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The homotopy analysis method is applied to solve the variable coefficient KdV-Burgers equation.With the aid of generalized elliptic
method and Fourier’s transform method, the approximate solutions of double periodic form are obtained. These solutions may be
degenerated into the approximate solutions of hyperbolic function form and the approximate solutions of trigonometric function
form in the limit cases. The results indicate that this method is efficient for the nonlinear models with the dissipative terms and
variable coefficients.

1. Introduction

To solve the nonlinear partial differential equation (NPDE)
has been an attractive research topic for mathematicians
and physicists. Nonlinear evolution equations with variable
coefficients can describe the physical phenomenon more
accurately, and it is of great significance to study how to find
the solutions of nonlinear evolution equations with variable
coefficients. The nonlinear partial differential equations are
generally difficult to solve and their exact solutions are
difficult to obtain. In recent years, some various approximate
methods have been developed such as homotopy analysis
method [1–13] and Adomian’s decomposition method [14–
17] to solve linear and nonlinear differential equations.
However, the above works only studied the solutions of
equations with constant coefficients. In this work, we apply
the homotopy analysis method to the variable coefficients
KdV-Burgers equations and obtain the approximate solution
of the Jacobi elliptic function form. This method has the
merits of simplicity and easy execution.

This paper is arranged in the following manner. In
Section 2, we present the homotopy analysis method. In
Section 3, the homotopy analysis method on the variable
coefficient KdV-Burgers equation is presented. Finally, some
conclusions are given.

2. Basic Idea of Homotopy Analysis Method

To explain the basic idea of the homotopy analysis method,
we consider the following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω, (1)

subject to boundary condition

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (2)

where𝐴 is the general differential operator,𝐵 is the boundary
operator, 𝑓(𝑟) is the known analytic function, and Γ is the
boundary of the regionΩ.

Generally speaking, the operator 𝐴 can be decomposed
into linear part 𝐿 and nonlinear part 𝑁. Equation (2)
therefore can be written as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

Nowwe set up homotopymapping𝐻(𝑢, 𝑝) : Ω×[0, 1] → 𝑅,
which satisfies

𝐻(𝑢, 𝑝) = 𝐿 (𝑢) − 𝐿 (V) + 𝑝 (𝐿 (V) + 𝑁 (𝑢) − 𝑓 (𝑟)) , (4)

where 𝑝 is parameter, V is auxiliary function, and 𝐿(V) +
𝑁(V) = 0.
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By (4), we obtain

𝐻(𝑢, 0) = 𝐿 (𝑢) − 𝐿 (V) ,

𝐻 (𝑢, 1) = 𝐴 (𝑢) − 𝑓 (𝑟) = 0.

(5)

As can be seen from 0 to 1 of 𝑝 is the process of 𝐿(𝑢)−𝐿(V)
to 𝐴(𝑢) − 𝑓(𝑟) of𝐻(𝑢, 𝑝); this is the homotopy deformation.

Assume that the solution of𝐻(𝑢, 𝑝) = 0 can be written as
a power series in 𝑝:

�̃� (𝑥, 𝑡, 𝑝) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) 𝑝

𝑖

= 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2

𝑢
2
+ ⋅ ⋅ ⋅ . (6)

So when 𝑝 = 0, �̃�(𝑥, 𝑡, 0) = 𝑢
0
(𝑥, 𝑡) is the solution of 𝐿(𝑢) −

𝐿(V) = 0; when 𝑝 → 1, the approximate solution of 𝐴(𝑢) −
𝑓(𝑟) = 0 is 𝑢(𝑥, 𝑡) = 𝑢

0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ .

