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Mixed integer programming (MIP) is an important technique to verify the liveness property of sequential flexible manufacturing
systems (FMS) modeled by Petri nets. When there are some fully flexible routings in FMS, the existing MIP-based methods are not
suitable for testing their liveness. This paper defines a subclass of S∗PR nets firstly, namely, OSC-S∗PR nets, and concludes that an
OSC-S∗PR net is live if there exist no non-max󸀠-controlled siphons. Accordingly, determining whether or not an OSC-S∗PR net
is live can also be realized by using standardized mixed integer programming (MIP) tools. Furthermore, the liveness property of
S∗PR nets can be tested in two steps: first, for a given S∗PR net, constructing an OSC-S∗PR net to ensure that if the latter is live then
the former must be live; second, testing liveness of the constructed OSC-S∗PR net by the aforementioned MIP-based algorithm. In
the end, the performance of the method is demonstrated by an application of FMS.

1. Introduction

Flexible manufacturing systems (FMS) utilize computers and
shared resources (such as robots, machines, and automated
guided vehicles) to automatically produce products [1].
Owing to the competition of shared resources, there may
be some processes in FMS, which once started cannot be
finished, that is, deadlocks [2]. Hence, it should be ensured
that no deadlocks will occur in FMS; in other words, all
working processes should be live. Usually, liveness property
of FMS might be tested by analyzing their models (such
as Petri nets) before using. Since the model complexity
will increase with job shop flexibility (alternative machines,
alternative operation sequences, and full routing flexibility)
[3], the work for detecting liveness of FMS will also increase
correspondingly.

At present, there are two categories of techniques for
liveness test: one category is relied on the classic state enu-
meration analysis of Petri nets, which grows exponentially
with the size of the net [4]; the other one is based on
standardized tools of mixed integer programming (MIP),
which is originally proposed by Chu and Xie [5] and is more
efficient than the former. The basic idea of the latter is that

if there does not exist any siphon becoming empty in a Petri
net, then the net is deadlock free. It has been verified that for
some subclasses of ordinary Petri nets such as ES2PR nets
[6], S3PR nets [7], LS3PR [8] nets, and ES3PR [9] nets the
net is live if and only if it is deadlock free. So, the liveness
of these subclasses of ordinary Petri nets can be tested by
MIP-based algorithms [10, 11]. The natural thing is to extend
MIP-basedmethod of liveness test for general Petri nets. Park
and Reveliotis [12] introduced an MIP-based algorithm for
testing the weakly liveness of FMS with alternative machines
flexibility modeled by S3PGR2 nets, which is in view of the
conclusion that a net is weakly live if there exist no dead
marked siphons (DMS). Shih et al. [13] has obtained some
similar results for S3PGR2 nets, in which DMS is found on
the grounds of the conception of max󸀠-controlled siphons.
Moreover, Liu and Li [14] provided a general MIP algorithm
of liveness test for S3PGR2 nets, which is based on the result
that a net is live if there is no extended deadlymarked siphons
(EDMS). Owing to the shortage of liveness conditions of
S∗PR nets, which can model FMS with full routing flexibility
[15, 16], there is no MIP-based method of liveness test for
S∗PR net. The liveness of Gadara nets [17] (a subclass of
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S∗PR nets)may be detected by the originalMIP approach [5],
because of the conclusion that a Gadara net is live if and only
if there does not exist any empty siphons [17, 18].

This paper defined a subclass of S∗PR nets firstly, namely,
OSC-S∗PR nets, in which all output transitions of each
choice working place are restricted to use the same type
and quantity of resources. The main structure characteristic
of OSC-S∗PR nets is that an OSC-S∗PR net is live if there
exists no non-max󸀠-controlled siphons. Accordingly, anMIP-
based algorithm is proposed to determine whether or not
an OSC-S∗PR net is live. It is worth to say that OSC-S∗PR
nets are an extension of Gadara nets, which are usually
used to model multithreaded programs [17]. Considering the
structure complexity of S∗PR nets, it is difficult to develop an
MIP-based algorithm for testing their liveness directly. So, an
indirect method is given here, which comprises two steps as
follows: first, for a given S∗PRnet, constructing anOSC-S∗PR
net to ensure that if the latter is live then the former must
be live; second, testing liveness of the constructed OSC-S∗PR
net by the aforementioned MIP-based algorithm. In order to
verify the performance of our method, a typical case of FMS
is taken as example.

This paper is organized as follows. Section 2 introduces
the basic knowledge about Petri nets. Section 3 presents
OSC-S∗PR nets and their structure characteristics. Section 4
proposes anMIP-based algorithm for testing liveness ofOSC-
S∗PR nets. Section 5 discusses an indirect method for testing
liveness of S∗PR nets. A typical example is presented in
Section 6.

2. Preliminaries

This section, we briefly introduce the basic definitions and
notations of a Petri net, which will be discussed in the rest
of this paper. More details can be found in [4, 19].

A generalized Petri net is a four-tuple 𝑁 = (𝑃, 𝑇, 𝐹,𝑊),
where 𝑃 and 𝑇 are finite, nonempty and disjoint sets. 𝑃

denotes the set of places and 𝑇 denotes the set of transitions
with 𝑃⋃𝑇 ̸= 𝜙 and 𝑃⋂𝑇 = 𝜙. 𝐹 ⊆ (𝑃×𝑇)⋃(𝑇×𝑃) is called
a flow relation of the net, represented by arcs with arrows
from places to transitions or from transitions to places. 𝑊 :

(𝑃 × 𝑇)⋃(𝑇 × 𝑃) → N is a mapping that assigns a weight to
an arc: 𝑊(𝑥, 𝑦) > 0 if and only if (𝑥, 𝑦) ∈ 𝐹, and 𝑊(𝑥, 𝑦) = 0

otherwise, where 𝑥, 𝑦 ∈ 𝑃⋃𝑇 and N denotes the set of
natural numbers.

A marking 𝑀 of a Petri net 𝑁 is a mapping from 𝑃

to N. 𝑀(𝑝) denotes the number of tokens in the place 𝑝.
We usually describe markings and vectors using a multiset
(bag) or formal sum notation for economy of space. As a
result,∑

𝑝∈𝑃
𝑀(𝑝)𝑝 is used to denote vector𝑀. For instance,

a marking that puts four tokens in place 𝑝
2
and two tokens

in place 𝑝
4
only in a net with 𝑃 = {𝑝

1
− 𝑝
6
} is denoted by

4𝑝
2
+ 2𝑝
4
instead of (0, 4, 0, 2, 0, 0). A place 𝑝 is marked by

marking𝑀 if and only if𝑀(𝑝) > 0. A subset 𝑆 ⊆ 𝑃 is marked
by𝑀 if and only if at least one place in 𝑆 is marked by𝑀.The
sum of tokens of all places in 𝑆 is denoted by 𝑀(𝑆); that is,
𝑀(𝑆) = ∑

𝑝∈𝑆
𝑀(𝑝). 𝑆 is said to be empty at 𝑀 if and only if

𝑀(𝑆) = 0. (𝑁,𝑀
0
) is called a net system or marked net and

𝑀
0
is called an initial marking of 𝑁. In general, (𝑁,𝑀

0
) is

directly called a net where there is no confusion.
Let 𝑥 ∈ 𝑃⋃𝑇 be a node of net 𝑁 = (𝑃, 𝑇, 𝐹,𝑊). ∙𝑥 =

{𝑦 ∈ 𝑃⋃𝑇 | (𝑦, 𝑥) ∈ 𝐹} denotes the preset of 𝑥, while
𝑥
∙

= {𝑦 ∈ 𝑃⋃𝑇 | (𝑥, 𝑦) ∈ 𝐹} denotes its postset of 𝑥.
Furthermore, this notation can be extended to a set of nodes.
For example, given 𝑋 ⊆ 𝑃⋃𝑇, ∙𝑋 = ⋃

𝑥∈𝑋

∙

𝑥 and 𝑋
∙

=

⋃
𝑥∈𝑋

𝑥
∙. Given a place 𝑝, we denote max{𝑊(𝑝, 𝑡) | 𝑡 ∈ 𝑝

∙

} by
max
𝑝
∙ and min{𝑊(𝑡, 𝑝) | 𝑡 ∈

∙
𝑝} by min ∙

𝑝
.

