very slowly. In this paper,
we consider the following nonlinear minimization problem
without considering constraint:

min𝑓 (x) , (1)

where 𝑓 : R𝑛 → R is a C2 differentiable function.
In the iterative solution of (1), if x

𝑘
is the current iterative

point, then we denote 𝑓(x
𝑘
) by 𝑓
𝑘
, ∇𝑓(x

𝑘
) by g
𝑘
, and ∇2𝑓(x

𝑘
)

byA
𝑘
, which is known to be a symmetric Hessianmatrix.The

second-order Taylor expansion of function 𝑓(𝑥) at the point
x
𝑘
is

𝑓 (x) = 𝑓
𝑘
+ gT
𝑘
Δx + 1

2
(Δx)TA

𝑘
Δx, (2)

where Δx = x − x
𝑘
. The superscript T signifies the transpose

andmeanwhile gT
𝑘
Δx signifies the inner product of g

𝑘
andΔx.

Let x = x
𝑘
− 𝜆
0
g
𝑘
, and inserting it into (2) we can obtain

𝑓 (x
𝑘
− 𝜆
0
g
𝑘
) = 𝑓
𝑘
− 𝜆
0
gT
𝑘
g
𝑘
+
𝜆2
0

2
gT
𝑘
A
𝑘
g
𝑘
. (3)

By requiring the minimization with respect to 𝜆
0
, we can

derive

𝜆
0
=

g𝑘

2

gT
𝑘
A
𝑘
g
𝑘

. (4)

Then, we have a famous steepest descent method (SDM) for
solving (1).

(i) Give an initial x
0
, and then compute g

0
= ∇𝑓(x

0
).

(ii) For 𝑘 = 0, 1, 2, . . ., we repeat the following iteration:

x
𝑘+1
= x
𝑘
−

g𝑘

2

gT
𝑘
A
𝑘
g
𝑘

g
𝑘
. (5)

If ‖g
𝑘+1
‖ < 𝜀, then stop; otherwise, go to step (ii).

For the minimization problem (1) we need to solve ∇𝑓 =
0, and hence the residual means the value of ‖∇𝑓‖ = ‖g‖.
The above convergence criterion ‖g

𝑘+1
‖ < 𝜀means that when
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the residual norm is smaller than a given error tolerance 𝜀,
the iterations are terminated.

In the derivation of SDM for solving (1) it is easy to see
that we have transformed the global minimization problem
into a model problem in terms of a quadratic minimization
problem of

𝜙 (x) = 1
2
xTAx − bTx + 𝑐

0
(6)

and determined the coefficient 𝜆
0
by (4), where 𝑐

0
= 𝑓
𝑘
−

gT
𝑘
x
𝑘
+ xT
𝑘
A
𝑘
x
𝑘
/2 + 𝑘

0
with 𝑘

0
being a constant to raise the

level value of 𝜙, and b = A
𝑘
x
𝑘
− g
𝑘
is a constant vector within

each iterative step. Here for the purpose of simple notation
we omit the subscript 𝑘 in (6), and we are going tomodify the
SDM by starting from the above locally quadratic function.

Several modifications of the SDM have been addressed.
These modifications have led to a new interest in the SDM
that the gradient vector itself is not a bad choice but rather
that the original steplength 𝜆

0
leads to a slow convergence

behavior. Barzilai and Borwein [1] have presented a new
choice of steplength through a two-point stepsize. Although
their method did not guarantee the descent of the minimum
function values, Barzilai andBorwein [1]were able to produce
a substantial improvement of the convergence speed for a
certain test of a quadratic function. The results of Barzilai
and Borwein [1] have spurred many researches on the SDM,
for example, Raydan [2, 3], Friedlander et al. [4], Raydan
and Svaiter [5], Dai et al. [6], Dai and Liao [7], Dai and
Yuan [8], Fletcher [9], and Yuan [10]. In this paper, we will
approach this problem from a quite different viewpoint of
invariant manifold and propose a new strategy to modify the
steplength and the descent direction. Besides the SDM, there
were many modifications of the conjugate gradient method
for the unconstrained minimization problems, like Birgin
and Martinez [11], Andrei [12–14], Zhang [15], Babaie-Kafaki
et al. [16], and Shi and Guo [17].

Also, there is another class method with the descent
direction d in 𝑓(x

𝑘
− 𝜆d) being taken to be D∇𝑓(x

𝑘
), where

D is a positive definite matrix that approximates the inverse
of the Hessian matrix A, which is usually named the quasi-
Newton method. The earlier method of minimization of a
nonlinear function by using this type approach is performed
by Davidon [18], which was then simplified and reformulated
by Fletcher and Powell [19] and was referred to as the variable
metric method (DFP).

The remaining portions of this paper are arranged as
follows. In Section 2 we describe an invariant manifold to
derive the governing ordinary differential equations (ODEs).
The main results are derived in Section 3, which includes the
proof of convergence theorem, optimal parameter, optimal
algorithm, a critical parameter, and a globally optimal algo-
rithm. Then, in Section 4 we employ the rank-two Broyden-
Fletcher-Goldfarb-Shanno (BFGS) updating techniques to
update theHessianmatrix or its inversion, resulting in several
novel optimal algorithms.The numerical examples are tested
in Section 5 to assess the performance of the newly proposed
algorithms. Finally, the conclusions are drawn in Section 6.

2. An Invariant Manifold

From this section on, we focus on the local minimum
problem defined in terms of 𝜙 in (6), rather than that
of 𝑓. When the novel algorithms are developed, we will
return to theminimization problem (1).Thepresent approach
is different from the conventional line search method by
minimizing the steplength 𝜆

𝑘
in

𝑓 (x
𝑘
− 𝜆
𝑘
d
𝑘
) = min
𝜆>0

𝑓 (x
𝑘
− 𝜆d
𝑘
) , (7)

where d
𝑘
is a given search direction.

