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Let 𝑓(𝑧) be a meromorphic function in C, and let 𝛼(𝑧) = 𝑅(𝑧)ℎ(𝑧) ̸≡ 0, where ℎ(𝑧) is a nonconstant elliptic function and 𝑅(𝑧)
is a rational function. Suppose that all zeros of 𝑓(𝑧) are multiple except finitely many and 𝑇(𝑟, 𝛼) = 𝑜{𝑇(𝑟, 𝑓)} as 𝑟 → ∞. Then
𝑓


(𝑧) = 𝛼(𝑧) has infinitely many solutions.

1. Introduction

The value distribution theory of meromorphic functions
occupies one of the central places in complex analysis which
now have been applied to complex dynamics, complex differ-
ential and functional equations, Diophantine equations, and
others.

In his excellent paper [1], Hayman studied the value dis-
tribution of certain meromorphic functions and their deriva-
tives under various conditions. Among other important
results, he proved that if 𝑓(𝑧) is a transcendental meromor-
phic function in the plane, then either 𝑓(𝑧) assumes every
finite value infinitely often or every derivative of𝑓(𝑧) assumes
every finite nonzero value infinitely often. This result is
known as Hayman’s alternative. Thereafter, the value distri-
bution of derivatives of transcendental functions continued
to be studied.

In 1998, Wang and Fang proved the following results.

Theorem A (see [2, Theorem 3]). Let 𝑓 be a transcendental
meromorphic function inC, all of whose zeros havemultiplicity
at least 3. Then 𝑓 assumes each nonzero complex value infi-
nitely often.

In 2006, Pang et al. proved the following result, which is
a significant improvement of Theorem A.

Theorem B (see [3, Theorem 1]). Let 𝑓 be a transcendental
meromorphic function inC, all but finitelymany of whose zeros
aremultiple, and let𝑅( ̸≡ 0) be a rational function.Then𝑓−𝑅
has infinitely many zeros.

Relative to 𝑓, 𝑅 is a small function in Theorem B.
Specifically, 𝑇(𝑟, 𝑅) = 𝑜{𝑇(𝑟, 𝑓)} as 𝑟 → ∞ in Theorem B.
A natural problem arises: what can we say if the rational
function 𝑅 in Theorem B is replaced by a more general small
function 𝛼(𝑧)? In this direction, we obtain the following
result.

Theorem 1. Let 𝑓(𝑧) be a meromorphic function in C, and let
𝛼(𝑧) = 𝑅(𝑧)ℎ(𝑧) ̸≡ 0, where ℎ(𝑧) is a nonconstant elliptic
function and 𝑅(𝑧) is a rational function. Suppose that all zeros
of 𝑓(𝑧) are multiple except finitely many and 𝑇(𝑟, 𝛼) =
𝑜{𝑇(𝑟, 𝑓)} as 𝑟 → ∞. Then 𝑓(𝑧) = 𝛼(𝑧) has infinitely many
solutions (including the possibility of infinitely many common
poles of 𝑓(𝑧) and 𝛼(𝑧)).

2. Notation and Preliminary Lemmas

We use the following notation. Let C be complex plane and
let 𝐷 be a domain in C. For 𝑧

0
∈ C and 𝑟 > 0, Δ(𝑧

0
, 𝑟) = {𝑧 |

|𝑧 − 𝑧
0
| < 𝑟}, Δ(𝑧

0
, 𝑟) = {𝑧 | 0 < |𝑧 − 𝑧

0
| < 𝑟}, Δ = Δ(0, 1),
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and Γ(0, 𝑟) = {𝑧 : |𝑧| = 𝑟}. We write 𝑓
𝑛

𝜒

⇒ 𝑓 in 𝐷 to indicate
that the sequence {𝑓

𝑛
} converges to 𝑓 in the spherical metric

uniformly on compact subsets of 𝐷 and 𝑓
𝑛

⇒ 𝑓 in 𝐷 if the
convergence is in the Euclidean metric. Let 𝑛(𝐷, 𝑓) denote
the number of poles of 𝑓(𝑧) in 𝐷 (counting multiplicities),
and let 𝑛(𝑟, 𝑓) = 𝑛(Δ(0, 𝑟), 𝑓).

For 𝑓 meromorphic in 𝐷, we denote

𝑓#
(𝑧) =

𝑓
 (𝑧)



1 +
𝑓 (𝑧)


2
,

𝑆 (𝐷, 𝑓) =
1

𝜋
∬
𝐷

[𝑓#
(𝑧)]
2

𝑑𝑥 𝑑𝑦,

𝑆 (𝑟, 𝑓) = 𝑆 (Δ (0, 𝑟) , 𝑓) .

(1)

The Ahlfors-Shimizu characteristic is defined by

𝑇
0
(𝑟, 𝑓) = ∫

𝑟

0

𝑆 (𝑡, 𝑓)

𝑡
𝑑𝑡. (2)

Remark 2. Let 𝑇(𝑟, 𝑓) denote the usual Nevanlinna charac-
teristic function. Since 𝑇(𝑟, 𝑓) − 𝑇

0
(𝑟, 𝑓) is bounded as a

function of 𝑟, we can replace𝑇
0
(𝑟, 𝑓)with𝑇(𝑟, 𝑓) in the paper.

Recall that an elliptic function [4] is a meromorphic
function ℎ defined in C for which there exist two nonzero
complex numbers 𝜔

1
and 𝜔

2
with 𝜔

1
/𝜔
2
not real such that

ℎ(𝑧 + 𝜔
1
) = ℎ(𝑧 + 𝜔

2
) = ℎ(𝑧) for all 𝑧 in C.

Lemma 3 (see [5, Lemma 2]). LetF be a family of functions
meromorphic in 𝐷, all of whose zeros have multiplicity at least
𝑘, and suppose that there exists 𝐴 ≥ 1 such that |𝑓(𝑘)(𝑧)| ≤ 𝐴
whenever 𝑓(𝑧) = 0. Then ifF is not normal at 𝑧

0
, there exist,

for each 0 ≤ 𝛼 ≤ 𝑘,

(a) points 𝑧
𝑛
, 𝑧
𝑛

→ 𝑧
0
;

(b) functions 𝑓
𝑛

∈ F;
(c) positive numbers 𝜌

𝑛
→ 0

such that 𝜌−𝛼
𝑛

𝑓
𝑛
(𝑧
𝑛

+ 𝜌
𝑛
𝜁) = 𝑔

𝑛
(𝜁)
𝜒

⇒ 𝑔(𝜁) in C, where 𝑔 is
a nonconstant meromorphic function in C, all of whose zeros
have multiplicity at least 𝑘.

Lemma4 (see [6, Lemma 3.2]). Let 𝑘 be a positive integer, and
let𝑅 be a rational function satisfying𝑅(𝑧) ̸= 𝑧𝑘 inC. If all zeros
of 𝑅 are multiple, then

𝑅 (𝑧) =
∏
𝑛+𝑘+1

𝑖=1
(𝑧 − 𝛼

𝑖
)

(𝑘 + 1) (𝑧 − 𝛽)
𝑛
, (3)

where 𝑛 is a nonnegative integer, 𝛽 ∈ C, and 𝛼
𝑖

̸= 0, 𝛽 (1 ≤ 𝑖 ≤
𝑛 + 𝑘 + 1).

Lemma5 (see [7, Lemma6]). Let 𝑙 be a positive integer, and let
𝑅(𝑧) be a rational function and all of whose zeros are multiple.
If 𝑅(𝑧) ̸= 𝑧−𝑙 in C, then 𝑅(𝑧) is a constant function.

Lemma 6 (see [6, Lemma 3.6]). Let {𝑓
𝑛
} be a sequence of

functions meromorphic in Δ(𝑧
0
, 𝑟). Suppose that 𝑓

𝑛

𝜒

⇒ 𝑓 in
Δ(𝑧
0
, 𝑟), where 𝑓 is a nonconstant meromorphic function or

𝑓 ≡ ∞ in Δ(𝑧
0
, 𝑟). If there exists 𝑀

0
> 0 such that for each

𝑛, 𝑛(Δ(𝑧
0
, 𝑟), 1/𝑓

𝑛
) < 𝑀

0
, then there exists 𝑀

1
> 0 such that

𝑆(Δ(𝑧
0
, 𝑟/2), 𝑓

𝑛
) < 𝑀

1
.

Lemma 7 (see [8, Corollary 2]). If ℎ(𝑧) is a nonconstant ellip-
tic function with primitive periods 𝜔

1
, 𝜔
2
, where 𝜔

1
/𝜔
2
is not

real, then 𝑇(𝑟, ℎ) = 𝐴𝑟2(1+𝑜(1)) as 𝑟 → ∞, where𝐴 > 0 is a
constant.

Lemma 8 (see [6, Lemma 3.4]). Let {𝑓
𝑛
} and {𝜓

𝑛
} be two

sequences of meromorphic functions in 𝐷, and let 𝑓(𝑧) and
𝜓(𝑧) be two meromorphic functions in 𝐷. Suppose that

(a) 𝑓
𝑛
(𝑧)
𝜒

⇒ 𝑓(𝑧) and 𝜓
𝑛
(𝑧)
𝜒

⇒ 𝜓(𝑧) in 𝐷;
(b) 𝑓
𝑛
(𝑧) ̸= 𝜓

𝑛
(𝑧) in 𝐷.

Then, either 𝑓(𝑧) ≡ 𝜓(𝑧) or 𝑓(𝑧) ̸= 𝜓(𝑧) in 𝐷.

Lemma 9 (see [9, Lemma 3.1]). Let {𝑓
𝑛
} be a sequence of

meromorphic functions in𝐷, and let {𝜓
𝑛
} be a sequence of holo-

morphic functions in 𝐷 such that 𝜓
𝑛

⇒ 𝜓, where 𝜓(𝑧) ̸= 0,∞
in 𝐷. If for each 𝑛, 𝑓

𝑛
(𝑧) ̸= 0 and 𝑓

𝑛
(𝑧) ̸= 𝜓

𝑛
(𝑧) for all 𝑧 ∈ 𝐷,

then {𝑓
𝑛
} is normal in 𝐷.

Using the same provingmethod ofTheorem 1.1 in [10], we
can prove the following result without any difficulties. In fact,
there is no essential distinction between Theorem 1.1 in [10]
and the following result.