A transition 𝑡 ∈ 𝑇 is enabled at marking 𝑀 if and only if
for all 𝑝 ∈

∙

𝑡, 𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡). This fact is denoted by 𝑀[𝑡⟩.
Firing it yields a new marking 𝑀

󸀠 such that for all 𝑝 ∈ 𝑃,
𝑀
󸀠

(𝑝) = 𝑀(𝑝)−𝑊(𝑝, 𝑡)+𝑊(𝑡, 𝑝), as denoted by𝑀[𝑡⟩𝑀
󸀠.𝑀󸀠

is called a immediately reachable marking from 𝑀. Marking
𝑀
󸀠 is said to be reachable from 𝑀 if there exists a sequence

of transitions 𝜎 = 𝑡
0
𝑡
1
⋅ ⋅ ⋅ 𝑡
𝑛
and markings 𝑀

1
,𝑀
2
, . . ., and

𝑀
𝑛
such that𝑀[𝑡

0
⟩𝑀
1
[𝑡
1
⟩𝑀
2
⋅ ⋅ ⋅𝑀
𝑛
[𝑡
𝑛
⟩𝑀
󸀠 holds.The set of

markings reachable from𝑀 in𝑁 is called the reachability set
of Petri net (𝑁,𝑀) and denoted by 𝑅(𝑁,𝑀).

Let 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) be a Petri net. 𝑁 is pure (self-loop
free) if and only if for all 𝑥 ∈ 𝑃⋃𝑇, ∙𝑥⋂𝑥

∙

= 𝜙. 𝑁 is called
an ordinary net, denoted by 𝑁 = (𝑃, 𝑇, 𝐹) if for all 𝑓 ∈ 𝐹,
𝑊(𝑓) = 1. 𝑁 = (𝑃, 𝑇, 𝐹) is called a state machine if for
all 𝑡 ∈ 𝑇, |∙𝑡| = |𝑡

∙

| = 1. It is strongly connected if for all
𝑥, 𝑦 ∈ 𝑃⋃𝑇, there is a sequence of nodes 𝑥, 𝑎, 𝑏, . . . , 𝑐, 𝑦 such
that (𝑥, 𝑎), (𝑎, 𝑏), . . . , (𝑐, 𝑦) ∈ 𝐹, where {𝑎, 𝑏, . . . , 𝑐} ⊆ 𝑃⋃𝑇.
An extended free-choice net is an ordinary Petri net such
that for all 𝑡

1
, 𝑡
2

∈ 𝑇, ∙𝑡
1
⋂
∙

𝑡
2

̸= 𝜙 ⇒
∙

𝑡
1

=
∙

𝑡
2
. A pure

net 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) can be represented by its incidence
matrix [𝑁], where [𝑁] is a |𝑃| × |𝑇| integer matrix with
[𝑁](𝑝, 𝑡) = 𝑊(𝑡, 𝑝) − 𝑊(𝑝, 𝑡). For a place 𝑝 (transition 𝑡),
its incidence vector, a row (column) in [𝑁], is denoted by
[𝑁](𝑝, ∙), ([𝑁](∙, 𝑡)). The structural bound of a place 𝑝 is
defined as 𝐵(𝑝) = max{𝑀(𝑝) | 𝑀 = 𝑀

0
+ [𝑁] ⋅ Y,𝑀 ≥

0,Y ≥ 0}.
A P-invariant Y is a 𝑃-dimensional vector which satisfies

Y ̸= 0, Y𝑇 ⋅ [𝑁] = 0𝑇. For any reachable marking 𝑀
󸀠

∈

𝑅(𝑁,𝑀) and a P-invariant Y of 𝑁, M𝑇 ⋅ Y = M󸀠𝑇 ⋅ Y.
‖Y‖ = {𝑝 | Y(𝑝) ̸= 0} is called the support of Y. ‖Y‖

+

=

{𝑝 | Y(𝑝) > 0} denotes the positive support of 𝑃-invariant Y
and ‖Y‖

−

= {𝑝 | Y(𝑝) < 0} denotes the negative support of P-
invariant Y. Y is said to be minimal if ‖Y‖ is not a superset of
the support of any other one and its components aremutually
prime. If for all 𝑝 ∈ ‖Y‖, Y(𝑝) > 0, then Y is a P-semiflow.

Let 𝑆 be a nonempty subset of places in 𝑁. 𝑆 is a siphon
(trap) if and only if ∙𝑆 ⊆ 𝑆

∙ (𝑆∙ ⊆
∙

𝑆). A siphon 𝑆 is said to
be minimal if and only if it contains no other siphons as its
proper subset. Aminimal siphon is strict if it does not contain
a trap (SMS for short).

Given a net (𝑁,𝑀
0
), a transition 𝑡 ∈ 𝑇 is live under𝑀

0
if

and only if for all 𝑀 ∈ 𝑅(𝑁,𝑀
0
), ∃𝑀

󸀠

∈ 𝑅(𝑁,𝑀) such that
𝑀
󸀠

[𝑡⟩. A transition 𝑡 ∈ 𝑇 is said to be dead under marking
𝑀 ∈ 𝑅(𝑁,𝑀

0
) if and only if ∄𝑀

∗

∈ 𝑅(𝑁,𝑀) such that
𝑀
∗

[𝑡⟩. (𝑁,𝑀
0
) is quasi-live under 𝑀

0
if and only if for all

𝑡 ∈ 𝑇, ∃𝑀 ∈ 𝑅(𝑁,𝑀
0
) such that 𝑀[𝑡⟩. (𝑁,𝑀

0
) is live if and

only if for all 𝑡 ∈ 𝑇, 𝑡 is live. In this paper, we will denote
the set of live transition under 𝑀 by 𝑇

𝐿
and the set of dead

transition for marking 𝑀 by 𝑇
𝐷
. From the definition above,
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it can be known that a live transition can be fired infinitely
in 𝑅(𝑁,𝑀

0
). A dead transition for marking 𝑀 can never be

fired in 𝑅(𝑁,𝑀).
A number of nodes 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑘
is called a path of 𝑁 if

for all 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}, 𝑛
𝑖+1

∈ 𝑛
∙

𝑖
. An simple path (not a

circuit) from 𝑛
1
to 𝑛
𝑘
is a path whose nodes are all different,

which can be denoted as SP(𝑛
1
, 𝑛
𝑘
). A circuit is an simple path

with 𝑛
1
= 𝑛
𝑘
.

3. Definitions and Properties of
OSC-S∗PR Nets

In order to model FMS with full routing flexibility and
multiple copies of different resources, S∗PR nets are proposed
by Ezpeleta et al. [15], which are defined as follows.

Definition 1 (see [15]). Let 𝐼
𝑁

= {1, 2, . . . , 𝑚} be a finite set
of indexes. An S∗PR net is a connected generalized self-loop-
free Petri net 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) where

(i) 𝑃 = 𝑃
𝐴
⋃𝑃
0
⋃𝑃
𝑅
is a partition such that (a) 𝑃

𝐴
=

⋃
𝑖∈𝐼
𝑁

𝑃
𝐴,𝑖

is called the set of operation places, where
𝑃
𝐴,𝑖

̸= 𝜙 and 𝑃
𝐴,𝑖

⋂𝑃
𝐴,𝑗

= 𝜙 for all 𝑖 ̸= 𝑗; (b)
𝑃
0

= ⋃
𝑖∈𝐼
𝑁

{𝑝
0,𝑖

} is called the set of idle places; (c)
𝑃
𝑅

= ⋃
𝑖∈𝐼
𝑁

𝑃
𝑅,𝑖

= {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑚
} is called the set of

resource places;
(ii) 𝑇 = ⋃

𝑖∈𝐼
𝑁

𝑇
𝑖
, 𝑇
𝑖

̸= 𝜙; for all 𝑗 ̸= 𝑖, 𝑇
𝑖
⋂𝑇
𝑗
= 𝜙;

(iii) 𝑊 = 𝑊
𝐴
⋃𝑊
𝑅
, where

𝑊
𝐴

: ((𝑃
𝐴
⋃𝑃
0
)×𝑇)⋃(𝑇×(𝑃

𝐴
⋃𝑃
0
)) → {0, 1}

and
for all 𝑗 ̸= 𝑖, 𝑊

𝐴
: ((𝑃
𝐴,𝑗

⋃{𝑝
0,𝑗

}) × 𝑇
𝑖
)⋃(𝑇
𝑖
×

(𝑃
𝐴,𝑗

⋃{𝑝
0,𝑗

})) → {0};
𝑊
𝑅

: (𝑃
𝑅
× 𝑇)⋃(𝑇 × 𝑃

𝑅
) → N, where N is the

set of natural number;

(iv) for all 𝑖 ∈ 𝐼
𝑁
, the subnet 𝑁

𝑖
generated by

𝑃
𝐴
𝑖

⋃{𝑝
0𝑖
}⋃𝑇
𝑖
is a strongly connected statemachine;

(v) for all 𝑟 ∈ 𝑃
𝑅
, there exists a unique minimal 𝑃-

semiflow 𝐼
𝑟
, such that ‖𝐼

𝑟
‖⋂𝑃
𝑅

= {𝑟}, ‖𝐼
𝑟
‖⋂𝑃
0
= 𝜙,

‖𝐼
𝑟
‖⋂𝑃
𝐴

̸= 𝜙 and 𝐼
𝑟
(𝑟) = 1;

(vi) 𝑃
𝐴

= ⋃
𝑟∈𝑃
𝑅

(‖𝐼
𝑟
‖ \ 𝑃
𝑅
);

(vii) 𝑁 is pure and strongly connected.