At the first, we consider an iterative scheme of x derived
from the ordinary differential equations (ODEs) defined on
an invariant manifold which is formed from 𝜙(x):

ℎ (x, 𝑡) := 𝑄 (𝑡) 𝜙 (x) = 𝐶. (8)

Here, we let x be a function of a fictitious time variable 𝑡. We
do not need to specify the function 𝑄(𝑡) a priori, of which
𝐶/𝑄(𝑡) is merely a measure of the decreasing of 𝜙 in time.
Hence, we expect that in our algorithm if 𝑄(𝑡) > 0 is an
increasing function of 𝑡, the iterative point x

𝑘
can tend to the

minimal point. We let 𝑄(0) = 1, and 𝐶 is determined from
the initial condition x(0) = x

0
by

𝐶 = 𝜙 (x
0
) > 0. (9)

We can suitably choose the constant 𝑘
0
and hence 𝑐

0
in (6),

such that 𝜙(x) > 0. Indeed, the different level of 𝜙 does not
alter its minimal point.

When 𝐶 > 0 and 𝑄 > 0, the manifold defined by (8)
is continuous, and thus the following differential operation
being carried out on the manifold makes sense. For the
requirement of consistency condition we have

�̇� (𝑡) 𝜙 (x) + 𝑄 (𝑡) (Ax − b) ⋅ ẋ = 0, (10)

which is obtained by taking the time differential of (8) with
respect to 𝑡, using (6), and considering x = x(𝑡). We suppose
that x is governed by the following ODEs:

ẋ = −𝜅u, (11)

where 𝜅 is to be determined. Inserting (11) into (10) we can
solve

𝜅 =
𝑞 (𝑡) 𝜙

g ⋅ u
, (12)

where

g := Ax − b, (13)

𝑞 (𝑡) :=
�̇� (𝑡)

𝑄 (𝑡)
. (14)

We further suppose that

u = u
1
+ 𝛼u
2
=: g + 𝛼Bg, (15)

where 𝛼 is a parameter to be determined below through the
solution of an optimal equation derived, and B is a descent
matrix to be specified. Here, we assert that the driving vector
u is an optimal linear combination of the gradient vector and
a supplemental vector being the gradient vector times B.
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3. Numerical Methods

3.1. Convergence Theorem. Before the derivation of optimal
algorithms we can prove the following convergence result.

Theorem 1. For an iterative scheme to solve (1) by

x (𝑡 + Δ𝑡) = x (𝑡) − (1 − 𝛾) g ⋅ u
uTAu

u, (16)

which is generated from the ODEs in (11), the iterative point x
on the manifold (8) has the following convergence rate:

Convergence Rate := 𝑄 (𝑡 + Δ𝑡)
𝑄 (𝑡)

=
1

𝑠
> 1, (17)

where

0 < 𝑠 = 1 −
1 − 𝛾2

2𝑎
0

< 1, (18)

𝑎
0
:=
𝜙uTAu
(g ⋅ u)2

≥
1

2
, (19)

and 0 ≤ 𝛾 < 1 is a relaxation parameter.

Proof. The proof of this theorem is quite lengthy and we
divide it into three parts.

(A) Inserting (12) into (11) we can obtain an evolution
equation for x:

ẋ = −𝑞 (𝑡)
𝜙

g ⋅ u
u. (20)

In the algorithm if𝑄(𝑡) can be guaranteed to be an increasing
function of 𝑡, we might have an absolutely convergent
property in finding the minimum of 𝜙 through the following
equation:

𝜙 (𝑡) =
𝐶

𝑄 (𝑡)
, (21)

which is obtained from (8). Here we simplify the notation of
𝜙(x(𝑡)) to 𝜙(𝑡).

(B) By applying the Euler method to (20) we can obtain
the following algorithm:

x (𝑡 + Δ𝑡) = x (𝑡) − 𝛽
𝜙

g ⋅ u
u, (22)

where

𝛽 = 𝑞 (𝑡) Δ𝑡. (23)

In order to keep x on the manifold defined by (21) we can
insert the above x(𝑡 + Δ𝑡) into

1

2
xT (𝑡 + Δ𝑡)Ax (𝑡 + Δ𝑡) − bTx (𝑡 + Δ𝑡) = 𝐶

𝑄 (𝑡 + Δ𝑡)
− 𝑐
0
,

(24)

and obtain
𝐶

𝑄 (𝑡 + Δ𝑡)
− 𝑐
0
=
1

2
xT (𝑡)Ax (𝑡) − bTx (𝑡)

+ 𝛽𝜙
[b − Ax (𝑡)]Tu

g ⋅ u

+ 𝛽2𝜙2
uTAu
2(g ⋅ u)2

.

(25)

Thus, by (13), (21), and (6) and through some manipulations
we can derive the following scalar equation:

1

2
𝑎
0
𝛽2 − 𝛽 + 1 =

𝑄 (𝑡)

𝑄 (𝑡 + Δ𝑡)
, (26)

where

𝑎
0
:=
𝜙uTAu
(g ⋅ u)2

≥
1

2
, (27)

of which the inequality can be achieved by taking a suitable
value of 𝑘

0
and hence 𝑐

0
in (6).