Lemma 10. Let {𝑓
𝑛
} be a family of meromorphic functions in

𝐷, all of whose zeros and poles are multiple, and let {ℎ
𝑛
} be a

sequence of meromorphic functions in 𝐷 such that ℎ
𝑛

𝜒

⇒ ℎ in
𝐷, where ℎ ̸≡ ∞ is meromorphic and zero-free in 𝐷. Suppose
that ℎ and ℎ

𝑛
have the same poles with the same multiplicity

and 𝑓
𝑛
(𝑧) ̸= ℎ

𝑛
(𝑧) for all 𝑧 ∈ 𝐷. ThenF is normal in 𝐷.

Lemma 11 (see [6, Lemma 3.8]). Let {𝑓
𝑛
} be a sequence of

meromorphic functions in 𝐷, all of whose zeros are multiple,
and let {𝜓

𝑛
} be a sequence of meromorphic functions in𝐷 such

that 𝜓
𝑛

⇒ 𝜓 in 𝐷, where 𝜓 is a nonvanishing holomorphic
function in𝐷. Let𝐸 be a (countable) discrete set in𝐷which has
no accumulation points in 𝐷. Suppose that

(a) 𝑓
𝑛
(𝑧)
𝜒

⇒ 𝑓(𝑧) in 𝐷 \ 𝐸;
(b) for some 𝑎

1
∈ 𝐸, no subsequence of {𝑓

𝑛
} is normal at

𝑎
1
;

(c) for all 𝑛 ∈ N, 𝑓
𝑛
(𝑧) ̸= 𝜓

𝑛
(𝑧) in 𝐷.

Then,

(d) there exists 𝑟 ≥ 0 such that for sufficiently large 𝑛, 𝑓
𝑛

has a single zero 𝑧
𝑛,1

of order 2 and a single pole 𝑧
𝑛,2

of order 1 in Δ(𝑎
1
, 𝑟), where 𝑧

𝑛,𝑖
→ 𝑎
1
as 𝑛 → ∞,

𝑖 = 1, 2;
(e) 𝑓(𝑧) = ∫

𝑧

𝑎
1

𝜓(𝜁)𝑑𝜁.
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Lemma 12 (see [6, Lemma 3.9]). Let {𝑓
𝑛
} be a family of mero-

morphic functions in 𝐷, all of whose zeros are multiple, and
let {𝜓
𝑛
} be a sequence of meromorphic functions in𝐷 such that

𝜓
𝑛

𝜒

⇒ 𝜓 in 𝐷, where 𝜓(𝑧) ̸≡ 0,∞ in 𝐷. If for each 𝑛 ∈ N,
𝑓
𝑛
(𝑧) ̸= 𝜓

𝑛
(𝑧) for all 𝑧 ∈ 𝐷, then {𝑓

𝑛
} is quasinormal in 𝐷.

3. Auxiliary Lemmas

Lemma 13. Let {𝑓
𝑛
} be a family of meromorphic functions in

Δ, all of whose zeros are multiple. Let {𝑏
𝑛
} be a sequence of

meromorphic functions in Δ such that 𝑏
𝑛
(𝑧)
𝜒

⇒ 𝑏(𝑧) in Δ,
where 𝑏 ̸≡ 0 is a meromorphic function and 𝑏(0) = 0. Suppose
that

(a) 𝑏 and 𝑏
𝑛
have the same zeros and poles with the same

multiplicity;
(b) for all 𝑛 ∈ N and all 𝑧 ∈ 𝐷, 𝑓

𝑛
(𝑧) ̸= 𝑏

𝑛
(𝑧);

(c) there exist points 𝑧
𝑛
in Δ such that 𝑓

𝑛
(𝑧
𝑛
) = 0 and

𝑧
𝑛

→ 0 as 𝑛 → ∞;

(d) 𝑓
𝑛
(𝑧)
𝜒

⇒ 𝑓(𝑧) in Δ, where 𝑓(𝑧) is a meromorphic
function in Δ.

Then 𝑓(𝑧) ≡ 𝑏(𝑧) in Δ.

Proof. Set𝐹
𝑛
(𝑧) = (𝑓

𝑛
(𝑧)/𝑏
𝑛
(𝑧)). By (𝑎),𝑓

𝑛
(0) ̸= 𝑏

𝑛
(0) = 0 and

hence 𝐹
𝑛
(0) = ∞. Since all zeros of {𝑓

𝑛
(𝑧)} are multiple and

𝑓
𝑛
(0) ̸= 0, we have 𝑓

𝑛
(0) ̸= 0. Hence, 𝑧

𝑛
̸= 0 and 𝐹

𝑛
(𝑧
𝑛
) = 0 for

sufficiently large 𝑛. Since 𝐹
𝑛
(0) = ∞ and 𝐹

𝑛
(𝑧
𝑛
) = 0 for suf-

ficiently large 𝑛, {𝐹
𝑛
(𝜁)} is not equicontinuous at 0 and hence

{(𝑓
𝑛
(𝑧)/𝑏
𝑛
(𝑧)) − 1} is not normal at 0.

By (𝑏), we have 0 ̸= (𝑓
𝑛
(𝑧)/𝑏
𝑛
(𝑧)) − 1 ⇒ (𝑓(𝑧)/𝑏(𝑧)) − 1

in 𝐸, where 𝐸 = {𝑧 | 𝑓(𝑧) ̸=∞, 𝑏(𝑧) ̸= 0 and 𝑧 ∈ Δ}.
By Hurwitz’s theorem, either (𝑓(𝑧)/𝑏(𝑧)) − 1 ≡ 0 or
(𝑓(𝑧)/𝑏(𝑧))−1 ̸= 0 in𝐸. Suppose first that (𝑓(𝑧)/𝑏(𝑧))−1 ≡ 0
in 𝐸. Obviously, (𝑓(𝑧)/𝑏(𝑧)) − 1 is a meromorphic function
in Δ, So (𝑓(𝑧)/𝑏(𝑧)) − 1 ≡ 0 in Δ. Suppose that
(𝑓(𝑧)/𝑏(𝑧)) − 1 ̸= 0 in 𝐸. If 𝑓(𝑧) = ∞ or 𝑏(𝑧) = 0, then
(𝑓(𝑧)/𝑏(𝑧)) − 1 = ∞. Hence (𝑓(𝑧)/𝑏(𝑧)) − 1 ̸= 0 in Δ. Sup-
pose that (𝑓(𝑧)/𝑏(𝑧))−1 ̸= 0 inΔ. By the assumptions, there
exists 𝛿 > 0 such that 𝑓(𝑧) has no poles on Γ(0, 𝛿) and 𝑏(𝑧)
has no zeros on Γ(0, 𝛿). Thus, we have

∞ ̸=
1

(𝑓
𝑛
(𝑧) /𝑏
𝑛
(𝑧)) − 1

⇒
1

(𝑓 (𝑧) /𝑏 (𝑧)) − 1
,

𝑧 ∈ Γ (0, 𝛿) .

(4)

By the maximum principle, (4) holds in Δ(0, 𝛿) and then
{(𝑓
𝑛
(𝑧)/𝑏
𝑛
(𝑧)) − 1} is normal at 0. A contradiction. Thus,

𝑓(𝑧) ≡ 𝑏(𝑧) in Δ.

Lemma 14. Let 𝑓(𝑧) be a meromorphic function in C satisfy-
ing lim

𝑟→∞
(𝑇(𝑟, 𝑓)/𝑟2) = ∞. Then there exist 𝑎

𝑛
→ ∞ and

𝛿
𝑛

→ 0 such that

𝑓# (𝑎
𝑛
) → ∞, 𝑆 (Δ (𝑎

𝑛
, 𝛿
𝑛
) , 𝑓) → ∞ as 𝑛 → ∞.

(5)

Proof. We claim that there exist 𝑡
𝑛

→ ∞ and 𝜀
𝑛

→ 0 such
that

𝑆 (Δ (𝑡
𝑛
, 𝜀
𝑛
) , 𝑓) =

1

𝜋
∬
|𝑧−𝑡
𝑛
|<𝜀
𝑛

[𝑓#
(𝑧)]
2

𝑑𝑥 𝑑𝑦 → ∞. (6)

Otherwise, there would exist 𝜀 > 0 and 𝑀 > 0 such that
𝑆(Δ(𝑧

0
, 𝜀), 𝑓) < 𝑀 for all 𝑧

0
∈ C. From this follows

𝑆 (𝑟, 𝑓) =
1

𝜋
∬
|𝑧|<𝑟

[𝑓#
(𝑧)]
2

𝑑𝑥 𝑑𝑦 = 𝑂 (𝑟2) , (7)

and hence

𝑇
0
(𝑟, 𝑓) = ∫

𝑟

0

𝑆 (𝑡)

𝑡
𝑑𝑡 = 𝑂 (𝑟2) . (8)

Now, there exists𝑀 > 0 such that lim
𝑟→∞

(𝑇
0
(𝑟, 𝑓)/𝑟2) ≤ 𝑀,

and hence lim
𝑟→∞

(𝑇(𝑟, 𝑓)/𝑟2) ≤ 𝑀 which contradicts the
hypothesis lim

𝑟→∞
(𝑇(𝑟, 𝑓)/𝑟2) = ∞.

By (6), there exists a sequence {𝑎
𝑛
} such that |𝑎

𝑛
−𝑡
𝑛
| → 0

and 𝑓#(𝑎
𝑛
) → ∞ as 𝑛 → ∞. Set 𝛿

𝑛
= 𝜀
𝑛

+ |𝑎
𝑛

− 𝑡
𝑛
|.

Obviously, 𝛿
𝑛

→ 0 and Δ(𝑡
𝑛
, 𝜀
𝑛
) ⊂ Δ(𝑎

𝑛
, 𝛿
𝑛
), and hence

𝑆(Δ(𝑎
𝑛
, 𝛿
𝑛
), 𝑓) → ∞ as 𝑛 → ∞.

Lemma 15. Let 𝑑 be an integer, and let 𝑓 be a transcen-
dental meromorphic function, all of whose zeros are multiple.
Set 𝑔(𝑧) := 𝑓(𝑧)/𝑧𝑑 with 𝑔 := 𝑓 if 𝑑 = 0. If
lim
𝑟→∞

(𝑇(𝑟, 𝑓)/𝑟2) = ∞, then there exist sequences 𝑎
𝑛

→
∞ and 𝛿

𝑛
→ 0 such that as 𝑛 → ∞,

𝑓 (𝑎
𝑛
)

𝑎𝑑
𝑛

→ 0,
𝑓 (𝑎
𝑛
)

𝑎𝑑
𝑛

→ ∞,

𝑆 (Δ (𝑎
𝑛
, 𝛿
𝑛
) , 𝑔) → ∞.