Definition 2 (see [15]). A well-marked S∗PR net (𝑁,𝑀
0
) is a

marked Petri net 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) with initial marking 𝑀
0

such that for all 𝑝 ∈ 𝑃
𝐴
, 𝑀
0
(𝑝) = 0; for all 𝑟 ∈ 𝑃

𝑅
, 𝑀
0
(𝑟) ≥

max
𝑝∈‖𝐼
𝑟
‖
𝐼
𝑟
(𝑝); and 𝑀

0
(𝑟) ≥ max

𝑝∈‖𝐼
𝑟
‖
𝐼
𝑟
(𝑝), 𝑀

0
(𝑝
0,𝑖

) ≥ 1.
Due to the structure complexity of S∗PR nets, the liveness

problem usually relies on the classic state enumeration
analysis. Obviously, it is time-consuming due to the state
explosion problem. Fortunately, Gadara nets, a subclass of
S∗PR nets, may utilize some efficient methods such as MIP-
based approach for testing their liveness. In fact, Gadara nets
are a simplified subclass of S∗PR nets with the restriction that
no resources are required in all branches and quantity of the

same type of resources equals one.The definition is shown as
follows.

Definition 3 (see [10]). Let 𝐼
𝑁

= {1, 2, . . . , 𝑚} be a finite set of
indexes. A Gadara net is an ordinary, self-loop-free Petri net
𝑁 = (𝑃, 𝑇, 𝐹,𝑀

0
) where

(i) 𝑃 = 𝑃
𝐴
⋃𝑃
0
⋃𝑃
𝑅
is a partition such that (a) 𝑃

𝐴
=

⋃
𝑖∈𝐼
𝑁

𝑃
𝐴,𝑖

is called the set of operation places, where
𝑃
𝐴,𝑖

̸= 𝜙 and 𝑃
𝐴,𝑖

⋂𝑃
𝐴,𝑗

= 𝜙 for all 𝑖 ̸= 𝑗; (b)
𝑃
0

= ⋃
𝑖∈𝐼
𝑁

{𝑝
0,𝑖

} is called the set of idle places; (c)
𝑃
𝑅

= ⋃
𝑖∈𝐼
𝑁

𝑃
𝑅,𝑖

= {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑚
} is called the set of

resource places;
(ii) 𝑇 = ⋃

𝑖∈𝐼
𝑁

𝑇
𝑖
, 𝑇
𝑖

̸= 𝜙; for all 𝑗 ̸= 𝑖, 𝑇
𝑖
⋂𝑇
𝑗
= 𝜙;

(iii) for all 𝑖 ∈ 𝐼
𝑁
, the subnet 𝑁

𝑖
generated by

𝑃
𝐴
𝑖

⋃{𝑝
0𝑖
}⋃𝑇
𝑖
is a strongly connected statemachine;

(iv) for all 𝑝 ∈ 𝑃
𝐴
, if |𝑝∙| > 1, then for all 𝑡 ∈ 𝑝

∙, ∙𝑡⋂𝑃
𝑅

=

𝜙;
(v) for all 𝑟 ∈ 𝑃

𝑅
, there exists a unique minimal 𝑃-

semiflow 𝐼
𝑟
, such that ‖𝐼

𝑟
‖⋂𝑃
𝑅

= {𝑟} (for all 𝑝 ∈ ‖𝐼
𝑟
‖,

𝐼
𝑟
(𝑝) = 1), ‖𝐼

𝑟
‖⋂𝑃
0

= 𝜙, ‖𝐼
𝑟
‖⋂𝑃
𝐴

̸= 𝜙, and 𝐼
𝑟
(𝑟) =

1;
(vi) 𝑃
𝐴

= ⋃
𝑟∈𝑃
𝑅

(‖𝐼
𝑟
‖ \ 𝑃
𝑅
);

(vii) for all 𝑟 ∈ 𝑃
𝑅
, 𝑀
0
(𝑟) = 1. For all 𝑝 ∈ 𝑃

𝐴
, 𝑀
0
(𝑝) = 0.

For all 𝑝
0
∈ 𝑃
0
, 𝑀
0
(𝑝
0
) ≥ 1.

In most cases, the modeling ability of Gadara nets is not
enough. Here, a new subclass of S∗PR nets, namely, OSC-
S∗PR nets, is introduced as follows.

Definition 4. Let (𝑁,𝑀
0
) be a well-marked S∗PR net. A place

𝑝 is said to be a choice operation place if and only if 𝑝 ∈ 𝑃
𝐴

and |𝑝
∙

| ≥ 2. The set of choice operation places in (𝑁,𝑀
0
) is

denoted by 𝑃
𝐶
; that is, 𝑃

𝐶
= {𝑝 ∈ 𝑃

𝐴
| |𝑝
∙

| ≥ 2}.

Definition 5. Let (𝑁,𝑀
0
) be a well-marked S∗PR net. A

choice operation place 𝑝 ∈ 𝑃
𝐶
is said to be satisfied operation

symmetry choice condition (OSC-Condition) if and only if

∀𝑡
1
, 𝑡
2
∈ 𝑝
∙

,
∙

𝑡
1
=
∙

𝑡
2
,

∀𝑝
󸀠

∈
∙

𝑡
1
=
∙

𝑡
2
, 𝑤 (𝑝

󸀠

, 𝑡
1
) = 𝑤 (𝑝

󸀠

, 𝑡
2
) .

(1)

(𝑁,𝑀
0
) is said to be a well-markedOSC-S∗PR net if and only

if for all 𝑝 ∈ 𝑃
𝐶
, 𝑝 satisfies OSC-Condition.

The OSC-Condition confirms that each output transition
of each choice operation place must use the same kind and
quantity of resources. From Definition 5, it is apparent that
OSC-S∗PR nets are a subclass of S∗PR nets. Since any branch
in a Gadara net cannot be associated with any resource [17],
it satisfies OSC-Condition as well; that is, Gadara nets are a
special case of OSC-S∗PR nets.

Example 6. Consider the net shown in Figure 1. For the
choice operation places 𝑝

3
and 𝑝

7
, all output transitions 𝑡V1,

𝑡V2, 𝑡V3, and 𝑡V4 use none of resources. So it is an OSC-S∗PR
net but is not a Gadara net because initial tokens in 𝑟

1
, 𝑟
2
, 𝑟
3
,

𝑟
𝐴
, and 𝑟

𝐵
are greater than one.
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Figure 1: An OSC-S∗PR net.

Similar to the technique in [20, 21], the definition ofmax󸀠-
controlled siphon of S∗PR nets is introduced as follows.

Definition 7. Let 𝑆 be a siphon of a S∗PR net (𝑁,𝑀
0
), where

𝑆 = 𝑆
𝑅
⋃𝑆
𝐴
, 𝑆
𝑅

= 𝑆⋂𝑃
𝑅

̸= ⌀, and 𝑆
𝐴

= 𝑆⋂𝑃
𝐴

̸= ⌀. The
holder of resource 𝑟 is defined as the difference of two sets
‖𝐼
𝑟
‖ and {𝑟}:𝐻(𝑟) = ‖𝐼

𝑟
‖ − {𝑟}, and [𝑆] = ‖⋃

𝑟∈𝑆
𝑅

𝐻
𝑟
‖ \ 𝑆 is the

complementary set of siphon 𝑆.

Definition 8. Let 𝑆 be a siphon of a well-marked S∗PR net
(𝑁,𝑀

0
). 𝑆 is said to be max󸀠-marked at marking 𝑀 ∈

𝑅(𝑁,𝑀
0
) if and only if ∃𝑝 ∈ 𝑆

𝐴
such that 𝑀(𝑝) ≥ 1 or

∃𝑟 ∈ 𝑆
𝑅
such that 𝑀(𝑟) ≥ max

𝑡∈𝑟
∙

⋂[𝑆]
∙𝑊(𝑟, 𝑡). 𝑆 is said to be

max󸀠-controlled if and only if it is max󸀠-marked under any
reachable marking. (𝑁,𝑀

0
) is said to be max󸀠-controlled if

and only if each siphon of it is max󸀠-controlled.
Before proving the liveness condition of OSC-S∗PR nets,

some lemmas are established first.