(C) Let

𝑠 :=
𝑄 (𝑡)

𝑄 (𝑡 + Δ𝑡)
, (28)

and by (26) we can derive

1

2
𝑎
0
𝛽2 − 𝛽 + 1 − 𝑠 = 0. (29)

From (29), we can take the solution of 𝛽 to be

𝛽 =
1 − √1 − 2 (1 − 𝑠) 𝑎

0

𝑎
0

, if 1 − 2 (1 − 𝑠) 𝑎
0
≥ 0. (30)

Let

1 − 2 (1 − 𝑠) 𝑎
0
= 𝛾2 ≥ 0, (31)

𝑠 = 1 −
1 − 𝛾2

2𝑎
0

, (32)

and the sufficient condition 1−2(1−𝑠)𝑎
0
≥ 0 in (30) is satisfied

automatically, and thus by (30) and (31) we can obtain a
preferred solution of 𝛽 by

𝛽 =
1 − 𝛾

𝑎
0

. (33)

Here 0 ≤ 𝛾 < 1 is a relaxation parameter. The inequality 0 <
𝑠 < 1 follows from (32), 1 − 𝛾2 > 0, and 2𝑎

0
≥ 1. Inserting

the above 𝛽 into (22) and using (19) we can derive algorithm
(16). For this algorithm we can define the local convergence
rate by

Convergence Rate :=
𝜙 (𝑡)

𝜙 (𝑡 + Δ𝑡)
, (34)

which, using (28) and (21) and 0 < 𝑠 < 1 just proved, renders
(17). This ends the proof of Theorem 1.
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3.2. Optimization of 𝛼. In Algorithm (22) we do not yet
specify how to choose the parameter 𝛼. We can determine a
suitable value of 𝛼 such that 𝑠 defined in (32) is minimized
with respect to 𝛼, because a smaller 𝑠 will lead to a faster
convergence as shown by (17).

Thus by inserting (19) for 𝑎
0
into (32) we can write 𝑠 to be

𝑠 = 1 −
(1 − 𝛾2) (g ⋅ u)2

2𝜙u ⋅ (Au)
, (35)

whereu as defined by (15) includes a parameter𝛼. Let 𝜕𝑠/𝜕𝛼 =
0, and through some algebraic operations we can solve 𝛼 and
denote it by

𝛼
𝑜
=
g ⋅ u
1
u
1
⋅ (Au
2
) − g ⋅ u

2
u
1
⋅ (Au
1
)

g ⋅ u
2
u
1
⋅ (Au
2
) − g ⋅ u

1
u
2
⋅ (Au
2
)
, (36)

where the subscript 𝑜 signifies that 𝛼
𝑜
is the optimal value of

𝛼.

Remark 2. For the usual three-dimensional vectors a, b, c ∈
R3, the following formula is famous:

a × (b × c) = (a ⋅ c) b − (a ⋅ b) c. (37)

Liu [20] has developed a Jordan algebra by extending the
above formula to vectors in 𝑛-dimension:

[a, b, c] = (a ⋅ b) c − (c ⋅ b) a, a, b, c ∈ R𝑛. (38)

In terms of the Jordan algebra we can write

𝛼
𝑜
=
[u
1
, g,u
2
] ⋅ (Au

1
)

[u
2
, g,u
1
] ⋅ (Au

2
)
, (39)

where the symmetry of A was used. It can be seen that the
above equation is a more symmetric form than that in (36).

3.3. An Optimal Algorithm. Now we can let x
𝑘
denote the

numerical value of x at the 𝑘th step and go back g to g
𝑘
, u

to u
𝑘
, A to A

𝑘
, and B to B

𝑘
. Thus, by using (16) we can derive

an iterative algorithm:

x
𝑘+1
= x
𝑘
− 𝜂

g
𝑘
⋅ u
𝑘

uT
𝑘
A
𝑘
u
𝑘

u
𝑘
, (40)

where

𝜂 = 1 − 𝛾. (41)

Therefore, we have the following optimal algorithm (OA).

(i) Select 0 ≤ 𝛾 < 1, and give an initial x
0
.

(ii) For 𝑘 = 0, 1, 2, . . ., we repeat the following iterations:

𝛼
𝑘
=
[g
𝑘
, g
𝑘
,B
𝑘
g
𝑘
] ⋅ (A
𝑘
g
𝑘
)

[B
𝑘
g
𝑘
, g
𝑘
, g
𝑘
] ⋅ (A
𝑘
B
𝑘
g
𝑘
)
,

u
𝑘
= g
𝑘
+ 𝛼
𝑘
B
𝑘
g
𝑘
,

x
𝑘+1
= x
𝑘
− (1 − 𝛾)

g
𝑘
⋅ u
𝑘

uT
𝑘
A
𝑘
u
𝑘

u
𝑘
.

(42)

If ‖g
𝑘+1
‖ < 𝜀, then stop; otherwise, go to step (ii).

Again we emphasize that we need to solve ∇𝑓 = 0 for
the minimization problem (1), and hence the residual means
the value of ‖∇𝑓‖ = ‖g‖. The above convergence criterion
‖g
𝑘+1
‖ < 𝜀means that when the residual norm is smaller than

a given error tolerance 𝜀, the iterations are terminated.

3.4. A Critical Value for 𝛼. In Sections 3.2 and 3.3 we have
used 𝜕𝑠/𝜕𝛼 = 0 (or equivalently, 𝜕𝑎

0
/𝜕𝛼 = 0) to find the

optimal value of 𝛼 in the descent vector u = g+𝛼Bg. Usually,
this value of 𝛼 obtained from 𝜕𝑠/𝜕𝛼 = 0 is not the global
minimum of 𝑎

0
(or 𝑠). Here, we try another approach and

attempt to derive a better value of 𝛼 than 𝛼
𝑜
, such that the

value of 𝛼 obtained in this manner is the global minimum of
𝑎
0
(or 𝑠).
In practice, we can take

𝑎
0
:=
𝜙uTAu
(g ⋅ u)2

= 𝑎
𝑠
. (43)

When 𝑎
𝑠
is near to 0.5, the convergence speed is very fast.