(9)

Proof. By standard results in Nevanlinna theory, 𝑇(𝑟, 𝑓) =

𝑇(𝑟, 𝑧−𝑑𝑔) ≤ 𝑇(𝑟, 𝑔) + 𝑇(𝑟, 𝑧−𝑑) and 𝑇(𝑟, 𝑧−𝑑) = 𝑂(log 𝑟)

as 𝑟 → ∞. Thus, lim
𝑟→∞

(𝑇(𝑟, 𝑔)/𝑟2) = ∞. By Lemma 14,
there exist 𝑏

𝑛
→ ∞ and 𝜀

𝑛
→ 0 such that

𝑔# (𝑏
𝑛
) → ∞, 𝑆 (Δ (𝑏

𝑛
, 𝜀
𝑛
) , 𝑔) → ∞

as 𝑛 → ∞.
(10)

Set 𝑔
𝑛
(𝑧) = 𝑔(𝑧 + 𝑏

𝑛
). Then 𝑔#

𝑛
(0) = 𝑔#(𝑏

𝑛
) → ∞ and hence

{𝑔
𝑛
} is not normal at 0. Since all zeros of 𝑔 are multiple in

C\{0}, all zeros of 𝑔
𝑛
(𝑧) aremultiple inΔ for sufficiently large

𝑛. Using Lemma 3 for 𝛼 = 1/2, there exist points 𝑧
𝑛

→ 0 and
positive numbers 𝜌

𝑛
→ 0 and a subsequence of {𝑔

𝑛
} (still

denoted by {𝑔
𝑛
}) such that

𝐺
𝑛
(𝜁) =

𝑔
𝑛
(𝑧
𝑛
+ 𝜌
𝑛
𝜁)

𝜌1/2𝑛

𝜒

⇒ 𝐺 (𝜁) (11)

in C, where 𝐺 is a nonconstant meromorphic function in C,
all of whose zeros are multiple.

𝐺(𝜁) is not a constant function (otherwise, either 𝐺(𝜁)
is a constant function, or the zero of 𝐺(𝜁) is not multiple).
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Thus, we can assume 𝜁
0
is not a zero or pole of 𝐺(𝜁). Set

𝑎
𝑛

= 𝑧
𝑛
+ 𝜌
𝑛
𝜁
0
+ 𝑏
𝑛
. Now, we have

𝑔(𝑖) (𝑎
𝑛
) = 𝑔(𝑖)
𝑛

(𝑧
𝑛
+ 𝜌
𝑛
𝜁
0
) = 𝜌1/2−𝑖
𝑛

𝐺(𝑖)
𝑛

(𝜁
0
) , (12)

where 𝑖 = 0, 1. Since 𝜌
𝑛

→ 0 and 𝜁
0
is not a zero or pole of

𝐺(𝑘)(𝜁), we have 𝑎
𝑛

→ ∞, 𝑔(𝑎
𝑛
) → 0, and 𝑔(𝑎

𝑛
) → ∞ as

𝑛 → ∞.
Now, we have 𝑓(𝑎

𝑛
)/𝑎𝑑
𝑛

= 𝑔(𝑎
𝑛
) → 0 and

𝑓 (𝑎
𝑛
)

𝑎𝑑
𝑛

=
(𝑧𝑑𝑔 (𝑧))



𝑎𝑑
𝑛

𝑧=𝑎
𝑛

=
𝑑𝑧𝑑−1𝑔 (𝑧) + 𝑧𝑑𝑔 (𝑧)

𝑎𝑑
𝑛

𝑧=𝑎
𝑛

=
𝑑𝑔 (𝑎
𝑛
)

𝑎
𝑛

+ 𝑔 (𝑎
𝑛
) → ∞.

(13)

Set 𝛿
𝑛

= 𝜀
𝑛
+ |𝑎
𝑛
− 𝑏
𝑛
| = 𝜀
𝑛
+ |𝑧
𝑛
+ 𝜌
𝑛
𝜁
0
|. Obviously, 𝛿

𝑛
→ 0

and Δ(𝑏
𝑛
, 𝜀
𝑛
) ⊂ Δ(𝑎

𝑛
, 𝛿
𝑛
), and hence 𝑆(Δ(𝑎

𝑛
, 𝛿
𝑛
), 𝑔) → ∞ as

𝑛 → ∞.

Lemma 16. Let {𝑓
𝑛
} be a sequence of meromorphic functions

in 𝐷, and let {ℎ
𝑛
} be a sequence of meromorphic functions in

𝐷 such that ℎ
𝑛

𝜒

⇒ ℎ in 𝐷, where ℎ ̸≡ 0,∞. If 𝑓
𝑛
(𝑧) ̸= 0 and

𝑓
𝑛
(𝑧) ̸= ℎ

𝑛
(𝑧) for all 𝑧 in 𝐷, thenF is normal in 𝐷.

Proof. By Lemma 9, it suffices to prove that {𝑓
𝑛
} is normal at

points where ℎ has poles or zeros. Without loss of generality,
we assume that 𝐷 = Δ, ℎ(𝑧) = 𝑧𝑙𝑏(𝑧), where 𝑏 ̸= 0,∞ in Δ,
and 𝑙( ̸= 0) is an integer. Then {𝑓

𝑛
} is normal in Δ.

Suppose {𝑓
𝑛
} is not normal at 0. Since𝑓

𝑛
̸= 0 inΔ, we have

that there exists 𝑟 > 0 such that Δ
2𝑟

⊂ Δ and 𝑓
𝑛

⇒ 0 in Δ
2𝑟
.

By Argument Principle, for sufficiently large 𝑛, we have

𝑛(𝑟,
1

𝑓
𝑛
− ℎ
𝑛

) − 𝑛 (𝑟, 𝑓
𝑛
− ℎ
𝑛
)

=
1

2𝜋𝑖
∫
|𝑧|=𝑟

𝑓


𝑛
− ℎ
𝑛

𝑓
𝑛
− ℎ
𝑛

𝑑𝑧 =
1

2𝜋𝑖
∫
|𝑧|=𝑟

ℎ

ℎ
𝑑𝑧 = 𝑙.

(14)

Since 𝑓
𝑛
(𝑧) ̸= ℎ

𝑛
(𝑧), 𝑙 = −𝑛(𝑟, 𝑓

𝑛
− ℎ
𝑛
) < 0. Obviously, 𝑓

𝑛

has poles (otherwise 𝑓
𝑛

𝜒

⇒ ∞ in Δ) which are different from
the poles of ℎ

𝑛
, so 𝑛(𝑟, 𝑓

𝑛
− ℎ
𝑛
) > −𝑙. A contradiction.

Lemma 17. Let {𝑓
𝑛
} be a family of meromorphic functions

in 𝐷, all of whose zeros are multiple. Let {ℎ
𝑛
} be a sequence

of meromorphic functions in 𝐷 such that ℎ
𝑛
(𝑧)
𝜒

⇒ ℎ(𝑧) in
𝐷, where ℎ ̸≡ 0,∞. Let 𝐸 ⊂ 𝐷 be a set which has no
accumulation points in 𝐷. Suppose that

(a) ℎ and ℎ
𝑛
have the same zeros and poles with the same

multiplicity;
(b) for all 𝑛 ∈ N and all 𝑧 ∈ 𝐷, 𝑓

𝑛
(𝑧) ̸= ℎ

𝑛
(𝑧);

(c) for each 𝑎 ∈ 𝐸, no subsequence of {𝑓
𝑛
} is normal at 𝑎;

(d) 𝑓
𝑛
(𝑧)
𝜒

⇒ 𝑓(𝑧) in 𝐷 \ 𝐸.

Then

(e) for each 𝑎 ∈ 𝐸, ℎ(𝑎) ̸=∞;
(f ) for each 𝑎 ∈ 𝐸, there exist 𝑟

𝑎
> 0 and 𝑁

𝑎
> 0 such that

for sufficiently large 𝑛, 𝑛(Δ(𝑎, 𝑟
𝑎
), 1/𝑓
𝑛
) < 𝑁

𝑎
, where

𝑟
𝑎
and 𝑁

𝑎
only depend on 𝑎;

(g) for each 𝑎 ∈ 𝐸, 𝑓(𝑧) = ∫
𝑧

𝑎
ℎ(𝜁)𝑑𝜁 in 𝐷 \ 𝐸.

4. Proof of Lemma 17

Proof. It suffices to prove that each subsequence of {𝑓
𝑛
} has a

subsequence which satisfies that (𝑓), and prove that (𝑒) and
(𝑔) hold. So suppose we have a subsequence of {𝑓

𝑛
}, which

(to avoid complication in notation) we again call {𝑓
𝑛
}.

Without loss of generality, for each 𝑎 ∈ 𝐸, we may assume
that 𝑎 = 0, Δ ⊂ 𝐷, Δ ∩ 𝐸 = 0, and

ℎ (𝑧) = 𝑧𝑘 + 𝑎
𝑘+1

𝑧𝑘+1 + ⋅ ⋅ ⋅ = 𝑧𝑘ℎ̂ (𝑧) , (15)

where ℎ̂(0) = 1 and ℎ̂(𝑧) ̸= 0,∞ in Δ.
We consider the following three cases.

Case 1 (ℎ(0) = ∞). We will derive a contradiction in the case,
and hence (𝑒) holds. For convenience, we set 𝑚 = −𝑘. Thus,
ℎ(𝑧) = 𝑧−𝑚 + 𝑎

−𝑚+1
𝑧−𝑚+1 + ⋅ ⋅ ⋅ = (ℎ̂(𝑧)/𝑧𝑚), where 𝑚 is a

positive integer. Clearly, we have ℎ(𝑧) ̸= 0,∞ in Δ, ℎ
𝑛
(𝑧) ̸= 0,

∞ in Δ, and ℎ(0) = ℎ
𝑛
(0) = ∞.

Subcase 1.1 (For sufficiently large 𝑛, 𝑓
𝑛
(0) ̸= 0). We claim that

for each 𝛿 > 0, there exists at least one zero of 𝑓
𝑛
in Δ(0, 𝛿)

for sufficiently large 𝑛. Otherwise, there exists a subsequence
of {𝑓
𝑛
} (still denoted by {𝑓

𝑛
}) such that 𝑓

𝑛
(𝑧) ̸= 0 in Δ(0, 𝛿).