Lemma 9. Let 𝑝 be a choice operation place in a well-marked
OSC-S∗PR net (𝑁,𝑀

0
). For all 𝑀 ∈ 𝑅(𝑁,𝑀

0
), the following

conclusions hold.

(i) If ∃𝑡
1
∈ 𝑝
∙ such that𝑀[𝑡

1
⟩, then for all 𝑡

2
∈ 𝑝
∙ we have

𝑀[𝑡
2
⟩.

(ii) If ∃𝑡
1

∈ 𝑝
∙ such that 𝑡

1
is disabled under 𝑀, then for

all 𝑡
2
∈ 𝑝
∙ we have that 𝑡

2
is disabled under 𝑀.

Proof. This is trivial. Because fromDefinition 5, for all 𝑡
1
, 𝑡
2
∈

𝑝
∙, ∙𝑡
1

=
∙

𝑡
2
and for all 𝑝 ∈

∙

𝑡
1
, 𝑤(𝑝, 𝑡

1
) = 𝑤(𝑝, 𝑡

2
).

Therefore, all of them are enabled for making 𝑀 if one of
them is enabled and all of them are disabled for making 𝑀

if one of them is disabled.

Lemma 10. Let (𝑁,𝑀
0
) be a well-marked S∗PR net. For all

𝑝
𝑖
∈ 𝑃
𝐴
𝑖

, there must exist a simple path SP(𝑝
𝑖
, 𝑝
0

𝑖
) from 𝑝

𝑖
to

𝑝
0

𝑖
.

Proof. This is trivial, since by condition (iv) in Definition 1,
𝑁
𝑖
generated by 𝑃

𝐴
𝑖

⋃{𝑝
0

𝑖
}⋃𝑇
𝑖
is strongly connected.

Lemma 11. Let (𝑁,𝑀
0
) be a well-marked S∗PR net. Then, 𝑁

is quasi-live under 𝑀
0
.

Proof. From 𝑀
0
, by Definition 2, for all 𝑡

0
∈ 𝑃
0
∙, 𝑡
0
is

enabled. For the transition 𝑡
𝑗,𝑖

∈ 𝑇
𝑖
\ 𝑃
0
∙, since (𝑁,𝑀

0
) is

well-marked, we can construct a trivial firing sequence 𝑠 =

𝑡
0,𝑖

, 𝑡
1,𝑖

, . . . , 𝑡
(𝑗−1),𝑖

from 𝑀
0
by only allowing the execution of

only one sequential process 𝑖 and only one token flowing into
process 𝑖, reaching a marking 𝑀 such that 𝑀[𝑡

𝑗,𝑖
⟩. This is

valid for each 𝑡 ∈ 𝑇.

Lemma 12. Let (𝑁,𝑀
0
) be a well-marked S∗PR net, and let

𝑀 ∈ 𝑅(𝑁,𝑀
0
) be a reachable marking so that 𝑡 ∈ 𝑇 is a dead

transition under 𝑀. Then, 𝑀
0
∉ 𝑅(𝑁,𝑀).

Proof. Assume that 𝑀
0

∈ 𝑅(𝑁,𝑀). By Lemma 11, ∃𝑀
󸀠

∈

𝑅(𝑁,𝑀) such that 𝑀
󸀠

[𝑡⟩. This contradicts the hypothesis
that 𝑡 ∈ 𝑇 is a dead transition under 𝑀. Thus, Lemma 12
holds.

Similar to the method in [7], Lemma 13 is proposed
which means that if there is a reachable marking such that
a transition is dead, then there exists a set of processes where
some tokens cannot evolve any more.

Lemma 13. Let (𝑁,𝑀
0
) be a well-marked OSC-S∗PR net.

𝑀 ∈ 𝑅(𝑁,𝑀
0
) and 𝑡

∗

∈ 𝑇 is a dead transition under 𝑀;
then there exist 𝑀

󸀠

∈ 𝑅(𝑁,𝑀) and two subsets 𝐽,𝐻 ∈ 𝐼
𝑁

such that 𝐼
𝑁

= 𝐽⋃𝐻, 𝐼
𝑁

= {1, 2, . . . , 𝑛}, 𝐽⋂𝐻 = ⌀, 𝐽 ̸= ⌀,
and (i) for all ℎ ∈ 𝐻, 𝑀󸀠(𝑝0

ℎ
) = 𝑀

0
(𝑝
0

ℎ
); (ii) for all 𝑗 ∈ 𝐽,

𝑀
󸀠

(𝑝
0

𝑗
) < 𝑀

0
(𝑝
0

𝑗
), and Ω = {𝑝

∙

| 𝑝 ∈ 𝑃
𝐴
,𝑀
󸀠

(𝑝) > 0} is a set
of dead transitions.

Proof. By condition (ii) of Definition 1, for all 𝑖 ∈ 𝐼
𝑁
and for

all 𝑀󸀠 ∈ 𝑅(𝑁,𝑀
󸀠

), 𝑀󸀠(𝑝0
𝑖
) ≤ 𝑀

0
(𝑝
0

𝑖
). Therefore, there must
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exist 𝑀
󸀠

∈ 𝑅(𝑁,𝑀) and two subsets 𝐽,𝐻 ∈ 𝐼
𝑁
such that

𝐼
𝑁

= 𝐽⋃𝐻, 𝐼
𝑁

= {1, 2, . . . , 𝑛}, 𝐽⋂𝐻 = ⌀ and (i) for all
ℎ ∈ 𝐻,𝑀󸀠(𝑝0

ℎ
) = 𝑀

0
(𝑝
0

ℎ
); (ii) for all 𝑗 ∈ 𝐽,𝑀󸀠(𝑝0

𝑗
) < 𝑀

0
(𝑝
0

𝑗
).

First, prove 𝐽 ̸= ⌀. Assume that 𝐽 = ⌀. Then, it can be
concluded that 𝐻 = 𝐼

𝑁
. Therefore, for all ℎ ∈ 𝐼

𝑁
, we have

𝑀
󸀠

(𝑝
0

ℎ
) = 𝑀

0
(𝑝
0

ℎ
),𝑀󸀠 = 𝑀

0
. Since (𝑁,𝑀

0
) is a well-marked

OSC-S∗PR net, by Lemma 11, it is quasi-live.Therefore, for all
𝑡
󸀠󸀠

∈ 𝑇, ∃𝑀
󸀠󸀠

∈ (𝑁,𝑀
󸀠

), such that 𝑀󸀠󸀠[𝑡󸀠󸀠⟩. This contradicts
the condition that 𝑡

∗

∈ 𝑇 is a dead transition. Thus,
𝐽 ̸= ⌀.

Then, prove ∃𝑀
󸀠

∈ 𝑅(𝑁,𝑀) such that for all 𝑗 ∈ 𝐽, Ω =

{𝑝
∙

| 𝑝 ∈ 𝑃
𝐴
,𝑀
󸀠

(𝑝) > 0} is a set of dead transitions. From
themarking𝑀

󸀠mentioned before andmove all processes one
by one corresponding to indexes in 𝐽 as follows approach. By
Lemma 10, for all 𝑝

𝑗
∈ 𝑃
𝐴𝑗

there must exist a simple path
SP(𝑝
𝑗
, 𝑝
0

𝑗
) from 𝑝

𝑗
to 𝑝
0

𝑗
.Then, for all 𝑝

𝑗
∈ {𝑝 ∈ 𝑃

𝐴𝑗
,𝑀
󸀠

(𝑝) >

0}, moving the process along SP(𝑝
𝑗
, 𝑝
0

𝑗
), the process will be

either dead (since by Lemma 9, all the transitions in the
postset of a choice place are disabled as long as one of them is
disabled) or back to initial state, in which the tokens in 𝑝

𝑗
will

flow back to 𝑝
0

𝑗
. Repeat this for each process corresponding

to indexes in 𝐽. The net reaches a marking 𝑀
󸀠󸀠

∈ 𝑅(𝑁,𝑀
󸀠

)

verifying condition (ii) in the hypothesis, because, on the
contrary, all process corresponding to indexes in 𝐽 will get
back to the initial state; that is, 𝑀

0
∈ 𝑅(𝑁,𝑀

󸀠

) which is
in contradiction with Lemma 12. Let 𝑀

󸀠

:= 𝑀
󸀠󸀠; Lemma 13

holds.

From these lemmas, the main theorems can be obtained
as follows.