Inserting (15) for u into the above equation and through some
elementary operations we can derive a quadratic equation to
solve 𝛼:

𝑒
1
𝛼2 + 𝑒

2
𝛼 + 𝑒
3
= 0, (44)

where

𝑒
1
:= 𝜙uT
2
Au
2
− 𝑎
𝑠
(g ⋅ u
2
)
2

, (45)

𝑒
2
:= 2𝜙uT

1
Au
2
− 2𝑎
𝑠
g ⋅ u
1
g ⋅ u
2
, (46)

𝑒
3
:= 𝜙uT
1
Au
1
− 𝑎
𝑠
(g ⋅ u
1
)
2

. (47)

If the following condition is satisfied:

𝐷 := 𝑒2
2
− 4𝑒
1
𝑒
3
≥ 0, (48)

then 𝛼 in (44) has a real solution:

𝛼 =
√𝐷 − 𝑒

2

2𝑒
1

. (49)

Inserting (45)–(47) into the critical equation:

𝐷 = 𝑒2
2
− 4𝑒
1
𝑒
3
= 0, (50)

we can derive an algebraic equation to determine that 𝑎
𝑠

is the lowest bound of (48). In this lowest bound 𝑎
𝑠
is a

critical value denoted by 𝑎
𝑐
, and for all 𝑎

𝑠
≥ 𝑎
𝑐
it can satisfy

(48) automatically. From (50) through some elementary
operations, the critical value 𝑎

𝑐
can be solved as

𝑎
𝑐
=

𝜙 [uT
1
Au
1
uT
2
Au
2
− (uT
1
Au
2
)
2

]

uT
1
Au
1
(g ⋅ u
2
)
2

+ uT
2
Au
2
(g ⋅ u
1
)
2

− 2uT
1
Au
2
g ⋅ u
1
g ⋅ u
2

.

(51)
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Then by inserting it for 𝑎
𝑠
into (45) and (46) we can obtain a

critical value 𝛼
𝑐
for 𝛼 from (49):

𝛼
𝑐
=
𝑎
𝑐
g ⋅ u
1
g ⋅ u
2
− 𝜙uT
1
Au
2

𝜙uT
2
Au
2
− 𝑎
𝑐
(g ⋅ u
2
)
2
, (52)

where𝐷 = 0 was used in view of (50).
By inserting (51) for 𝑎

𝑐
into (52) and cancelling out the

common term 𝜙 we can derive a final equation for 𝛼
𝑐
, of

which we use the same symbols for saving notations:

𝑎
𝑐
=

uT
1
Au
1
uT
2
Au
2
− (uT
1
Au
2
)
2

uT
1
Au
1
(g ⋅ u
2
)
2

+ uT
2
Au
2
(g ⋅ u
1
)
2

− 2uT
1
Au
2
g ⋅ u
1
g ⋅ u
2

,

(53)

𝛼
𝑐
=
𝑎
𝑐
g ⋅ u
1
g ⋅ u
2
− uT
1
Au
2

uT
2
Au
2
− 𝑎
𝑐
(g ⋅ u
2
)
2
. (54)

Here we must emphasize that, in the current descent
vector u = g + 𝛼Bg, the above value 𝛼

𝑐
is the best one, and

the vector

u = g + 𝛼
𝑐
Bg (best descent vector) (55)

is the best descent vector. Due to its criticality, if one attempts
to find a better value of the parameter 𝛼 than 𝛼

𝑐
, there would

be no real solution of 𝛼. Furthermore, the best descent vector
is also better than the optimal vector u = g +𝛼

𝑜
Bg derived in

Section 3.2.

3.5. A Globally Optimal Algorithm. Then, we can derive
the following globally optimal algorithm (GOA) to solve the
minimization problem in (1).

(i) Select 0 ≤ 𝛾 < 1 and give an initial guess of x
0
.

(ii) For 𝑘 = 0, 1, 2, . . ., we repeat the following iterations:

u𝑘
1
= g
𝑘
,

u𝑘
2
= B
𝑘
g
𝑘
,

𝑎𝑘
𝑐

= (u𝑘
1
⋅ A
𝑘
u𝑘
1
u𝑘
2
⋅ A
𝑘
u𝑘
2
− (u𝑘
1
⋅ A
𝑘
u𝑘
2
)
2

)

× (u𝑘
1
⋅ A
𝑘
u𝑘
1
(g
𝑘
⋅ u𝑘
2
)
2

+ u𝑘
2
⋅ A
𝑘
u𝑘
2
(g
𝑘
⋅ u𝑘
1
)
2

−2u𝑘
1
⋅ A
𝑘
u𝑘
2
g
𝑘
⋅ u𝑘
1
g
𝑘
⋅ u𝑘
2
)
−1

,

𝛼
𝑘
=
𝑎𝑘
𝑐
g
𝑘
⋅ u𝑘
1
g
𝑘
⋅ u𝑘
2
− u𝑘
1
⋅ A
𝑘
u𝑘
2

u𝑘
2
⋅ A
𝑘
u𝑘
2
− 𝑎𝑘
𝑐
(g
𝑘
⋅ u𝑘
2
)
2
,

(critical optimal parameter) ,

u
𝑘
= g
𝑘
+ 𝛼
𝑘
B
𝑘
g
𝑘
, (best descent vector) ,

(56)

x
𝑘+1
= x
𝑘
− (1 − 𝛾)

g
𝑘
⋅ u
𝑘

u
𝑘
A
𝑘
u
𝑘

u
𝑘
. (57)

If x
𝑘+1

converges according to a given stopping criterion
‖g
𝑘+1
‖ < 𝜀, then stop; otherwise, go to step (ii).

Remark 3. Wehave derived a novel globally optimal algorithm
for solving the minimization problem in (1). In terms of the
descent vector u = g + 𝛼

𝑐
Bg, the GOA is the best one, which

leads to the global minimum of 𝑎
0
(or 𝑠) and hence the largest

convergence rate. While the parameter 𝛾 is chosen by the user
with problem dependence, the parameter 𝛼

𝑘
is exactly given

by (56). Up to here we have successfully derived a novel best
descent vector algorithm, with the help from (19), (53), and
(54).