Since 𝑓
𝑛
(0) ̸= 0, 𝑓

𝑛
(𝑧) ̸= 0 in Δ(0, 𝛿) for sufficiently large 𝑛. By

Lemma 16, {𝑓
𝑛
} is normal at 0. A contradiction.

Taking a subsequence and renumbering if necessary, we
may assume that 𝑎

𝑛
( ̸= 0) is the zero of {𝑓

𝑛
} of the smallest

modulus. Obviously, 𝑎
𝑛

→ 0 as 𝑛 → ∞. Set 𝐹
𝑛
(𝜁) =

𝑎𝑚−1
𝑛

𝑓
𝑛
(𝑎
𝑛
𝜁). We have

(A1) 𝐹
𝑛
(𝜁) ̸= 0 in Δ;

(A2) all zeros of 𝐹
𝑛
(𝜁) are multiple and 𝐹

𝑛
(1) = 0;

(A3) 𝐹
𝑛
(𝜁) ̸= 𝑎𝑚

𝑛
ℎ
𝑛
(𝑎
𝑛
𝜁) and 𝑎𝑚

𝑛
ℎ
𝑛
(𝑎
𝑛
𝜁)
𝜒

⇒ 1/𝜁𝑚 in C.

By Lemmas 16 and 12, {𝐹
𝑛
(𝜁)} is normal inΔ and quasinormal

inC.Thus, there exists a subsequence of {𝐹
𝑛
(𝜁)} (still denoted

by {𝐹
𝑛
(𝜁)}) and 𝐷

1
⊂ C such that

(B1) 𝐷
1
has no accumulation point in C;

(B2) for each 𝜁
0
∈ 𝐷
1
, no subsequence of {𝐹

𝑛
(𝜁)} is normal

at 𝜁
0
;

(B3) 𝐹
𝑛
(𝜁)
𝜒

⇒ 𝐹(𝜁) in C \ 𝐷
1
.

Obviously, 𝐷
1
∩ Δ = 0 and all zeros of 𝐹(𝜁) are multiple.

Subcase 1.1.1 (1 ∉ 𝐷
1
). By (A2), 𝐹(1) = 𝐹(1) =

0. Let 𝜁
0

∈ 𝐷
1
. By Lemma 11, 𝐹(𝜁) = 1/𝜁𝑚 which

contradicts 𝐹(1) = 0. Hence, 𝐷
1
is an empty set. Since

𝐹(1) = 0, 𝐹(𝜁) is a meromorphic function in C. By Lemma 8
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and (A3), either 𝐹(𝜁) ≡ 1/𝜁𝑚 or 𝐹(𝜁) ̸= 1/𝜁𝑚 in C. If
𝐹(𝜁) ≡ 1/𝜁𝑚, we have 𝐹(1) = 1 which contradicts
𝐹(1) = 0. If 𝐹(𝜁) ̸= 1/𝜁𝑚, then by Theorem B and Lemma 5,
𝐹 is a constant function. Since 𝐹(1) = 0, 𝐹(𝜁) ≡ 0
in C. Now,

𝐹
𝑛
(𝜁) = 𝑎𝑚−1

𝑛
𝑓
𝑛
(𝑎
𝑛
𝜁) ⇒ 0 inC. (16)

We claim that for each 𝛿 > 0, there exists at least one pole
of 𝑓
𝑛
in Δ(0, 𝛿) for sufficiently large 𝑛. Otherwise, there exist

𝛿 > 0 and a subsequence of {𝑓
𝑛
} (still denoted by {𝑓

𝑛
}) such

that {𝑓
𝑛
(𝑧)} has no poles in Δ(0, 𝛿). Since 𝑓

𝑛
(𝑧) ̸= ℎ

𝑛
(𝑧) and

ℎ
𝑛
(0) = ∞, we have 𝑓(0) ̸=∞. Thus, {𝑓

𝑛
(𝑧)} is a sequence

of holomorphic functions in Δ(0, 𝛿). By Lemma 10, {𝑓
𝑛
} is

normal at 0. A contradiction.
Taking a subsequence and renumbering if necessary, we

may assume that 𝑦
𝑛
( ̸= 0) is the pole of 𝑓

𝑛
(𝑧) of the smallest

modulus. Obviously, 𝑦
𝑛

→ 0 as 𝑛 → ∞. By Hurwitz’s
theorem and (16), we have 𝑎

𝑛
/𝑦
𝑛

→ 0 as 𝑛 → 0. Set
𝐺
𝑛
(𝜁) = 𝑦𝑚−1

𝑛
𝑓
𝑛
(𝑦
𝑛
𝜁), and we have

(C1) 𝐺
𝑛
(𝜁) is holomorphic in Δ;

(C2) 𝐺
𝑛
(1) = ∞;

(C3) all zeros of 𝐺
𝑛
(𝜁) are multiple;

(C4) 𝐺
𝑛
(𝜁) ̸= 𝑦𝑚

𝑛
ℎ
𝑛
(𝑦
𝑛
𝜁) and 𝑦𝑚

𝑛
ℎ
𝑛
(𝑦
𝑛
𝜁)
𝜒

⇒ 1/𝜁𝑚 in C.

By Lemma 10 and Lemma 12, {𝐺
𝑛
(𝜁)} is normal in Δ and

quasinormal inC.Thus, there exists a subsequence of {𝐺
𝑛
(𝜁)}

(still denoted by {𝐺
𝑛
(𝜁)}) and 𝐷

2
⊂ C such that

(D1) 𝐷
2
has no accumulation point in C;

(D2) for each 𝜁
0
∈ 𝐷
2
, no subsequence of {𝐺

𝑛
(𝜁)} is normal

at 𝜁
0
;

(D3) 𝐺
𝑛
(𝜁)
𝜒

⇒ 𝐺(𝜁) in C \ 𝐷
2
.

Obviously, 𝐷
2
∩ Δ = 0 and all zeros of 𝐺(𝜁) are multiple in

C \ 𝐷
2
.

Clearly, 𝐺(0) = lim
𝑛→∞

𝐺
𝑛
(𝑎
𝑛
/𝑦
𝑛
) = 𝑦𝑚−1
𝑛

𝑓
𝑛
(𝑎
𝑛
) = 0, so

𝐺(𝑧) is meromorphic inC \𝐷
2
. By Lemma 8 and (C4), either

𝐺(𝜁) ≡ 1/𝜁𝑚 or 𝐺(𝜁) ̸= 1/𝜁𝑚 in C \ 𝐷
2
.

(1) (𝐷
2
is an empty set.) By (C2), we have 𝐺(1) = ∞. If

𝐺(𝜁) ̸= 1/𝜁𝑚 inC, then byTheorem B and Lemma 5, we have
𝐺(𝜁) = 𝑐which contradicts that𝐺(1) = ∞. If𝐺(𝜁)−1/𝜁𝑚 ≡ 0
in C, we have 𝐺(0) = ∞ which contradicts that 𝐺(0) = 0.

(2) (𝐷
2
is not an empty set.) Let 𝜁

0
∈ 𝐷
2
. Since𝐷

2
∩Δ = 0,

by Lemma 11, we have 𝐺(𝜁) = 1/𝜁𝑚 in C \ 𝐷
2
− {0}. Clearly,

𝐺(𝜁) and 1/𝜁𝑚 are meromorphic functions in C \ 𝐷
2
, so we

have 𝐺(𝜁) = 1/𝜁𝑚 in C \ 𝐷
2
which contradicts 𝐺(0) = 0.

Subcase 1.1.2 (1 ∈ 𝐷
1
). By Lemma 11, we have 𝐹(𝜁) =

∫
𝜁

1
(1/𝜉𝑚)𝑑𝜉. If 𝑚 = 1, 𝐹(𝜁) is a multivalued function. A

contradiction. Thus, 𝑚 > 1 and we have

𝐹 (𝜁) = ∫
𝜁

1

1

𝜉𝑚
𝑑𝜉 =

1

𝑚 − 1
(

𝜁𝑚−1 − 1

𝜁𝑚−1
) ,

𝜁 ∈ C \ 𝐷
1
.

(17)

Let 𝜁
𝑖
be the 𝑖th root of the equation 𝜁𝑚−1 − 1 = 0, where

𝑖 = 1, 2, . . . , 𝑚 − 1.
We claim that 𝐷

1
= {𝜁
1
, 𝜁
2
, . . . , 𝜁

𝑚−1
}. Suppose that 𝜁

0
∉

𝐷
1
and 𝜁𝑚−1

0
− 1 = 0. Obviously, we have 𝐹(𝜁

0
) = 0 and

𝐹(𝜁
0
) = 𝜁−𝑚
0

which contradicts that all of zeros of 𝐹(𝜁) are
multiple. Suppose that 𝜁

0
∈ 𝐷
1
and 𝜁𝑚−1
0

−1 ̸= 0. Since𝐷
1
∩Δ =

0, by Lemma 11,

𝐹 (𝜁) = ∫
𝜁

𝜁
0

1

𝜁𝑚
𝑑𝜉 =

1

𝑚 − 1
(

𝜁𝑚−1 − 𝜁𝑚−1
0

𝜁𝑚−1
) ,

𝜁 ∈ C \ 𝐷
1
.

(18)

Comparing the coefficients of (17) and (18), we obtain that
𝜁𝑚−1
0

= 1. A contradiction.
Now, we have

𝐹
𝑛
(𝜁)
𝜒

⇒
𝜁𝑚−1 − 1

(𝑚 − 1) 𝜁𝑚−1
in Δ. (19)

By Hurwitz’s theorem, there exist 𝛾
𝑛,𝑖

such that 𝛾
𝑛,𝑖

→ 0
and 𝐹

𝑛
(𝛾
𝑛,𝑖

) = ∞, where 𝑖 = 1, 2, . . . , 𝑚 − 1. Observing that
𝐹
𝑛
(0) ̸=∞, we have 𝛾

𝑛,𝑖
̸= 0.