Theorem 14. Let (𝑁,𝑀
0
) be a well-marked OSC-S∗PR net,

𝑀 ∈ 𝑅(𝑁,𝑀
0
), and 𝑡 ∈ 𝑇 is a dead transition for 𝑀. Then

∃𝑀
󸀠

∈ 𝑅(𝑁,𝑀), ∃𝑆 is a siphon such that 𝑆 is nonempty and
non-max󸀠-marked.

Proof. Consider the making 𝑀
󸀠 given in Lemma 13.

Let

𝑆
󸀠

𝑅
= {𝑟 ∈ 𝑃

𝑅
| ∃𝑡 ∈ 𝑟

∙

,𝑀
󸀠

(𝑟) < 𝑤 (𝑟, 𝑡) ,

𝑝 ∈ 𝑃
𝐴
⋂
∙

𝑡,𝑀
󸀠

(𝑝) > 0} ;

𝑆
󸀠

𝑃
= {𝑝 ∈ 𝐻 (𝑟) | 𝑟 ∈ 𝑆

𝑅
,𝑀
󸀠

(𝑝) = 0} .

(2)

𝑆
󸀠

𝑅
is the set of resource places which have at least one

disabled output transition and this transition is disabled only
because of the lack of this resource. 𝑆󸀠

𝑃
is the set of nonmarked

places in 𝐻(𝑟). It is apparent that 𝑆 ̸= 𝜙 (otherwise 𝑆
󸀠

𝑅
= 𝜙,

then for all 𝑝 ∈ 𝑃
𝐴
⋂{𝑝 | 𝑀

󸀠

(𝑝) > 0}, it is true that for all
𝑡
󸀠

∈ 𝑝
∙

,𝑀
󸀠

[𝑡
󸀠

⟩, which contradicts the condition that Ω is a
set of dead transitions).

Now we prove that 𝑆 = 𝑆
󸀠

𝑅
⋃𝑆
󸀠

𝑃
is a non-max󸀠-marked

siphon under 𝑀
󸀠.

First, we prove that 𝑆 is a siphon; that is, for all 𝑡󸀠 ∈ ∙𝑆,
𝑡
󸀠

∈ 𝑆
∙. Then, two cases should be considered.

Case 1. 𝑡󸀠 ∈
∙

𝑟, where 𝑟 ∈ 𝑆
󸀠

𝑅
. By Definition 1, the subnet

of an S∗PR net is a state machine. Thus, | ∙𝑡󸀠⋂𝑃
𝐴
| = 1. Let

∙

𝑡
󸀠

⋂𝑃
𝐴

= {𝑝
󸀠

}. Since 𝑡
󸀠

∈
∙

𝑟, it can be obtained that 𝑝
󸀠

∈

𝐻(𝑟). Then, two subcases should be considered as follows.

Subcase 1.1. If 𝑀
󸀠

(𝑝
󸀠

) = 0, by the definition of 𝑆󸀠
𝑃
, it can be

obtained that 𝑝󸀠 ∈ 𝑆
󸀠

𝑃
. Therefore, 𝑡󸀠 ∈ 𝑆

󸀠∙

𝑃
⊆ 𝑆
∙.

Subcase 1.2. If𝑀󸀠(𝑝󸀠) ̸= 0, by the definition ofΩ in Lemma 13,
𝑡
󸀠

∈ Ω. By Lemma 13, 𝑡󸀠 is a dead transition for𝑀󸀠.Therefore,
∃𝑟
󸀠

∈
∙

𝑡
󸀠

⋂𝑃
𝑅
satisfies 𝑀

󸀠

(𝑟
󸀠

) < 𝑊(𝑟
󸀠

, 𝑡
󸀠

). By the definition
of 𝑆󸀠
𝑅
, it can be obtained that 𝑟󸀠 ∈ 𝑆

𝑅
. Thus, 𝑡󸀠 ∈ 𝑆

󸀠∙

𝑅
⊆ 𝑆
∙.

Case 2. 𝑡󸀠 ∈ ∙𝑝, where𝑝 ∈ 𝑆
󸀠

𝑝
. By the definition of 𝑆󸀠

𝑃
, ∃𝑟 ∈ 𝑆

󸀠

𝑅
,

such that 𝑝 ∈ 𝐻(𝑟). If 𝑡󸀠 ∈ 𝑟
∙, then 𝑡

󸀠

∈ 𝑆
󸀠∙

𝑅
⊆ 𝑆
∙. If 𝑡󸀠 ∉ 𝑟

∙,
since 𝑝 ∈ 𝐻(𝑟), there must exist 𝑝

󸀠

∈ 𝐻(𝑟)⋂𝑃
𝐴
, such that

𝑡
󸀠

∈ (𝑝
󸀠

)
∙. Similarly, the two following subcases should be

considered.

Subcase 2.1. If 𝑀(𝑝
󸀠

) = 0, by definition of 𝑆
󸀠

𝑃
, it can be

obtained that 𝑝󸀠 ∈ 𝑆
󸀠

𝑃
. Therefore, 𝑡󸀠 ∈ 𝑆

󸀠∙

𝑃
⊆ 𝑆
∙.

Subcase 2.2. If 𝑀(𝑝
󸀠

) ̸= 0, similar to the proof in Subcase 1.2,
𝑡
󸀠

∈ 𝑆
󸀠∙

𝑅
⊆ 𝑆
∙ holds.

In conclusion, ∀𝑡
󸀠

∈
∙

𝑆, 𝑡
󸀠

∈ 𝑆
∙. Thus, 𝑆 is a siphon.

Then, we prove siphon 𝑆 is non-max󸀠-marked under 𝑀
󸀠.

∀𝑝 ∈ 𝑆
󸀠

𝑝
, by definition of 𝑆󸀠

𝑃
,𝑀󸀠(𝑝) = 0.∀𝑟 ∈ 𝑆

󸀠

𝑅
, by definition

of 𝑆󸀠
𝑅
, ∃𝑡 ∈ 𝑟

∙ such that𝑀󸀠(𝑟) < 𝑤(𝑟, 𝑡).Thus, by Definition 8,
siphon 𝑆 is non-max󸀠-marked under 𝑀

󸀠.
In summary,∃𝑀

󸀠

∈ 𝑅(𝑁,𝑀) and∃𝑆 is a siphon such that
𝑆 is nonempty and non-max󸀠-marked.

Theorem 15. Let (𝑁,𝑀
0
) be a well-marked OSC-S∗PR net.

(𝑁,𝑀
0
) is live if all siphons of (𝑁,𝑀

0
) are max󸀠-controlled.

Proof. Assume that each siphon in (𝑁,𝑀
0
) is max󸀠-

controlled while (𝑁,𝑀
0
) not live. Then, ∃𝑀 ∈ 𝑅(𝑁,𝑀

0
)

and ∃𝑡 ∈ 𝑇 is a dead transition under 𝑀. By Theorem 14,
∃𝑀
󸀠

∈ 𝑅(𝑁,𝑀), ∃𝑆 is a siphon which is non-max󸀠-marked
under 𝑀

󸀠. This contradicts the assumption that (𝑁,𝑀
0
) is

max󸀠-controlled. Thus (𝑁,𝑀
0
) is live.

It should be noticed that Theorem 15 is a sufficient
liveness condition for OSC-S∗PR nets. Thus, there may be
some live OSC-S∗PR nets which are not max󸀠-controlled.

4. Liveness Test Algorithm for OSC-S∗PR Nets

In this section, an MIP-based liveness test algorithm is
proposed, which is based on Theorem 15 in Section 3. The
operators set of an operation place is introduced here, which
is similar to [14].

Definition 16. Let 𝑁 be an S∗PR net. For 𝑝 ∈ 𝑃
𝐴
, 𝑅
𝑝

= {𝑟 |

𝑟 ∈ 𝑃
𝑅
, 𝑝 ∈ 𝐻

𝑟
} the resource places that are required by 𝑝 are

called the set of operators of 𝑝.
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According to Theorems 14 and 15, the following theorem
can be obtained, which is also a liveness test algorithm for
testing liveness of OSC-S∗PR nets.