Remark 4. At the very beginning we have set an invariant
manifold ℎ(x, 𝑡) = 𝑄(𝑡)𝜙(x) in (8) as our starting point
to derive the iterative optimal algorithms, which includes
a locally objective function 𝜙 in the governing equations.
However, in the final stage the terms which include 𝜙 can
be cancelled out, and thus we have obtained the optimal
algorithm in (42) and the globally optimal algorithm in (57),
which are both independent of 𝜙.

4. The Broyden-Fletcher-Goldfarb-Shanno
Updating Techniques

In the above we have derived two optimal algorithms by
leaving the descent matrix B to be specified by the user. First
we fix B to be the exact Hessian matrix A, and then we can
obtain two optimal algorithms OA and GOA.

We can also apply the technique of BFGS by updating
the Hessian matrix A and its inverse matrix B. To derive
this updating technique let us mention the Newton iterative
scheme to solve (1):

x
𝑘+1
= x
𝑘
− 𝜆
𝑘
∇2𝑓(x

𝑘
)
−1g
𝑘
, (58)

where 𝜆
𝑘
is the optimal steplength along the Newton direc-

tion ∇2𝑓(x
𝑘
)−1g
𝑘
at the 𝑘th step. In order to construct a

matrix B
𝑘
to approximate ∇2𝑓(x

𝑘
)−1 we can analyze the

relation between ∇2𝑓(x
𝑘
)−1 and the first order derivative

g
𝑘
. We take the Taylor expansion of 𝑓(x) at a point x

𝑘+1
,

obtaining

𝑓 (x) ≈ 𝑓 (x
𝑘+1
) + ∇𝑓(x

𝑘+1
)
T
(x − x

𝑘+1
)

+
1

2
(x − x

𝑘+1
)
T
∇2𝑓 (x

𝑘+1
) (x − x

𝑘+1
) .

(59)

Then we have

∇𝑓 (x
𝑘
) ≈ ∇𝑓 (x

𝑘+1
) + ∇2𝑓 (x

𝑘+1
) (x
𝑘
− x
𝑘+1
) . (60)

Let

p
𝑘
= x
𝑘+1
− x
𝑘
, (61)

q
𝑘
= ∇𝑓 (x

𝑘+1
) − ∇𝑓 (x

𝑘
) , (62)

and from (60) we have

q
𝑘
≈ ∇2𝑓 (x

𝑘+1
) p
𝑘
. (63)
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Assume that the Hessian matrix ∇2𝑓(x
𝑘+1
) is invertible and

denote the inverse matrix by B
𝑘+1

. Then from the above
equation we have the so-called quasi-Newton condition:

p
𝑘
= B
𝑘+1

q
𝑘
. (64)

Whenwe take the descentmatrixB to be the inverse of the
HessianmatrixA, wemight accelerate the convergence speed,
which is however a more difficult task when the dimension
of the Hessian matrix is quite large. So far, as that done
in the quasi-Newton method, we can employ the following
updating technique due to BFGS:

B
𝑘+1
= B
𝑘
+ (1 +

qT
𝑘
B
𝑘
q
𝑘

q
𝑘
⋅ p
𝑘

)
p
𝑘
pT
𝑘

q
𝑘
⋅ p
𝑘

−
p
𝑘
qT
𝑘
B
𝑘
+ B
𝑘
q
𝑘
pT
𝑘

q
𝑘
⋅ p
𝑘

.

(65)

The advantage by using the above updating technique is that
we can obtain an approximation of the inverse of the Hessian
matrix, and we do not need to really calculate A−1.

By the same token we can also apply the technique of
BFGS to update the Hessian matrix without needing the
computation of the real Hessian matrix:

A
𝑘+1
= A
𝑘
+

q
𝑘
qT
𝑘

q
𝑘
⋅ p
𝑘

−
A
𝑘
p
𝑘
pT
𝑘
A
𝑘

p
𝑘
⋅ (A
𝑘
p
𝑘
)
, (66)

where at the first step we can take A
0
= I
𝑛
. The advantage of

this approach is that we do not need to calculate the Hessian
matrix exactly, as developed independently by Broyden [21],
Fletcher [22], Goldfarb [23], and Shanno [24]. It is easy to
check that the updating technique in (66) satisfies the quasi-
Newton condition:

A
𝑘+1

p
𝑘
= q
𝑘
, (67)

which is an inversion relationship of (64).
The present notations of A and B are the same as those B

andH used by Dai [25, 26].
The above technique together with the OA by using B

𝑘
=

A
𝑘
generated from (66) will be named the OABFGS, and two

numerical examples will be given to test its performance.
When thematrixA is given exactly by the Hessianmatrix

in the OA and GOA, we use the above technique to compute
B
𝑘
in the OA and GOA, and the resultant iterative algorithms

are named OABFGS1 and GOABFGS1, respectively. Finally,
if in the OA and GOA both A and B are updated by (66)
and (65), the resultant iterative algorithms will be named
OABFGS2 and GOABFGS2, respectively.

In order to show the high performance of the optimal
algorithms OABFGS1, GOABFGS1, and OABFGS2, we will
also apply the DFP method [18, 19] to solve nonlinear
minimization problems, of which the updating technique is

B
𝑘+1
= B
𝑘
+

p
𝑘
pT
𝑘

q
𝑘
⋅ p
𝑘

−
B
𝑘
q
𝑘
qT
𝑘
B
𝑘

q
𝑘
⋅ (B
𝑘
q
𝑘
)
. (68)

For each iterative step we search the minimization of 𝑓(x
𝑘
−

𝜆B
𝑘
∇𝑓(x
𝑘
)) to find 𝜆 by solving the optimality equation

∇𝑓(x
𝑘
−𝜆B
𝑘
∇𝑓(x
𝑘
))⋅(B
𝑘
∇𝑓(x
𝑘
)) = 0 by using the half-interval

method. Gill et al. [27], among several others, have shown
that the modification in (65) performs more efficiently than
that in (68) for most problems.