Set 𝑈
𝑛
(𝜉) = 𝑠𝑚−1

𝑛
𝐹
𝑛
(𝑠
𝑛
𝜉), where 𝑠

𝑛
is one of

{𝛾
𝑛,1

, 𝛾
𝑛,2

, . . . , 𝛾
𝑛,𝑚−1

}of the largestmodulus.Then, there exists
a subsequence of {𝑈

𝑛
(𝜉)} (still denoted by {𝑈

𝑛
(𝜉)}) such that

(E1) for each 𝑅 > 0, 𝑈
𝑛
(𝜉) ̸= 0 in Δ(0, 𝑅) for sufficiently

large 𝑛;
(E2) 𝑈

𝑛
(1) = ∞;

(E3) 𝑈
𝑛
(𝜉) ̸= 𝑠𝑚

𝑛
ℎ
𝑛
(𝑠
𝑛
𝜉) and 𝑠𝑚

𝑛
ℎ
𝑛
(𝑠
𝑛
𝜉)
𝜒

⇒ 1/𝜉𝑚 in C;
(E4) 𝑈

𝑛
(𝜉) has only 𝑚 − 1 poles 𝜂

𝑛,𝑖
= 𝛾
𝑛,𝑖

/𝑠
𝑛
on Δ, where

𝑖 = 1, 2, . . . , 𝑚 − 1.

In fact, (E1) holds by (19). By Lemma 16, (E1), and (E3), we
obtain that 𝑈

𝑛
(𝜉) is normal in C. We assume that 𝑈

𝑛
(𝜉)
𝜒

⇒
𝑈(𝜉) in C. Obviously, 𝑈(1) = ∞ by (E2).

(1) (𝑈(𝜉) is a meromorphic function in C.) By Lemma 8
and (E3), either𝑈(𝜁) ≡ 1/𝜉𝑚 or𝑈(𝜉) ̸= 1/𝜉𝑚 inC. If𝑈(𝜉) ≡
1/𝜉𝑚, we have 𝑈(𝜉) = (1/(1 − 𝑘))((1/𝜉𝑚−1) + 𝑐) which con-
tradicts that 𝑈(1) = ∞. If 𝑈(𝜉) ̸= 1/𝜉𝑚, then by Theorem B
and Lemma 5, 𝑈(𝜉) is a constant function which contradicts
𝑈(1) = ∞.

(2) (𝑈(𝜉) ≡ ∞ in C.) Set

𝑈∗
𝑛

(𝜉) = 𝑈
𝑛
(𝜉) ⋅
𝑚−1

∏
𝑖=1

(𝜉 − 𝜂
𝑛,𝑖

) . (20)

By the maximum principle applied to 1/𝑈∗
𝑛
(𝜉), we get that

𝑈∗
𝑛

(𝜉)
𝜒

⇒ ∞ in C. (21)

Set

𝐹∗
𝑛

(𝜁) = 𝐹
𝑛
(𝜁) ⋅
𝑚−1

∏
𝑖=1

(𝜁 − 𝛾
𝑛,𝑖

)

= 𝐹
𝑛
(𝜁) ⋅
𝑚−1

∏
𝑖=1

(𝜁 − 𝑠
𝑛
𝜂
𝑛,𝑖

) .

(22)
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By (19), for sufficiently large 𝑛, 𝐹∗
𝑛
(𝜁) has no pole in Δ(0, 1/2),

and by the maximum principle, 𝐹∗
𝑛
(𝜁)
𝜒

⇒ ((𝜁𝑚−1−1)/(𝑚−1))
in Δ(0, 1/2). Thus, we have

𝐹∗
𝑛

(0) →
1

1 − 𝑚
as 𝑛 → ∞. (23)

By (21) and (22),

𝐹∗
𝑛

(𝑠
𝑛
𝜉) = 𝐹

𝑛
(𝑠
𝑛
𝜉) ⋅
𝑚−1

∏
𝑖=1

(𝑠
𝑛
𝜉 − 𝑠
𝑛
𝜂
𝑛,𝑖

)

= 𝑠𝑚−1
𝑛

𝐹
𝑛
(𝑠
𝑛
𝜉) ⋅
𝑚−1

∏
𝑖=1

(𝜉 − 𝜂
𝑛,𝑖

)

= 𝑈∗
𝑛

(𝜉)
𝜒

⇒ ∞

(24)

in C. Equation (24) implies that 𝐹∗
𝑛
(0) → ∞ as 𝑛 → ∞

which contradicts (23).

Subcase 1.2. There exists a subsequence of {𝑓
𝑛
(𝑧)} (still

denoted by {𝑓
𝑛
(𝑧)}) such that 𝑓

𝑛
(0) = 0 for each 𝑛.

Doing as in Subcase 1.1.1, we may assume that 𝑦
𝑛
( ̸= 0) is

the pole of 𝑓
𝑛
(𝑧) of the smallest modulus and 𝑦

𝑛
→ 0 as

𝑛 → ∞. Set 𝐺
𝑛
(𝜁) = 𝑦𝑚−1

𝑛
𝑓
𝑛
(𝑦
𝑛
𝜁). We have

(F1) 𝐺
𝑛
(𝜁) is holomorphic function in Δ;

(F2) 𝐺
𝑛
(1) = ∞;

(F3) all zeros of 𝐺
𝑛
(𝜁) are multiple;

(F4) 𝐺
𝑛
(𝜁) ̸= 𝑦𝑚

𝑛
ℎ
𝑛
(𝑦
𝑛
𝜁) and 𝑦𝑚

𝑛
ℎ
𝑛
(𝑦
𝑛
𝜁)
𝜒

⇒ 1/𝜁𝑚 in C.

By Lemma 10 and Lemma 12, {𝐺
𝑛
(𝜁)} is normal in Δ and

quasinormal inC.Thus, there exists a subsequence of {𝐺
𝑛
(𝜁)}

(still denoted by {𝐺
𝑛
(𝜁)}) and 𝐷

3
⊂ C such that

(G1) 𝐷
3
has no accumulation point in C;

(G2) for each 𝜁
0
∈ 𝐷
3
, no subsequence of {𝐺

𝑛
(𝜁)} is normal

at 𝜁
0
;

(G3) 𝐺
𝑛
(𝜁)
𝜒

⇒ 𝐺(𝜁) in C \ 𝐷
3
.

Obviously, 𝐷
3
∩ Δ = 0 and all zeros of 𝐺(𝜁) are multiple in

C \ 𝐷
3
.

Clearly, 𝐺(0) = lim
𝑛→∞

𝐺
𝑛
(0) = 𝑦𝑚−1

𝑛
𝑓
𝑛
(0) = 0, so 𝐺(𝑧)

is a meromorphic function in C \ 𝐷
3
. By Lemma 8 and (F4),

either 𝐺(𝜁) ≡ 1/𝜁𝑚 or 𝐺(𝜁) ̸= 1/𝜁𝑚 in C \ 𝐷
3
.

Subcase 1.2.1 (𝐷
3
is an empty set). By (F2), 𝐺(1) = ∞.

If 𝐺(𝜁) ̸= 1/𝜁𝑚, then by Theorem B and Lemma 5, 𝐺(𝜁) is
a constant function which contradicts that 𝐺(1) = ∞. If
𝐺(𝜁)− (1/𝜁𝑚) ≡ 0, we have𝐺(0) = ∞which contradicts that
𝐺(0) = 0.

Subcase 1.2.2 (𝐷
3
is not an empty set). Let 𝜁

0
∈ 𝐸. Since 𝐷

3
∩

Δ = 0, by Lemma 11, we have𝐺(𝜁) = 1/𝜁𝑚 which contradicts
𝐺(0) = 0.

Case 2 (ℎ(0) = 0). In this case, we will show that (𝑒) and (𝑓)
hold. Clearly, we have ℎ(𝑧) ̸= 0,∞ in Δ, ℎ

𝑛
(𝑧) ̸= 0,∞ in Δ,

and ℎ(0) = ℎ
𝑛
(0) = 0.

We claim that for each 𝛿 > 0, there exists at least one zero
of 𝑓
𝑛
in Δ(0, 𝛿) for sufficiently large 𝑛. Otherwise, there exist

𝛿 > 0 and a subsequence of {𝑓
𝑛
} (still denoted by {𝑓

𝑛
}) such

that 𝑓
𝑛
(𝑧) ̸= 0 in Δ(0, 𝛿). Since 𝑓

𝑛
(0) ̸= ℎ

𝑛
(0) and all the zeros

of {𝑓
𝑛
} are multiple, we have 𝑓

𝑛
(0) ̸= 0, and hence 𝑓

𝑛
(𝑧) ̸= 0 in

Δ(0, 𝛿). By Lemma 16, {𝑓
𝑛
} is normal at 0 which contradicts

the condition (𝑐).
Taking a subsequence and renumbering if necessary, we

may assume that 𝑎
𝑛
( ̸= 0) is the zero of 𝑓

𝑛
of the smallest

modulus. Obviously, 𝑎
𝑛

→ 0 as 𝑛 → ∞. Set 𝐹
𝑛
(𝑧) =

𝑓
𝑛
(𝑎
𝑛
𝜁)/𝑎𝑘+1
𝑛

. We have that

(a1) 𝐹
𝑛
(𝜁) ̸= 0 in Δ;

(a2) all zeros of 𝐹
𝑛
(𝜁) are multiple and 𝐹

𝑛
(1) = 0;

(a3) 𝐹
𝑛
(𝜁) ̸= ℎ

𝑛
(𝑎
𝑛
𝜁)/𝑎𝑘
𝑛
and ℎ
𝑛
(𝑎
𝑛
𝜁)/𝑎𝑘
𝑛

𝜒

⇒ 𝜁𝑘 in C.

By Lemma 16 and Lemma 12, {𝐹
𝑛
(𝜁)} is normal in Δ and

quasinormal inC. Thus, there exists a subsequence of {𝐹
𝑛
(𝜁)}

(still denoted by {𝐹
𝑛
(𝜁)}) and 𝐷

4
⊂ C such that

(b1) 𝐷
4
has no accumulation point in C;

(b2) for each 𝜁
0
∈ 𝐷
4
, no subsequence of {𝐹

𝑛
(𝜁)} is normal

at 𝜁
0
;

(b3) 𝐹
𝑛
(𝜁)
𝜒

⇒ 𝐹(𝜁) in C \ 𝐷
4
.

Obviously, 𝐷
4
∩ Δ = 0 and all zeros of 𝐹(𝜁) are multiple in

C \ 𝐷
4
.

Subcase 2.1 (1 ∉ 𝐷
4
). By (a2), 𝐹(1) = 𝐹(1) = 0, and hence

𝐹(𝜁) is a meromorphic function in C \ 𝐷
4
.