Theorem 17 (Algorithm 1). Let (𝑁,𝑀
0
) be a well-marked

S∗PRnet.Then, theminimal non-max󸀠-marked siphon 𝑆 under
𝑀 is determined by 𝑆 = {𝑝 ∈ 𝑃 | 𝑠

𝑝
= 1}, where 𝑠

𝑝
and 𝑀 are

obtained by the following MIP formulation:

min ∑

𝑝∈𝑃\𝑃
0

𝑠
𝑝 (3)

such that
󵄨󵄨󵄨󵄨𝑡
∙󵄨󵄨󵄨󵄨 ∑

𝑝∈

∙

𝑡

𝑠
𝑝

≥ ∑

𝑝∈𝑡
∙

𝑠
𝑝
, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃

(4)

𝑀 = 𝑀
0
+ [𝑁] ⋅ Y, 𝑀 ≥ 0, Y ≥ 0 (5)

∑

𝑝∈𝑃
0

𝑠
𝑝

= 0 (6)

∑

𝑝∈𝑃
𝐴

𝑠
𝑝

≥ 1 (7)

∑

𝑝∈𝑃
𝑅

𝑠
𝑝

≥ 1 (8)

𝑝 ∈ 𝑃
𝐴
, 𝑡 ∈ 𝑝

∙

𝑒
𝑡
≥

𝑀(𝑝)

𝐵 (𝑝)
(9)

𝑀(𝑝) ≥ 𝑒
𝑡

(10)

𝑠
𝑝
+ 𝑒
𝑡
≤ 1 (11)

𝑟 ∈ 𝑃
𝑅
, 𝑡 ∈ 𝑟

∙, 𝑝 ∈ 𝑃
𝐴
⋂
∙

𝑡, 𝑟󸀠 ∈ 𝑅
𝑝

(2𝑠
𝑟
− 1) ⋅ 𝑀 (𝑟)

≤ (2𝑠
𝑟
− 1)

⋅ {max
𝑡∈𝑟
∙

[𝑠
𝑟
⋅ (1 − 𝑠

𝑝
) ⋅ (max
𝑟
󸀠

∈𝑅
𝑝

𝑠
𝑟
󸀠) ⋅ 𝑊 (𝑟, 𝑡)] − 𝑠

𝑟
}

(12)

𝑠
𝑝
, 𝑒
𝑡
∈ {0, 1} (13)

Y (𝑝) ∈ N, (14)

where 𝑀 ∈ 𝑅(𝑁,𝑀
0
), 𝐵(𝑝) is the structural bound of place 𝑝.

Then, the minimal non-max󸀠-marked siphon is the set of
places with 𝑠

𝑝
= 1.

Proof. Let 𝑆 be a non-max󸀠-marked siphon. By Definition 8,
the following conclusions hold:

(i) for all 𝑝 ∈ 𝑆
𝐴
, 𝑀(𝑝) = 0;

(ii) for all 𝑟 ∈ 𝑆
𝑅
, 𝑀(𝑟) < max

𝑡∈𝑟
∙

⋂[𝑆]
∙𝑊(𝑟, 𝑡).

Then, let us explain the meaning of the constraints one by
one.

Objective (3) ensures that the siphon is aminimal siphon.
Constraint (4) ensures that 𝑠

𝑝
is the characteristic vector

of the siphon [22].
Constraint (5) ensures that𝑀 ∈ 𝑅(𝑁,𝑀

0
). This is trivial.

Constrains (6)–(8) ensure that the siphon contains no idle
place and has one operation place and one resource place at
least.

In constrains (9)–(11), 𝑝 ∈ 𝑃
𝐴
, 𝑡 ∈ 𝑝

∙. 𝑒
𝑡
means whether

transition 𝑡 is disabled by the operation place𝑝which is in the
preset of it. If 𝑡 is disabled by the operation place 𝑝, 𝑒

𝑡
= 0.

Otherwise, 𝑒
𝑡

= 1. This comes from the following facts. If
𝑀(𝑝) ≥ 1, then transition 𝑡 is enabled by the operation place
𝑝. From constraint (9) and definition of structural bound
𝐵(𝑝) in Section 2, it can be obtained that 𝑒

𝑡
≥ 𝑀(𝑝)/𝐵(𝑝) > 0.

Since 𝑒
𝑡
∈ {0, 1}, we have 𝑒

𝑡
= 1, which follows themeaning of

𝑒
𝑡
; if 𝑀(𝑝) = 0, then transition 𝑡 is disabled by the operation

place 𝑝. From constraints (9) and (10), it can be obtained that
𝑒
𝑡
≥ 𝑀(𝑝)/𝐵(𝑝) = 0 and 𝑒

𝑡
≥ 𝑀(𝑝) = 0. Thus, 𝑒

𝑡
= 1 which

follows the meaning of 𝑒
𝑡
.

Then, constraint (11) ensures that in the siphon 𝑆 condi-
tion (i) holds. This comes from the following fact: for all 𝑝 ∈

𝑆
𝐴
, by the meaning of 𝑠

𝑝
, we have 𝑠

𝑝
= 1. By constraint (11),

it can be obtained that 𝑒
𝑡
≤ 1− 𝑠

𝑝
= 0. Since 𝑠

𝑝
, 𝑒
𝑡
∈ {0, 1}, we

have 𝑒
𝑡
= 0. By the conclusions above, it can be obtained that

transition 𝑡 is disabled by the operation place𝑝 and𝑀(𝑝) = 0.
This follows condition (i).

Constraint (12) ensures that in siphon 𝑆 condition (ii) will
hold. Since 𝑠

𝑝
∈ {0, 1}, the following two cases should be

considered.

Case 1. If 𝑠
𝑟
= 0, that is, 𝑟 is not an element of siphon 𝑆, then

max
𝑡∈𝑟
∙[𝑠
𝑟
⋅ (1−𝑠

𝑝
) ⋅ (max

𝑟
󸀠

∈𝑅
𝑝

𝑠
𝑟
󸀠) ⋅𝑊(𝑟, 𝑡)]−𝑠

𝑟
= 0. Constrain

(10) is equivalent to𝑀(𝑟) ≥ 0which is trivial and will not add
extra constraints to the formulations.

Case 2. If 𝑠
𝑟

= 1, that is, 𝑟 is an element of siphon 𝑆, then
constrain (10) is equivalent to

𝑀(𝑟) ≤ max
𝑡∈𝑟
∙

[(1 − 𝑠
𝑝
)(max
𝑟
󸀠

∈𝑅
𝑝

𝑠
𝑟
󸀠) ⋅ 𝑊 (𝑟, 𝑡)] − 1. (15)

Then we explain that constraint (15) indicates condition
(ii). Two cases should be considered. If 𝑝 ∈ [𝑠], that is,
𝑡 ∈ 𝑟
∙

⋂[𝑆]
∙, then we can obtain that 𝑝 ∉ 𝑆 and 𝑝 ∈ 𝐻(𝑟

󸀠

).
Since 𝑝 ∉ 𝑆, (1 − 𝑠

𝑝
) = 1. By Definition 16 and 𝑝 ∈ 𝐻(𝑟

󸀠

),
it can be obtained that (max

𝑟
󸀠

∈𝑅
𝑝

𝑠
𝑟
󸀠) = 1. Thus, (15) can be

transferred into 𝑀(𝑟) ≤ max
𝑡∈𝑟
∙𝑊(𝑟, 𝑡) − 1, which means

𝑀(𝑟) < max
𝑡∈𝑟
∙

⋂[𝑆]
∙𝑊(𝑟, 𝑡). If 𝑝 ∉ [𝑠], that is, 𝑡 ∉ 𝑟

∙

⋂[𝑆]
∙,

then we can obtain that 𝑝 ∈ 𝑆 or 𝑝 ∉ 𝐻(𝑟
󸀠

). Similarly, it can
be obtained that (1 − 𝑠

𝑝
) = 0 or (max

𝑟
󸀠

∈𝑅
𝑝

𝑠
𝑟
󸀠) = 0. Then,

(1− 𝑠
𝑝
)(max

𝑟
󸀠

∈𝑅
𝑝

𝑠
𝑟
󸀠) ⋅𝑊(𝑟, 𝑡) = 0, this kind of transitions will

not be taken into comparison [14].
Therefore, constraint (12) ensures that in the siphon 𝑆

condition (ii) holds.
In conclusion, constraints (11) and (12) ensure that the

obtained siphon satisfies conditions (i) and (ii), that is, is a
non-max󸀠-marked siphon.
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In summary, if the MIP formulation has a feasible solu-
tion, the obtained siphon is the minimal non-max󸀠-marked
siphon.

Thus,Theorem 17 can find a non-max󸀠-controlled siphon
at a badmarking. It utilizes someMIP tools to find non-max󸀠-
controlled siphons rather than traverse the state space of the
net. FollowingTheorem 17, Corollary 18 can be obtained.

Corollary 18. Let (𝑁,𝑀
0
) be a well-marked OSC-S∗PR net.

It is live if Algorithm 1 has no feasible solution.

Proof. For a well-marked OSC-S∗PR net, Algorithm 1 having
no feasible solution means that all siphons of this net are
max󸀠-controlled. ByTheorem 15, it is live.