5. Numerical Examples

In order to evaluate the performance of the newly developed
methods let us investigate the following examples. Some
results are compared with those obtained from the steepest
descent method (SDM) and the DFP method [18, 19]. In
the above algorithms there exists a relaxation parameter 𝛾,
which is problem dependent. A good parameter value of 𝛾
can be selected easily by comparing the convergence speeds
for different values of 𝛾.

Example 1. As the first testing example of OA and GOA we
use the following function given by Rosenbrock [28]:

min {𝑓 = 100(𝑥
2
− 𝑥2
1
)
2

+ (1 − 𝑥
1
)
2

} . (69)

In mathematical optimization, the Rosenbrock function is a
nonconvex function used as a performance test benchmark
problem for optimization algorithms. It is also known as
Rosenbrock’s valley or Rosenbrock’s banana function. The
minimum is zero occurring at (𝑥

1
, 𝑥
2
) = (1, 1). This function

is difficult to be minimized because it has a steep sided
valley following the parabolic curve 𝑥2

1
= 𝑥
2
. Kuo et al. [29]

have used the particle swarm method to solve this problem;
however, the numerical procedures are rather complex. Liu
and Atluri [30] have applied a fictitious time integration
method to solve the above problem under the constraints of
𝑥
1
≥ 0 and 𝑥

2
≥ 0, whose accuracy can reach to the fifth

order.
We apply the OA to this problem by starting from the

initial point at (3, 2) and under a convergence criterion 𝜀 =
10−10.The SDM is run 3749 steps as shown in Figures 1(a) and
1(b) by solid lines for showing the residual and the objective
function 𝑓. The SDM can reach a very accurate minimum
value of 𝑓 with 1.22 × 10−20. The OA with 𝛾 = 0 converges
very fast with only 6 steps, with the residual and the objective
function 𝑓 being shown in Figures 1(a) and 1(b) by dashed
lines. The OA is faster than the SDM with about 625 times,
and furthermore the minimum value of 𝑓 can be reduced to
1.925 × 10−25. In Figure 1(c) we compare the solution paths
generated by the SDM and OA. When the SDM is moving
very slowly along the valley, the OA is moving outside the
region of valley and is convergent very fast to the solution. In
Figure 1(c) the red dashed line is used to represent the valley
of the Rosenbrock function, which is not used to indicate the
result of a numerical method. As shown in Figure 1(b), GOA
is slightly better thanOA, although the paths of OA andGOA
seem to be identical in Figure 1(c).

The SDM usually works very well during early stages;
however, as a stationary point is approached, it behaves
poorly, taking small nearly orthogonal steps. On the other
hand, with the help of the optimal direction g+𝛼

𝑜
Ag the OA

can fast reach to the final end point with high accuracy. For
this example theGOA spends the same number of steps as the
OA; however, theGOAgives very accurateminimumvalue of
𝑓 = 1.26 × 10−29.
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Figure 1: For the Rosenbrock problem, (a) the residuals, (b) the objective function 𝑓, and (c) the solution paths of SDM, OA, and GOA.

Example 2. Next, we consider a generalization of the Rosen-
brock function [31, 32]:

min{𝑓 =
𝑛−1

∑
𝑘=1

[100(𝑥
𝑘+1
− 𝑥2
𝑘
)
2

+ (1 − 𝑥
𝑘
)
2

]} . (70)

This variant has been shown to have exactly one minimum
for 𝑛 = 3 at (𝑥

1
, 𝑥
2
, 𝑥
3
) = (1, 1, 1) and exactly two

minima for 4 ≤ 𝑛 ≤ 7. The global minimum happens at
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (1, 1, . . . , 1) and a local minimum is near

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (−1, 1, . . . , 1). This result is obtained by

setting the gradient of the function equal to zero, noticing that
the resulting equation is a rational function of 𝑥

𝑖
. For small

𝑛 the polynomials can be determined exactly and Sturm’s
theorem can be used to determine the number of real roots,
while the roots can be bounded in the region of |𝑥

𝑖
| < 2.4

[32]. For larger 𝑛 this method breaks down due to the size of
the coefficients involved.

We apply the OA to this problem with 𝑛 = 30, starting
from 𝑥

𝑖
= 0.1𝑖, and under a convergence criterion 𝜀 = 10−5.

Under the above stopping criterion, the SDM is run over
13830 steps as shown in Figure 2(a) by solid lines for showing
the residual and 𝑓. The SDM can reach a very accurate
minimumvalue of𝑓with 1.357 × 10−10.TheOAwith 𝛾 = 0.2
converges with 9956 steps, with the residual and 𝑓 being
shown in Figure 2 by dashed lines. The OA is faster than

the SDM, and similarly the minimum of 𝑓 can be reduced
to 1.96 × 10−11.

At the same time we show the values of the optimal 𝛼 in
Figure 3(a) for the OA. The value of 𝛼 is much smaller than
1, which means that the term g plays a dominant role in the
descent direction; however, the influence of 𝛼Ag, although a
little, is a key point to speed up the convergence.

Then we apply the GOA to this problem under the same
conditions as that in OA. The GOA with 𝛾 = 0.1 converges
with 9846 steps, with the residual and 𝑓 being shown in
Figure 2 by dashed-dotted lines. The GOA is faster than the
SDM, and the minimum value of 𝑓 can be further reduced to
9.59 × 10−12. We show the values of the optimal 𝛼 for the
GOA in Figure 3(b).This problem is quite difficult, andmany
other algorithms are failure to solve this problem.