We claim that 𝐷
4

= 0. Otherwise, let 𝜁
0

∈ 𝐷
4
. Since

𝐷
4
∩ Δ = 0, by Lemma 11, 𝐹(𝜁) = 𝜁𝑘 which contradicts that

𝐹(1) = 0.
By Lemma 8 and (a3), either𝐹(𝜁) ≡ 𝜁𝑘 or𝐹(𝜁) ̸= 𝜁𝑘 inC.

Since 𝐹(1) = 0, we have 𝐹(𝜁) ̸= 𝜁𝑘 in C. By Theorem B, 𝐹(𝜁)
must be rational, and then by Lemma 4,

𝐹 (𝜁) =
∏
𝑚+𝑘+1

𝑖=1
(𝜁 − 𝛼

𝑖
)

(𝑘 + 1) (𝜁 − 𝛽)
𝑚

, (25)

where 𝑚 is a nonnegative integer, 𝛽 ∈ C, and 𝛼
𝑖

̸= 0, 𝛽 (1 ≤
𝑖 ≤ 𝑚 + 𝑘 + 1). Now, we have

𝐹
𝑛
(𝜁)
𝜒

⇒
∏
𝑚+𝑘+1

𝑖=1
(𝜁 − 𝛼

𝑖
)

(𝑘 + 1) (𝜁 − 𝛽)
𝑚

in C. (26)

By Hurwitz’s theorem, there exist sequences 𝜁
𝑛,𝑖

→ 𝛼
𝑖
and

𝜂
𝑛,𝑗

→ 𝛽 as 𝑛 → ∞ (counting multiplicities of zeros and
poles, resp.) such that for sufficiently large 𝑛, 𝐹

𝑛
(𝜁
𝑛,𝑖

) = 0 and
𝐹
𝑛
(𝜂
𝑛,𝑗

) = ∞, where 𝑖 = 1, 2, . . . , 𝑚+𝑘+1 and 𝑗 = 1, 2, . . . , 𝑚.
Write 𝑧

𝑛,𝑖
= 𝑎
𝑛
𝜁
𝑛,𝑖
.Thus,𝑓

𝑛
(𝑧
𝑛,𝑖

) = 0 and 𝑧
𝑛,𝑖

→ 0 as 𝑛 → ∞.
Set 𝐵
𝑛

= {𝑧
𝑛,1

, 𝑧
𝑛,2

, . . . , 𝑧
𝑛,𝑚+𝑘+1

}.

Subcase 2.1.1. For each 𝛿 > 0, 𝑓
𝑛
has at least 𝑚 + 𝑘 + 2 zeros

(counting multiplicities) in Δ(0, 𝛿) for sufficiently large 𝑛.
Taking a subsequence and renumbering if necessary, we

may assume that 𝑏
𝑛
( ̸= 0) is the zero of 𝑓

𝑛
of the smallest
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modulus inΔ\𝐵
𝑛
. Obviously, 𝑏

𝑛
→ 0 as 𝑛 → ∞. Observing

that𝐹
𝑛
(𝑏
𝑛
/𝑎
𝑛
) = 0 and 𝑏

𝑛
/𝑎
𝑛

̸= 𝜁
𝑛,𝑖
, where 𝑖 = 1, 2, . . . , 𝑚+𝑘+1,

by Hurwitz’s theorem and (26), we have 𝑎
𝑛
/𝑏
𝑛

→ 0 as 𝑛 →

∞. Let 𝐺
𝑛
(𝜁) = 𝑓

𝑛
(𝑏
𝑛
𝜁)/𝑏𝑘+1
𝑛

. We have that for sufficiently
large 𝑛,

(c1) 𝐺
𝑛
(𝜁) has only𝑚+𝑘+1 zeros 𝑎

𝑛
𝜁
𝑛,𝑖

/𝑏
𝑛
inΔ. Obviously,

|𝑎
𝑛
𝜁
𝑛,𝑖

/𝑏
𝑛
| → 0 as 𝑛 → ∞;

(c2) all zeros of 𝐺
𝑛
(𝜁) are multiple and 𝐺

𝑛
(1) = 0;

(c3) 𝐺
𝑛
(𝜁) ̸= ℎ

𝑛
(𝑏
𝑛
𝜁)/𝑏𝑘
𝑛
and ℎ
𝑛
(𝑏
𝑛
𝜁)/𝑏𝑘
𝑛

𝜒

⇒ 𝜁𝑘 in C.

By Lemma 16 and Lemma 12, {𝐺
𝑛
(𝜁)} is normal in Δ and

quasinormal inC.Thus, there exists a subsequence of {𝐺
𝑛
(𝜁)}

(still denoted by {𝐺
𝑛
(𝜁)}) and 𝐷

5
⊂ C such that

(d1) 𝐷
5
has no accumulation point in C;

(d2) for each 𝜁
0
∈ 𝐷
5
, no subsequence of {𝐺

𝑛
(𝜁)} is normal

at 𝜁
0
;

(d3) 𝐺
𝑛
(𝜁)
𝜒

⇒ 𝐺(𝜁) in C \ 𝐷
5
.

Obviously, 𝐷
5
∩ Δ = 0 and all zeros of 𝐺(𝜁) are multiple in

C \ 𝐷
5
.

Let

𝐺∗
𝑛
(𝜁) = 𝐺

𝑛
(𝜁)

∏
𝑚

𝑗=1
(𝜁 − (𝑎

𝑛
𝜂
𝑛,𝑗

/𝑏
𝑛
))

∏
𝑚+𝑘+1

𝑖=1
(𝜁 − (𝑎

𝑛
𝜁
𝑛,𝑖

/𝑏
𝑛
))

,

𝐹∗
𝑛

(𝜁) = 𝐹
𝑛
(𝜁)

∏
𝑚

𝑗=1
(𝜁 − 𝜂

𝑛,𝑗
)

∏
𝑚+𝑘+1

𝑖=1
(𝜁 − 𝜁

𝑛,𝑖
)
.

(27)

By (26),

𝐺∗
𝑛
(

𝑎
𝑛
𝜁

𝑏
𝑛

) = 𝐹∗
𝑛

(𝜁) ⇒
1

𝑘 + 1
(28)

in C. Hence

𝐺∗
𝑛
(0) →

1

𝑘 + 1
. (29)

(1) (𝐺(𝜁) ≡ ∞ in C \ 𝐷
5
.) Obviously, 𝐺∗

𝑛
(𝜁) has no zeros

in Δ for sufficiently large 𝑛. Applying the maximum principle
to the sequence 1/𝐺∗

𝑛
(𝜁) of analytic functions, we see that

𝐺∗
𝑛
(𝜁)
𝜒

⇒ ∞ in Δ which contradict (29).
(2) 𝐺(𝜁) is a meromorphic function in C \ 𝐷

5
.

We claim that𝐺(𝜁) = 𝜁𝑘+1/(𝑘+1) inC\𝐷
5
. By Lemma 13,

𝐺(𝜁) = (𝜁𝑘+1+𝑐)/(𝑘+1), where 𝑐 is a constant. Since𝐺∗
𝑛
(𝜁) has

no zeros in Δ for sufficiently large 𝑛, applying the maximum
principle to the sequence 1/𝐺∗

𝑛
(𝜁) of analytic functions, we

have 𝐺∗
𝑛
(𝜁)
𝜒

⇒ ((𝜁𝑘+1 + 𝑐)/(𝑘 + 1))(1/𝜁𝑘+1) in Δ. Hence,
𝐺∗
𝑛
(0) → (((𝜁𝑘+1 + 𝑐)/(𝑘 + 1))(1/𝜁𝑘+1))|

𝜁=0
, and then we get

that 𝑐 = 0 by (29).
Suppose that 1 ∉ 𝐷

5
. By (𝑐2), 𝐺(1) = 0 which contradicts

𝐺(𝜁) = (𝜁𝑘+1/(𝑘 + 1)). Suppose that 1 ∈ 𝐷
5
. By Lemma 11,

𝐺(𝜁) = ∫
𝜁

1
𝜉𝑘𝑑𝜉 = (𝜁𝑘+1 − 1)/(𝑘 + 1) which contradicts 𝐺(𝜁) =

𝜁𝑘+1/(𝑘 + 1).

Subcase 2.1.2.There exists 𝛿 > 0 such that 𝑓
𝑛
has exactly 𝑚 +

𝑘 + 1 zeros (counting multiplicities) in Δ(0, 𝛿) for sufficiently
large 𝑛.

Now, (𝑓) holds with 𝑟
𝑎

= 𝛿 and 𝑁
𝑎

= 𝑚 + 𝑘 + 2. Next, we
will show that (𝑔) also holds.

Set

𝑓∗
𝑛

(𝑧) = 𝑓
𝑛
(𝑧)

∏
𝑚

𝑗=1
(𝑧 − 𝑎

𝑛
𝜂
𝑛,𝑗

)

∏
𝑚+𝑘+1

𝑖=1
(𝑧 − 𝑎

𝑛
𝜁
𝑛,𝑖

)
,

𝐹∗
𝑛

(𝜁) = 𝐹
𝑛
(𝜁)

∏
𝑚

𝑗=1
(𝜁 − 𝜂

𝑛,𝑗
)

∏
𝑚+𝑘+1

𝑖=1
(𝜁 − 𝜁

𝑛,𝑖
)
.

(30)

By (26), 𝑓∗
𝑛
(𝑎
𝑛
𝜁) = 𝐹∗

𝑛
(𝜁) ⇒ 1/(𝑘 + 1) in C, and hence we

have

𝑓∗
𝑛

(0) →
1

𝑘 + 1
. (31)

(1) (𝑓(𝑧) ≡ ∞ in𝐷\𝐸.) Since𝑓
𝑛
has exactly𝑚+𝑘+1 zeros

inΔ(0, 𝛿) for sufficiently large 𝑛,𝑓∗
𝑛
(𝑧) has no zeros inΔ(0, 𝛿)

for sufficiently large 𝑛. By the maximum principle applied to
1/𝑓∗
𝑛
(𝑧), we have 𝑓∗

𝑛
(𝑧)
𝜒

⇒ ∞ which contradicts (31).
(2) (𝑓(𝑧) is a meromorphic function in 𝐷 \ 𝐸.)