Example 19. Applying Algorithm 1 to the OSC-S∗PR net in
Figure 1 and solving by Lingo [23] no feasible solution can be
found. By Corollary 18, it is live, which follows the fact that it
is a live net.

5. Liveness Test for S∗PR Nets

In order to test liveness of the S∗PR nets, an indirect method
is given in this section, which comprises two steps as follows:
first, for a given S∗PR net, constructing an OSC-S∗PR net to
ensure that if the latter is live then the former must be live;
second, testing liveness of the constructed OSC-S∗PR net by
the aforementioned MIP-based algorithm.

Remark 20. In the following sections, we assume that for all
𝑝
0𝑖

∈ 𝑃
0
, |𝑝∙
0𝑖
| = 1.

Remark 20 restricts that each process in the net can only
have one start action.

In the following, the constructing algorithm is proposed.

Insertion 1. Let (𝑁,𝑀
0
) be a well-marked S∗PR net. For all

𝑝 ∈ 𝑃, 𝑡 ∈ 𝑝
∙, a pair of virtual place and virtual transition

{𝑝V, 𝑡V} is inserted into (𝑝, 𝑡) as follows:

(i) 𝐹 = (𝐹⋃(𝑝, 𝑡V)⋃(𝑡V, 𝑝V)⋃(𝑝V, 𝑡))/(𝑝, 𝑡);
(ii) 𝑃
𝐴

= 𝑃
𝐴
⋃{𝑝V}, 𝑇 = 𝑇⋃{𝑡V};

(iii) 𝑤(𝑝, 𝑡V) = 1, 𝑤(𝑡V, 𝑝V) = 1, 𝑤(𝑝V, 𝑡) = 1;
(iv) 𝑀

0
(𝑝V) = 0.

Then, for a given S∗PR net, an OSC-S∗PR net can be
constructed by the following algorithm.

Algorithm 2

Input. S∗PR net (𝑁,𝑀
0
).

Output. A constructed net (𝑁̂, 𝑀̂
0
).

Step 1. Ω := 𝑃
𝐶
, 𝑃V := 𝜙, 𝑇V := 𝜙, (𝑁󸀠,𝑀󸀠

0
) := (𝑁,𝑀

0
);

Step 2. whileΩ ̸= 𝜙, for the net (𝑁󸀠,𝑀󸀠
0
) do the following:

Step 2.1. 𝑃𝑜𝑠𝑡 := 𝑝
∙:

Step 2.2. while 𝑃𝑜𝑠𝑡 ̸= 𝜙, do the following:

Step 2.1.1. for all 𝑡 ∈ 𝑃𝑜𝑠𝑡, insert {𝑝V𝑖, 𝑡V𝑖} to (𝑝, 𝑡) by Insertion
1 and obtain (𝑁

󸀠󸀠

,𝑀
󸀠󸀠

0
);

Step 2.1.2. 𝑃𝑜𝑠𝑡 = 𝑃𝑜𝑠𝑡/{𝑡}, 𝑃V = 𝑃V ⋃{𝑝V𝑖}, 𝑇V = 𝑇V ⋃{𝑡V𝑖},
𝑖+ = 1, (𝑁󸀠,𝑀󸀠

0
) := (𝑁

󸀠󸀠

,𝑀
󸀠󸀠

0
);

endwhile

Step 2.3. Ω := Ω/{𝑝};
endwhile

Step 3. (𝑁̂, 𝑀̂
0
) := (𝑁

󸀠

,𝑀
󸀠

0
);

Step 4. Output the constructed net (𝑁̂, 𝑀̂
0
).

Since 𝑃
𝐶
and 𝑝

∙ are finite sets, it can be obtained that
Algorithm 2 will end in finite steps. What is more, (𝑁̂, 𝑀̂

0
) =

(𝑃⋃𝑃V, 𝑇⋃𝑇V, 𝐹, 𝑊̂, 𝑀̂
0
) is called the constructed net

of (𝑁,𝑀
0
), and (𝑁,𝑀

0
) is called original S∗PR net of

(𝑁̂, 𝑀̂
0
).

Remark 21. By Algorithm 2 and Insertion 1, it is trivial that
for all 𝑝 ∈ 𝑃V, 𝑀̂0(𝑝) = 0 and for all 𝑝 ∈ 𝑃, 𝑀̂

0
(𝑝) = 𝑀

0
(𝑝);

that is, 𝑀̂
0
(𝑝) = ∑

𝑝∈𝑃
𝑀
0
(𝑝)𝑝.

Lemma 22. Let (𝑁,𝑀
0
) be a well-marked S∗PR net and

(𝑁̂, 𝑀̂
0
) is the constructed net obtained by Algorithm 2. Then,

(𝑁̂, 𝑀̂
0
) is a well-marked OSC-S∗PR net.

Proof. First, we prove that (𝑁̂, 𝑀̂
0
) is awell-marked S∗PRnet.

By Insertion 1, the virtual places are considered as operation
places. Thus, it is apparent that (𝑁̂, 𝑀̂

0
) satisfies conditions

(i), (ii), (iii), (iv), and (v) in Definition 1. Then, we prove that
it satisfies conditions (vi) and (vii).Without loss of generality,
assume that 𝑝

1
∈ 𝑃
𝐶
and 𝑡
1

∈ 𝑝
∙

1
in (𝑁,𝑀

0
). Then by

Insertion 1, 𝑝V and 𝑡V will be inserted to (𝑝
1
, 𝑡
1
). Since ∙𝑡V =

{𝑝
1
}, 𝑡
∙

V = {𝑝V} and 𝑝
∙

V = {𝑡
1
}, it can be obtained that

no self-loop is inserted to (𝑁̂, 𝑀̂
0
) by Insertion 1. This is

valid for each insertion in Algorithm 2. Therefore, it can be
concluded that no self-loop will be inserted to (𝑁̂, 𝑀̂

0
); that

is, (𝑁̂, 𝑀̂
0
) will still be a pure net. What is more, 𝑝

1
and 𝑡
1

are still connected by the path 𝑝
1
, 𝑡V, 𝑝V, 𝑡1. This is also valid

for all the insertions in Algorithms. Hence, (𝑁̂, 𝑀̂
0
) will still

be strongly connected; that is, (𝑁̂, 𝑀̂
0
) satisfy condition (vii)

in Definition 1. Since 𝑡V do not attach to any resources, 𝑝V
will use the resources that 𝑝 ∈ 𝑃

𝐶
⋂
∙

𝑡V has used. Therefore,
(𝑁̂, 𝑀̂

0
) satisfies condition (vi) of Definition 1. Henceforth,

(𝑁̂, 𝑀̂
0
) is an S∗PR net. What is more, by Remark 21, the

initial marking of virtual place is zero and the initial marking
of other places stays the same. Thus, regarding virtual places
asmembers of operation places, (𝑁̂, 𝑀̂

0
) satisfiesDefinition 2

as well; that is, (𝑁̂, 𝑀̂
0
) is a well-marked S∗PR net.

Second, we prove that (𝑁̂, 𝑀̂
0
) is an OSC-S∗PR net.

Considering Step 2.1 in Algorithm 2 with Remark 20, it is
guaranteed that for all 𝑝 ∈ 𝑃

𝐴
if |𝑝∙| ≥ 2, then for all 𝑡 ∈ 𝑝

∙,
∙

𝑡 = {𝑝} and 𝑡 ∈ 𝑇V. Thus (𝑁̂, 𝑀̂
0
) satisfies Definition 5; that

is, (𝑁̂, 𝑀̂
0
) is an OSC-S∗PR net.
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Figure 2: An S∗PR net.

In summary, (𝑁̂, 𝑀̂
0
) is a well-marked OSC-S∗PR

net.

Example 23. The Petri net plant in Figure 2 is an S∗PR. Since
𝑝
∙

3
= {𝑡
3
, 𝑡
5
}, ∙𝑡
3

̸=
∙

𝑡
5
and 𝑝

∙

7
= {𝑡
8
, 𝑡
9
}, ∙𝑡
8

̸=
∙

𝑡
9
, it does not

satisfy the OSC-Condition. By Algorithm 2, the constructed
net is shown as Figure 1, and it is an OSC-S∗PR net.

Then, wewill prove that the original S∗PRnetmust be live
if its constructed net is live.

Theorem 24. Let (𝑁,𝑀
0
) be an S∗PR net and let (𝑁̂, 𝑀̂

0
) be

its constructed net. If (𝑁̂, 𝑀̂
0
) is live, (𝑁,𝑀

0
) is live.