Example 3. We consider a problem due to Powell [33]:

min {𝑓 = (𝑥
1
+ 10𝑥

2
)
2

+ 5(𝑥
3
− 𝑥
4
)
2

+(𝑥
2
− 2𝑥
3
)
4

+ 10(𝑥
1
− 𝑥
4
)
4

} .
(71)

The minimum of 𝑓 is zero occurring at (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) =

(0, 0, 0, 0). We apply the OA to this problem, starting from
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (3, −1, 0, 1) and under a convergence

criterion of 𝜀 = 10−6. The SDM converges very slowly over
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Figure 2: For the generalized Rosenbrock problem, (a) the residuals and (b) the objective functions obtained by SDM, OA, and GOA.
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Figure 3: In the solution of the generalized Rosenbrock problem by the OA and GOA, showing the variation of optimal values of 𝛼 for (a)
OA and (b) GOA.

50,000 steps as shown in Figure 4 by solid lines for showing
𝑎
0
, 𝑠, and the residual. The SDM can reach a very accurate

value of 𝑓 = 9.938 × 10−9. At the same time, the OA with
𝛾 = 0.15 converges with 349 steps, with 𝑎

0
, 𝑠, and the residual

shown in Figure 4 by dashed lines. The OA is faster than
the SDM over 130 times, and furthermore we can get a more
accurate 𝑓 = 8.33 × 10−10.

As shown in Figure 4(c) the residual obtained by the
OABFGS is rapidly growing to the order 1026 and then
fast decaying to the order 10−6, and through 1043 steps the
OABFGS leads to a better solution with 𝑓 = 1.285 × 10−9

than that obtained by the SDM. Here the combination of
the optimal algorithm with the BFGS updating technique is
very useful when the exact Hessian matrix is not available or
when the computation of the Hessian matrix is cumbersome.

Then we apply the GOA in Section 3.5 to the Powell
problem. Under the same convergence criterion of 𝜀 = 10−6,

the GOA with 𝛾 = 0.001 converges only with 96 steps as
shown in Figure 4(c), where the GOA is faster than the SDM
with 500 times and than OA with 3.5 times, and furthermore
we can get a very accurate minimum value 𝑓 = 1.55 × 10−9.
In Figure 5 we compare the values of 𝛼 obtained by the OA
and the GOA, of which we can observe that both 𝛼 are quite
small and may be negative.

Then, we apply the OABFGS1 and the GOABGGS1
mentioned in Section 4 to solve the Powell problem. Under
the same convergence criterion of 𝜀 = 10−6, the OABFGS1
with 𝛾 = 0.1 converges only with 29 steps as shown
in Figure 6(a), where we can get very accurate value of
𝑓 = 7.57 × 10−12. Similarly, the GOABFGS1 with 𝛾 = 0.1
converges with 30 steps as shown in Figure 6(a), wherewe can
get very accurate value of 𝑓 = 5.28 × 10−10. In Figure 6(b)
we compare the values of 𝛼 obtained by the OABFGS1 and
GOABFGS1, of which we can observe that both 𝛼 are quite
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Figure 4: For the Powell problem, comparing (a) 𝑎
0
and (b) 𝑠 of SDM and OA and (c) the residuals obtained by the SDM, OA, GOA, and

OABFGS.
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Figure 6: For the Powell problem, comparing (a) the residuals and (b) 𝛼 obtained by the OABFGS1 and GOABFGS1 with DFP and showing
(c) the residual and (d) 𝛼 obtained by OABFGS2.
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Figure 7: For the maximum area under a given curve comparing (a) 𝑎
0
, (b) 𝑠, (c) residual error, and (d) 𝑓 obtained by the SDM and GOA.

large, which means that the quasi-Newton direction is a
dominant factor to accelerate the convergence speed.

Then, we apply theOABFGS2 to solve the Powell problem
with 𝛾 = 0, which converges through 116 steps and with the
value of 𝑓 to be 𝑓 = 2.77 × 10−11, which is very accurate.
In Figures 6(c) and 6(d) we show the residual and the value
of 𝛼 obtained by the OABFGS2.

In order to reveal the high performance of the optimal
algorithms OABFGS1, GOABFGS1, and OABFGS2, we
apply the DFP method [18, 19] to solve the Powell problem,
which converges through 131 steps as shown in Figure 6(a).
For each iteration step we search the minimization of
𝑓(x
𝑘
− 𝜆B

𝑘
∇𝑓(x
𝑘
)) to find 𝜆 by solving the optimality

equation ∇𝑓(x
𝑘
− 𝜆B
𝑘
∇𝑓(x
𝑘
)) ⋅ (B

𝑘
∇𝑓(x
𝑘
)) = 0 by using
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Figure 9: For Example 4, showing (a) 𝛼 of OABFGS and (b) 𝛼 of OABFGS1 and (c) comparing the residuals obtained by the DFP, OABFGS,
and OABFGS1.
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Figure 10: For the minimization of Schwefel function comparing (a) 𝑎
0
, (b) 𝑠,(c) residual error, and (d) 𝑓 obtained by the SDM and OA.

the half-interval method, with two end points fixed by
𝜆 = 0 and 𝜆 = 1, and the convergence criterion is given by
𝜀 = 10−10. At the end of the iteration we obtain the minimum
value of 𝑓 to be 𝑓 = 9.79 × 10−12, which is very accurate.

Example 4. In this example we design an office block inside a
structure with a curved roof given by 𝑥 = 100 − 𝑦2. Suppose
that the number of total cuboids is 𝑛 and each cuboid can
have different size, and we attempt to find the dimensions of
all cuboids with maximum volume which would fit inside
the given roof structure; that is,

max {𝑓 = 𝑦
1
[100 − 𝑦2

1
] + 𝑦
2
[100 − (𝑦

1
+ 𝑦
2
)
2

]

+ . . . + 𝑦
𝑛
[100 − (𝑦

1
+ . . . + 𝑦

𝑛
)
2

]} ,
(72)

where 𝑦
𝑖
> 0 is the height of the 𝑖th cuboid.