By Lemma 13, 𝑓(𝑧) = ℎ(𝑧) in Δ(0, 𝛿), and hence
𝑓(𝑧) = ∫

𝑧

0
ℎ(𝜁)𝑑𝜁 + 𝑐 in 𝐷 \ 𝐸, where 𝑐 is a con-

stant. Since 𝑓∗
𝑛
(𝑧) has no zeros in Δ(0, 𝛿) for suffi-

ciently large 𝑛, by the maximum principle applied to
1/𝑓∗
𝑛
(𝑧), 𝑓∗

𝑛
(𝑧)

𝜒

⇒ (∫
𝑧

0
ℎ(𝜁)𝑑𝜁 + 𝑐)/𝜁𝑘+1 in Δ(0, 𝛿), and

hence 𝑓∗
𝑛
(0) → ((∫

𝑧

0
ℎ(𝜁)𝑑𝜁 + 𝑐)/𝜁𝑘+1)|

𝜁=0
. By (31), 𝑐 = 0.

Now, 𝑓(𝑧) = ∫
𝑧

0
ℎ(𝜁)𝑑𝜁 in 𝐷 \ 𝐸.

Subcase 2.2 (1 ∈ 𝐷
4
). By Lemma 11,

𝐹 (𝜁) = ∫
𝜁

1

𝜉𝑘𝑑𝜉 =
𝜁𝑘+1 − 1

𝑘 + 1
, 𝜁 ∈ C \ 𝐷

4
. (32)

Let 𝑒
𝑗
be the 𝑗th root of the equation 𝜁𝑘+1 − 1 = 0, where

𝑗 = 1, 2, . . . , 𝑘 + 1.
We claim that 𝐷

4
= {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘+1
}. Suppose that 𝜁

0
∉

𝐷
4
, where 𝜁𝑘+1

0
− 1 = 0. Obviously, we have 𝐹(𝜁

0
) = 0 and

𝐹(𝜁
0
) = 𝜁𝑘
0
which contradict that all of zeros of 𝐹(𝜁) are mul-

tiple. Suppose that 𝜁
0
∈ 𝐷
4
, where 𝜁𝑘+1

0
− 1 ̸= 0. By Lemma 11,

𝐹(𝜁) = ∫
𝜁

𝜁=𝜁
0

𝜉𝑘+1𝑑𝜉 = (𝜁𝑘+1 − 𝜁𝑘+1
0

)/(𝑘 + 1) in C \ 𝐷
4
. By (32),

𝜁𝑘+1
0

= 1. A contradiction.
By Lemma 11, there exists 𝛿

𝑗
> 0 such that for sufficiently

large 𝑛, 𝐹
𝑛
(𝜁) has a single zero 𝜁

𝑛,𝑗
→ 𝑒
𝑗
of order 2 and a

single pole 𝜂
𝑛,𝑗

→ 𝑒
𝑗
of order 1 in Δ(𝑒

𝑗
, 𝛿
𝑗
). Set 𝑧

𝑛,𝑗
= 𝑎
𝑛
𝜁
𝑛,𝑗
.

Thus, 𝑓
𝑛
(𝑧
𝑛,𝑗

) = 0 and 𝑧
𝑛,𝑗

→ 0 as 𝑛 → ∞, where 𝑗 =
1, 2, . . . , 𝑘 + 1. Set 𝐵

𝑛
= {𝑧
𝑛,1

, 𝑧
𝑛,2

, . . . , 𝑧
𝑛,𝑘+1

}.

Subcase 2.2.1. For each 𝛿 > 0, 𝑓
𝑛
has at least 𝑘 + 2 zeros (not

counting multiplicities) in Δ(0, 𝛿) for sufficiently large 𝑛.
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Taking a subsequence and renumbering if necessary, we
may assume that 𝑏

𝑛
→ 0 is the zero of𝑓

𝑛
of the smallestmod-

ulus inΔ\𝐵
𝑛
. Obviously,𝐹

𝑛
(𝑏
𝑛
/𝑎
𝑛
) = 0. Since 𝑏

𝑛
∉ 𝐵
𝑛
, we have

𝑏
𝑛
/𝑎
𝑛

̸= 𝜁
𝑛,𝑗
, where 𝑗 = 1, 2, . . . , 𝑘 + 1. Since 𝐹

𝑛
(𝜁) has a single

zero 𝜁
𝑛,𝑗

→ 𝑒
𝑗
of order 2 in Δ(𝑒

𝑗
, 𝛿
𝑗
), by Hurwitz’s theorem

and (32), we have 𝑎
𝑛
/𝑏
𝑛

→ 0 as 𝑛 → ∞. Let 𝐺
𝑛
(𝜁) =

𝑓
𝑛
(𝑏
𝑛
𝜁)/𝑏𝑘+1
𝑛

. We have that for sufficiently large 𝑛

(e1) 𝐺
𝑛
(𝜁) has only 𝑘 + 1 zeros 𝑎

𝑛
𝜁
𝑛,𝑖

/𝑏
𝑛
of order 2 and at

least 𝑘+1 poles 𝑎
𝑛
𝜂
𝑛,𝑖

/𝑏
𝑛
of order 1 inΔ, and obviously,

|𝑎
𝑛
𝜁
𝑛,𝑖

/𝑏
𝑛
| → 0 and |𝑎

𝑛
𝜂
𝑛,𝑖

/𝑏
𝑛
| → 0 as 𝑛 → ∞;

(e2) all zeros of 𝐺
𝑛
(𝜁) are multiple and 𝐺

𝑛
(1) = 0;

(e3) 𝐺
𝑛
(𝜁) ̸= 𝜁𝑘ℎ̂(𝑏

𝑛
𝜁) and 𝜁𝑘ℎ̂(𝑏

𝑛
𝜁)
𝜒

⇒ 𝜁𝑘 in C.

By Lemma 16 and Lemma 12, {𝐺
𝑛
} is normal in Δ and

quasinormal in C. Thus, there exist a subsequence of {𝐺
𝑛
(𝜁)}

(still denoted by {𝐺
𝑛
(𝜁)}) and 𝐷

6
⊂ C such that

(f1) 𝐷
6
has no accumulation point in C;

(f2) for each 𝜁
0
∈ 𝐷
6
, no subsequence of {𝐺

𝑛
(𝜁)} is normal

at 𝜁
0
;

(f3) 𝐺
𝑛
(𝜁)
𝜒

⇒ 𝐺(𝜁) in C \ 𝐷
6
.

Obviously, 𝐷
6
∩ Δ = 0 and all zeros of 𝐺(𝜁) are multiple in

C \ 𝐷
6
.

Let

𝐺∗
𝑛
(𝜁) = 𝐺

𝑛
(𝜁)

∏
𝑘+1

𝑗=1
(𝜁 − (𝑎

𝑛
𝜂
𝑛,𝑗

/𝑏
𝑛
))

∏
𝑘+1

𝑗=1
(𝜁 − (𝑎

𝑛
𝜁
𝑛,𝑗

/𝑏
𝑛
))
2
,

𝐹∗
𝑛

(𝜁) = 𝐹
𝑛
(𝜁)

∏
𝑘+1

𝑗=1
(𝜁 − 𝜂

𝑛,𝑗
)

∏
𝑘+1

𝑗=1
(𝜁 − 𝜁

𝑛,𝑗
)
2
.

(33)

By (32),

𝐺∗
𝑛
(

𝑎
𝑛
𝜁

𝑏
𝑛

) = 𝐹∗
𝑛

(𝜁) ⇒
1

𝑘 + 1
in C. (34)

Hence

𝐺∗
𝑛
(0) →

1

𝑘 + 1
. (35)

(1) (𝐺(𝜁) ≡ ∞ in C \ 𝐷
6
.) Obviously, 𝐺∗

𝑛
(𝜁) has no zeros

in Δ for sufficiently large 𝑛. Applying the maximum principle
to the sequence 1/𝐺∗

𝑛
(𝜁) of analytic functions, we have that

𝐺∗
𝑛
(𝜁)
𝜒

⇒ ∞ in Δ which contradict (35).
(2) (𝐺(𝜁) is a meromorphic function inC \𝐷

6
.) We claim

that𝐺(𝜁) = 𝜁𝑘+1/(𝑘+1) inC\𝐷
6
. By Lemma 13,𝐺(𝜁) = (𝜁𝑘+1+

𝑐)/(𝑘 + 1), where 𝑐 is a constant. Since 𝐺∗
𝑛
(𝜁) has no zeros

in Δ for sufficiently large 𝑛, applying the maximum principle
to the sequence 1/𝐺∗

𝑛
(𝜁) of analytic functions, we have

𝐺∗
𝑛
(𝜁)
𝜒

⇒ ((𝜁𝑘+1 + 𝑐)/(𝑘 + 1))(1/𝜁𝑘+1) in Δ. Hence, 𝐺∗
𝑛
(0) →

(((𝜁𝑘+1 + 𝑐)/(𝑘 + 1))(1/𝜁𝑘+1))|
𝜁=0

, and then 𝑐 = 0 by (35).
Suppose that 1 ∉ 𝐷

6
. By (e2), 𝐺(1) = 0 which contradicts

that 𝐺(𝜁) = 𝜁𝑘+1/(𝑘 + 1). Suppose that 1 ∈ 𝐷
6
. By Lemma 11,

𝐺(𝜁) = ∫
𝜁

1
𝜁𝑘𝑑𝜉 = (𝜁𝑘+1 − 1)/(𝑘 + 1) which contradicts that

𝐺(𝜁) = 𝜁𝑘+1/(𝑘 + 1).

Subcase 2.2.2.There exists 𝛿 > 0 such that 𝑓
𝑛
has exactly 𝑘+1

zeros (not counting multiplicities) for sufficiently large 𝑛.
Similar to the previous treatment in Subcase 2.1.2, we

finally can show that (e) and (f) hold.

Case 3 (ℎ(0) ̸= 0,∞). Obviously, (e) and (f) hold by Lemma 11.

5. Proof of Theorem 1

Proof. We assume that𝑓(𝑧) = 𝛼(𝑧) has at most finitely many
solutions and derive a contradiction. Let 𝑅(𝑧) ∼ 𝑐

0
𝑧𝑑 as 𝑧 →

∞, where 𝑐
0
∈ C \ {0} and 𝑑 ∈ Z.