Proof. The liveness of Petri nets is determined by the firing
sequence of transitions and the number of tokens consumed
and produced by transitions. If the each firing sequence of
(𝑁,𝑀

0
) has a corresponding firing sequences of (𝑁̂, 𝑀̂

0
)

and the number of tokens consumed and produced by those
firing sequences is the same, then it can be obtained that if
(𝑁̂, 𝑀̂

0
) is live, (𝑁,𝑀

0
) is live. In other words, (𝑁,𝑀

0
)must

retain the number or direction of flow of tokens in (𝑁̂, 𝑀̂
0
).

What is more, by Remark 21, the initial making of (𝑁,𝑀
0
)

and (𝑁̂, 𝑀̂
0
) satisfies 𝑀̂

0
(𝑝) = ∑

𝑝∈𝑃
𝑀
0
(𝑝)𝑝 + ∑

𝑝V∈𝑃V
0 ∗

𝑝V = ∑
𝑝∈𝑃

𝑀
0
(𝑝)𝑝. Thus, this theorem could be proved

by checking whether each firing sequence of (𝑁,𝑀
0
) has a

corresponding firing sequence in (𝑁̂, 𝑀̂
0
) which consumes

and produces the same number of tokens in the same places.
The only difference between an S∗PR net and its con-

structed net is the virtual transitions and virtual places that
are inserted by Algorithm 2. Without loss of generality, we
could assume that in (𝑁,𝑀

0
), 𝑝 ∈ 𝑃

𝐶
, 𝑡 ∈ 𝑝

∙ and in
(𝑁̂, 𝑀̂

0
), ∙𝑡V = {𝑝}, 𝑡∙V = {𝑝V} and 𝑝

∙

V = {𝑡}. In the firing
sequence of transitions, the insertionmeans a replacement of
the firing of 𝑡 by a subfiring sequence 𝑡V𝑡. From the viewpoint
of token number, the subfiring sequence produces tokens to
each 𝑝

󸀠

∈ 𝑡
∙ by the weight of 𝑤(𝑡, 𝑝) and it demands tokens

from 𝑟 ∈
∙

𝑡⋂𝑃
𝑅
and 𝑝 by the weight of 𝑤(𝑟, 𝑡) and 𝑤(𝑝, 𝑡V)

(the token in 𝑝V remains zero). Since in (𝑁̂, 𝑀̂
0
),𝑤(𝑝, 𝑡V) = 1

which is equal to 𝑤(𝑝, 𝑡) = 1 in (𝑁,𝑀
0
), the number of

tokens demand and produced by the subfiring sequence is

equal to that number of transition 𝑡. Therefore, the number
of tokens in each place changed by firing 𝑡V𝑡 is the same as
that of firing 𝑡. This is valid for each 𝑡 ∈ 𝑃

∙

𝐶
. Therefore, for

any firing sequence 𝜎 of (𝑁,𝑀
0
), each transition 𝑡

𝑖
(which

satisfies 𝑡
𝑖
∈ (𝑃
𝐶
)
∙) in 𝜎 is replaced by the subfiring sequence

𝑡V𝑖𝑡𝑖, a new firing sequence 𝜎̂will be obtained for (𝑁̂, 𝑀̂
0
), and

the token in each place changed by firing 𝜎̂must be the same
to that of firing 𝜎 (the token in 𝑝V remains zero). Thus, it can
be obtained that if (𝑁̂, 𝑀̂

0
) is live, then (𝑁,𝑀

0
) is live.

So, the liveness of an S∗PR net (𝑁,𝑀
0
) can be tested the

algorithm shown as follows.

Algorithm 3

Input. S∗PR net (𝑁,𝑀
0
).

Output. a non-max󸀠-marked siphon 𝑆.

Step 1. Construct an OSC-S∗PR (𝑁̂, 𝑀̂
0
) from (𝑁,𝑀

0
) by

Algorithm 2;

Step 2. Obtain a non-max󸀠-marked siphon 𝑆 of (𝑁̂, 𝑀̂
0
) by

Algorithm 1;

Step 3. Output 𝑆 of (𝑁̂, 𝑀̂
0
).

Theorem 25. Let (𝑁,𝑀
0
) be a well-marked S∗PR net. If

Algorithm 3 has no feasible solution, then (𝑁,𝑀
0
) is live.

Proof. By Algorithm 3, (𝑁,𝑀
0
) will be transformed to its

constructed (𝑁̂, 𝑀̂
0
). By Lemma 22, (𝑁̂, 𝑀̂

0
) is anOSC-S∗PR

net. By Step 2 and Step 3, Algorithm 3 has no feasible solution
which means that applying Algorithm 1 to (𝑁̂, 𝑀̂

0
) there is

no feasible solution obtained. Then, by Corollary 18, (𝑁̂, 𝑀̂
0
)

is live. Therefore, by Theorem 24, it can be obtained that
(𝑁,𝑀

0
) is live.

Example 26. The Petri net model in Figure 2 is an S∗PR
net, but not an OSC-S∗PR net. The choice places 𝑝

3
and

𝑝
7
dissatisfy the OSC-Condition. By Algorithm 2, {𝑡V1, 𝑝V1}
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Figure 3: Layout of a manufacturing cell.
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Figure 4: An S∗PR net modeling the system in Figure 3.

and {𝑡V2, 𝑝V2} are inserted at the rear of 𝑝
3
, and {𝑡V3, 𝑝V3} and

{𝑡V4, 𝑝V4} are inserted at the rear of 𝑝
7
. The constructed net is

obtained as Figure 1. Then, by Algorithm, it can be obtained
that the constructed net is live. By Theorem 24, the original
in Figure 2 is live.

6. Examples

In this section, a typical example (shown as Figure 3) is
quoted to illustrate Algorithm 2, which is a classic FMS cell
with 2 buffers, 4 machines, and 3 robots [15]. And it can be
modeled as Figure 4.

Since the choice operation places 𝑃
1
𝑅
1
, 𝑃
1
𝑅
2
, and 𝑃

2
𝑅
2

dissatisfy the OSC-Condition, the net in Figure 4 is not an
OSC-S∗PR net. By the Step 2.1 of Algorithm 2, pairs of
virtual transitions and places should be inserted at the rear of
each branch of choice places; in other words, {𝑇𝑉

1
, 𝑃
1
𝑅
1
𝑉
1
},

{𝑇𝑉
2
, 𝑃
1
𝑅
1
𝑉
2
}, {𝑇𝑉

3
, 𝑃
1
𝑅
2
𝑉
1
}, {𝑇𝑉

4
, 𝑃
1
𝑅
2
𝑉
2
}, {𝑇𝑉

5
, 𝑃
2
𝑅
2
𝑉
1
},

and {𝑇𝑉
6
, 𝑃
2
𝑅
2
𝑉
2
} are inserted. Then, the constructed net is

shown as Figure 5.

After applying the MIP formulation in Theorem 17 to
Figure 5 and solving it with LINGO [23] we obtain a minimal
non-max󸀠-marked siphon 𝑆 = 𝑃

1
𝑅
3
+𝑃
2
𝑀
4
+𝐻
4
+𝑅
3
, which

follows the fact that the net is nonlive.
Generally, some structural controllers can be added to

enforce the liveness of the net (referring to [9, 10, 15, 21]).
Here, four controllers 𝑉𝑆

1
, 𝑉𝑆
2
, 𝑉𝑆
3
, and 𝑉𝑆

4
are added

into the net in Figure 5, and the resulted S∗PR net is shown
as Figure 6. Then, the constructed net in Figure 7 can be
obtained by Algorithm 2. It can be verified that the net in
Figure 7 is live. By Algorithm 3, the net in Figure 6 must be
live.

7. Conclusions

It is well-known that S3PR nets and S4PR nets can model
sequential FMS,while full routine flexibilities can bemodeled
by S∗PR nets. As a subclass of S∗PR nets, OSC-S∗PR nets
have some modeling abilities about routine flexibilities with
the restriction of each choice operation using the same type
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Figure 5: the constructed net of Figure 4.
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Figure 8: Modeling capabilities of some subclasses of S∗PR nets.

and quantity of resources. Obviously, Gadara nets [17] are
a special case of OSC-S∗PR nets satisfying no resources
needed in all choice operations. Henceforth, their modeling
capabilities can be illustrated as Figure 8 approximately.

It is worth to say that Theorem 15 is just a sufficient con-
dition, and some live OSC-S∗PR netsmay contain non-max󸀠-
controlled siphons. In other words, sometimes Theorem 15
is a little strict though, so there maybe exist ways to loosen
the sufficient condition. Moreover, the liveness property of
S∗PR nets still cannot be tested directly by using standardized
mixed integer programming (MIP) tools in this paper. And
we should make great efforts to develop more efficient
algorithms for testing liveness of S∗PR nets.
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