The maximum of 𝑓 is tending to 2000/3 when 𝑛 is
increasing. When 𝑛 = 95, we apply the GOA to this problem
by starting from 𝑦

𝑖
= 0.05 and under a convergence criterion

of 𝜀 = 10−5. The SDM is convergent with 6868 steps as shown
in Figure 7 by solid lines for showing 𝑎

0
, 𝑠, residual, and 𝑓.

At the same time, the GOA with 𝛾 = 0.35 converges with 96
steps, with 𝑎

0
, 𝑠, residual, and 𝑓 being shown in Figure 7 by

dashed lines. Both 𝑓 are tending to 661.9945. The GOA is
faster than the SDMwith 80 times.The heights and widths of
the cuboids with respect to the number of floors are plotted
in Figure 8. For this problem both OA and GOA lead to the
same numerical results.

Moreover, we also apply the OABFGS and the OABFGS1
as well as the DFP to this problem under the above same
initial condition and convergence criterion, where for the
DFP we use the half-interval method to solve the local
minimization to find the best 𝜆 with two end points fixed
by 𝜆 = 0 and 𝜆 = 1, and the convergence criterion is given
by 𝜀 = 10−10. The values of 𝛾 used in the OABFGS and
OABFGS1 are, respectively, 0.3 and 0.05. The residuals of

these threemethods are compared in Figure 9(c), fromwhich
we can observe that the OABFGS converges with 35 steps, the
OABFGS1 converges with 32 steps, and the DFP converges
with 46 steps. They are all better than the above OA and
GOA algorithms. The value of 𝛼 as shown in Figure 9(a) for
the OABFGS is quite small, which indicates that the descent
direction is dominated by the gradient direction. The value
of 𝛼 as shown in Figure 9(b) for the OABFGS1 is quite large,
which indicates that the descent direction is dominated by
the quasi-Newton direction.

Example 5. In this example we test the minimization of the
Schwefel function with 𝑛 = 100:

min
{
{
{

𝑓 =
𝑛

∑
𝑖=1

(
𝑖

∑
𝑗=1

𝑥
𝑗
)

2

}
}
}

. (73)

The minimum is zero at 𝑥
𝑗
= 0, 𝑗 = 1, . . . , 𝑛.

We apply the OA to this problem by starting from 𝑥
𝑖
=

1 and under a convergence criterion of 𝜀 = 10−4. The SDM
does not converge within 10000 steps as shown in Figure 10
by solid lines for showing 𝑎

0
, 𝑠, residual, and 𝑓. At the same

time, the OAwith 𝛾 = 0.1 converges with 276 steps, with 𝑎
0
, 𝑠,

residual, and 𝑓 being shown in Figure 10 by dashed lines.The
OA is faster than the SDM over 100 times, and 𝑓 is tending
to 3.99 × 10−10 which is more accurate than 1.733 × 10−4

obtained by the SDM.When we apply the GOAwith 𝛾 = 0.05
to this problem, it is convergence with 299 steps and is faster
than the SDMover 100 times, and𝑓 is tending to 7.38 × 10−10
which is more accurate than SDM and OA.

Example 6. In this example we test the minimization of the
Whitley function with 𝑛 = 8:

min
{
{
{

𝑓 =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

[
𝑦2
𝑗𝑖

4000
− cos𝑦

𝑗𝑖
+ 1]

}
}
}

, (74)
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Figure 11: For the minimization of Whitley function comparing (a) residuals and (b) 𝑓 obtained by the SDM and OA, where the SDM is
failure.

where 𝑦
𝑗𝑖
= 100(𝑥

𝑖
− 𝑥2
𝑗
)2 + (𝑥

𝑗
− 1)2. The minimum is zero

at 𝑥
𝑗
= 1, 𝑗 = 1, . . . , 𝑛. Here, we fix 𝑛 = 8.

It is very difficult to minimize the Whitley function. The
SDM diverges as shown in Figure 11 by solid lines. We apply
the OA to this problem, starting from 𝑥

𝑖
= 1.12 and under

a convergence criterion of 𝜀 = 10−8. The OA with 𝛾 = 0.06
converges with 24 steps, with residual and 𝑓 being shown in
Figure 11 by dashed lines and 𝑓 tending to 1.47 × 10−13.

6. Conclusions

By formulating the minimization problem into a continuous
manifold, we can derive a governing system of ODEs for
deriving the iterative algorithms which being proven conver-
gence to find the unknownminimum point x of a given non-
linear minimization function. The novel algorithm is named
“an optimal algorithm (OA),” because in the local frame
we have derived the optimal parameter of 𝛼 in the descent
direction, which is a linear combination of the gradient vector
and a supplemental vector. We have demonstrated a critical
descent vector to derive a globally optimal algorithm (GOA),
which can substantially accelerate the convergence speed in
the numerical solution of nonlinear minimization problem.
It was proven that the critical value 𝛼

𝑐
in the critical descent

vector leads to the largest convergence rate among all the
descent vectors specified by u = g+𝛼Bg. Due to its criticality,
if one attempts to find a better descent vector than u = g +
𝛼
𝑐
Bg, there would be no real descent vector of u. Through

several numerical tests we found that the both the OA and
the GOA outperformed very well. Then we have proposed
novel algorithms based on OA and GOA by replacing the
HessianmatrixA and the descent matrixBwith the updating
techniques of BFGS for one or for both of these twomatrices.
Two numerical examples were given to test the performances
of these algorithms, which are faster than the original OA
and GOA algorithms, due to the enhancement by using the
quasi-Newton conditions on the updated matrices.
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