Clearly, 𝑇(𝑟, 𝑅) = 𝑂(log 𝑟) and 𝑇(𝑟, 1/𝑅) = 𝑂(log 𝑟) as
𝑟 → ∞. By Lemma 7, 𝑇(𝑟, ℎ) = 𝐴𝑟2(1 + 𝑜(1)) as 𝑟 → ∞,
where 𝐴 > 0 is a constant. By standard results in Nevanlinna
theory,𝑇(𝑟, ℎ) = 𝑇(𝑟, 𝛼/𝑅) ≤ 𝑇(𝑟, 𝛼)+𝑇(𝑟, 1/𝑅) and𝑇(𝑟, 𝛼) ≤

𝑇(𝑟, 𝑅) + 𝑇(𝑟, ℎ) as 𝑟 → ∞. Thus, 𝑇(𝑟, 𝛼) = 𝐴𝑟2(1 + 𝑜(1))
as 𝑟 → ∞. Since 𝑇(𝑟, 𝛼) = 𝑜{𝑇(𝑟, 𝑓)} as 𝑟 → ∞, we obtain
that lim

𝑟→∞
(𝑇(𝑟, 𝑓)/𝑟2) = ∞.

Set 𝑔(𝑧) = 𝑓(𝑧)/𝑧𝑑. By Lemma 15, there exist sequences
𝑡
𝑛

→ ∞ and 𝜀
𝑛

→ 0 such that

𝑆 (Δ (𝑡
𝑛
, 𝜀
𝑛
) , 𝑔) → ∞ as 𝑛 → ∞,

𝑓 (𝑡
𝑛
)

𝑡𝑑
𝑛

→ 0,
𝑓 (𝑡
𝑛
)

𝑡𝑑
𝑛

→ ∞ as 𝑛 → ∞.
(36)

Let 𝜔
1
, 𝜔
2
be the two fundamental periods of ℎ(𝑧) and let

𝑃(0 ∈ 𝑃) be a fundamental parallelogram of ℎ(𝑧). There exist
integers 𝑖

𝑛
and 𝑗
𝑛
such that 𝑧

𝑛
∈ 𝑃, where 𝑧

𝑛
= 𝑡
𝑛
−𝑖
𝑛
𝜔
1
−𝑗
𝑛
𝜔
2
.

There exists a subsequence of {𝑧
𝑛
} (still denoted by {𝑧

𝑛
}) such

that 𝑧
𝑛

→ 𝑧
0
as 𝑛 → ∞. Set

𝑔
𝑛
(𝑧) = 𝑔 (𝑧 + 𝑖

𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
) ,

𝑓
𝑛
(𝑧) =

𝑓 (𝑧 + 𝑖
𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
)

𝑡𝑑
𝑛

.
(37)

Clearly, we have 𝑆(Δ(𝑧
𝑛
, 𝜀
𝑛
), 𝑔
𝑛
) = 𝑆(Δ(𝑡

𝑛
, 𝜀
𝑛
), 𝑔), 𝑓

𝑛
(𝑧
𝑛
) =

𝑓(𝑡
𝑛
)/𝑡𝑑
𝑛
, and 𝑓

𝑛
(𝑧
𝑛
) = 𝑓(𝑡

𝑛
)/𝑡𝑑
𝑛
. By (36), we have

𝑆 (Δ (𝑧
𝑛
, 𝜀
𝑛
) , 𝑔
𝑛
) → ∞ as 𝑛 → ∞, (38)

𝑓
𝑛
(𝑧
𝑛
) → 0, 𝑓

𝑛
(𝑧
𝑛
) → ∞ as 𝑛 → ∞. (39)

There exists 𝑅 > 0 such that 𝑃 ⊂ Δ(0, 𝑅) and Δ(𝑧
𝑛
, 𝜀
𝑛
) ⊂

Δ(0, 𝑅) for each 𝑛. Set 𝐷 = Δ(0, 𝑅). Obviously, we have 𝑧
0

∈
𝐷. By assumption, for sufficiently large 𝑛,

𝑓
𝑛
(𝑧) =

𝑓 (𝑧 + 𝑖
𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
)

𝑡𝑑
𝑛

̸=
𝑅 (𝑧 + 𝑖

𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
) ℎ (𝑧)

𝑡𝑑
𝑛

, 𝑧 ∈ 𝐷.

(40)
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For each 𝑧 ∈ 𝐷,

𝑡𝑛 − (𝑧 + 𝑖
𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
)


=
(𝑧𝑛 + 𝑖

𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
) − (𝑧 + 𝑖

𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
)


=
𝑧𝑛 − 𝑧

 < 2𝑅.

(41)

So we have

𝑅 (𝑧 + 𝑖
𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
)

𝑡𝑑
𝑛

→ 𝑐
0

as 𝑛 → ∞. (42)

Set

𝑇
𝑛
(𝑧) =

𝑅 (𝑧 + 𝑖
𝑛
𝜔
1
+ 𝑗
𝑛
𝜔
2
) ℎ (𝑧)

𝑡𝑑
𝑛

. (43)

Obviously, 𝑇
𝑛
(𝑧)
𝜒

⇒ 𝑐
0
ℎ(𝑧) in 𝐷, and for sufficiently large

𝑛, 𝑐
0
ℎ and 𝑇

𝑛
have the same zeros and poles with the same

multiplicity in 𝐷.
Now, {𝑓

𝑛
} is a family ofmeromorphic functions in𝐷 such

that for sufficiently large 𝑛,

(a1) all zeros of {𝑓
𝑛
} are multiple in 𝐷;

(a2) 𝑇
𝑛
(𝑧)
𝜒

⇒ 𝑐
0
ℎ(𝑧) in 𝐷, where 𝑐

0
ℎ(𝑧) ̸≡ 0,∞ in 𝐷;

(a3) 𝑓
𝑛
(𝑧) ̸= 𝑇

𝑛
(𝑧) in 𝐷.

It follows from Lemma 12 that {𝑓
𝑛
} is quasinormal in 𝐷.

Hence there exists 𝜏 > 0 such that Δ(𝑧
0
, 𝜏) ⊂ 𝐷 and {𝑓

𝑛
}

is normal in Δ(𝑧
0
, 𝜏).Then there exists a subsequence of {𝑓

𝑛
}

(still denoted by {𝑓
𝑛
}) such that

(b1) 𝑐
0
ℎ(𝑧) and 𝑇

𝑛
(𝑧) have the same zeros and poles with

the same multiplicity in Δ(𝑧
0
, 𝜏);

(b2) for all 𝑛 ∈ N, 𝑓
𝑛
(𝑧) ̸= 𝑇

𝑛
(𝑧) in Δ(𝑧

0
, 𝜏);

(b3) no subsequence of {𝑓
𝑛
} is normal at 𝑧

0
;

(b4) all zeros of {𝑓
𝑛
} are multiple in Δ(𝑧

0
, 𝜏), and 𝑓

𝑛
(𝑧)
𝜒

⇒
𝑓(𝑧) in Δ(𝑧

0
, 𝜏).

By (39), (b3) holds. By Lemma 17, we have

(c1) ℎ(𝑧
0
) ̸=∞;

(c2) there exist 𝜏∗ ∈ (0 , 𝜏) and 𝑀∗ > 0 such that for
sufficiently large 𝑛, 𝑛(𝜏∗, 1/𝑓

𝑛
) < 𝑀∗;

(c3) 𝑓(𝑧) = ∫
𝑧

𝑧
0

𝑐
0
ℎ(𝜁)𝑑𝜁 in Δ(𝑧

0
, 𝜏).

By Lemma 6 and (c2) and (c3), there exists𝑀
1
> 0 such that,

for sufficiently large 𝑛,

𝑆 (Δ(𝑧
0
,
𝜏∗

2
) , 𝑓
𝑛
) < 𝑀

1
. (44)

Next, we will derive a contradiction with (38).

By (37), 𝑔
𝑛
(𝑧) = 𝑓

𝑛
(𝑧)(1 + ((𝑧 − 𝑧

𝑛
)/𝑡
𝑛
))−𝑑. Then

𝑔#
𝑛
(𝑧) = (


(1 +

𝑧 − 𝑧
𝑛

𝑡
𝑛

)
𝑑

𝑓
𝑛
(𝑧) − (1 +

𝑧 − 𝑧
𝑛

𝑡
𝑛

)
𝑑

× (
𝑑

𝑡
𝑛
+ 𝑧 − 𝑧

𝑛

)𝑓
𝑛
(𝑧)


)

× (


(1 +

𝑧 − 𝑧
𝑛

𝑡
𝑛

)
𝑑


2

+
𝑓𝑛 (𝑧)


2

)

−1

,

(45)

so

[𝑔#
𝑛
(𝑧)]
2

≤
2

(1 + (𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑

𝑓
𝑛
(𝑧)



2

(

(1 + (𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑


2

+
𝑓𝑛 (𝑧)


2

)
2

+
2

(1+(𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑

(𝑑/ (𝑡
𝑛
+𝑧−𝑧

𝑛
)) 𝑓
𝑛
(𝑧)



2

(

(1+(𝑧−𝑧

𝑛
) /𝑡
𝑛
)
𝑑


2

+
𝑓𝑛 (𝑧)


2

)
2

.

(46)

Using the simple inequality

𝐶

𝐶2 + 𝑥2
≤ 2max (𝐶,

1

𝐶
)

1

1 + 𝑥2
(47)

for 𝐶 > 0, we have

2

(1 + (𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑

𝑓
𝑛
(𝑧)



2

(

(1 + (𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑


2

+
𝑓𝑛 (𝑧)


2

)
2

≤ 2max(

(1 +

𝑧 − 𝑧
𝑛

𝑡
𝑛

)


2𝑑

,
1

(1 + (𝑧 − 𝑧
𝑛
) /𝑡
𝑛
)

2𝑑

)

× [𝑓#
𝑛

(𝑧)]
2

.

(48)

The second term on the right of (46) is

1

2



𝑑

𝑡
𝑛
+ 𝑧 − 𝑧

𝑛



2

(
2

(1 + (𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑

𝑓
𝑛
(𝑧)



(1 + (𝑧 − 𝑧

𝑛
) /𝑡
𝑛
)
𝑑


2

+
𝑓𝑛 (𝑧)


2

)

2

≤
1

2



𝑑

𝑡
𝑛
+ 𝑧 − 𝑧

𝑛



2

.

(49)

Putting (46), (48), and (49) together, we have for 𝑧 ∈
Δ(𝑧
0
, (𝜏∗/2)) and sufficiently large 𝑛,

[𝑔#
𝑛
(𝑧)]
2

≤ 4[𝑓#
𝑛

(𝑧)]
2

+ 1. (50)

It follows from (44) and (50) that

𝑆 (Δ(𝑧
0
,
𝜏∗

2
) , 𝑔
𝑛
) ≤ 4𝑀

1
+ (

𝜏∗

2
)
2

:= 𝑀
2

(51)

which contradicts (38).
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