3. Application

In this section, we focus on the variable coefficient KdV-
Burgers equation

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝛼 (𝑡) 𝑢

𝑥𝑥
+ 𝛽 (𝑡) 𝑢

𝑥𝑥𝑥
= 0, (7)

where 𝛼(𝑡) and 𝛽(𝑡) are any function about 𝑡.
It is fascinating to observe that, when 𝛼(𝑡) and 𝛽(𝑡) are

constant, (7) becomes the well-known KdV-Burgers equa-
tion; the equation plays an important role in studying liquid
with bubbles inside, the flow of liquid in elastic tubes, and
the problems of turbulence [18–20]. When 𝛼(𝑡) is constant,
𝛽(𝑡) = 0, (7) becomes the well-known Burgers equation.
When 𝛽(𝑡) is constant, 𝛼(𝑡) = 0, (7) becomes the well-known
KdV equation. When 𝛽(𝑡) = 𝛽 is constant, (7) becomes

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝛼 (𝑡) 𝑢

𝑥𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

= 0. (8)

Next, we applied the homotopy analysis method to study
the approximate solution of (8).

In order to get the solution of (8), we lead in homotopy
mapping.

To aim at (8), we set up homotopy mapping𝐻(𝑢, 𝑝) : 𝑅×

𝐼 → 𝑅,

𝐻(𝑢, 𝑝) = 𝐿 (𝑢) − 𝐿 (V) + 𝑝 (𝐿 (V) + 𝑢𝑢
𝑥
+ 𝛼 (𝑡) 𝑢

𝑥𝑥
) ,

(9)

where 𝑅 = (−∞, +∞), 𝐼 = [0, 1], V is the auxiliary function,
and the linear operator 𝐿 is expressed as 𝐿(𝑢) = 𝑢

𝑡
+ 𝛽𝑢
𝑥𝑥𝑥

.
By using the generalized elliptic method [21], we can get

that the typical KdV equation corresponding to (8),

V
𝑡
+ VV
𝑥
+ 𝛽V
𝑥𝑥𝑥

= 0 (10)

has the following elliptic function solution:

V
1
(𝑥, 𝑡) = 𝑐

0
− 𝛽

6𝑘
2

𝑚
2

𝑠𝑛 (𝜉,𝑚) + 12𝑘
2

(𝑚
2

− 1) 𝑐𝑛 (𝜉,𝑚)

𝑠𝑛 (𝜉,𝑚) + 𝑐𝑛 (𝜉,𝑚) + 𝑑𝑛 (𝜉,𝑚)

+𝛽
3𝑘
2

𝑚
4

𝑠𝑛
2

(𝜉, 𝑚) − 12𝑘
2

𝑐𝑛
2

(𝜉, 𝑚)

(𝑠𝑛 (𝜉,𝑚) + 𝑐𝑛 (𝜉,𝑚) + 𝑑𝑛 (𝜉,𝑚))
2
.

(11)

When 𝑚 → 1, V
1
(𝑥, 𝑡) degenerates to the following solitary

wave solution:

V
1.1

(𝑥, 𝑡) = 𝑐
0
− 𝛽

6𝑘
2 tanh 𝜉

tanh 𝜉 + sech𝜉 + sech𝜉

+𝛽
3𝑘
2tanh2𝜉 − 12𝑘

2sech2𝜉
(tanh 𝜉 + sech𝜉 + sech𝜉 )2

.

(12)

When 𝑚 → 0, V
1
(𝑥, 𝑡) degenerates to the trigonometric

function solution

V
1.2

(𝑥, 𝑡) = 𝑐
0
+

12𝑘
2

𝛽 cos 𝜉
sin 𝜉 + cos 𝜉 + 1

−
12𝑘
2

𝛽cos2𝜉
(sin 𝜉 + cos 𝜉 + 1)

2
,

(13)

where 𝜉 = 𝑘𝑥 + [−𝑐
0
𝑘 + 𝛽𝑘

3

(4𝑚
2

− 5)]𝑡 + 𝜉
0
, 𝑘, 𝑐
0
, and 𝜉

0
are

any constant,𝑚 is the module, and 0 ≤ 𝑚 ≤ 1.
One can easily prove that𝐻(𝑢, 1) = 0 and (8) is the same,

so the solution 𝑢(𝑥, 𝑡) of (8) is the solution of 𝐻(𝑢, 𝑝) = 0

when under the condition 𝑝 → 1.
Let

�̃� (𝑥, 𝑡, 𝑝) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) 𝑝

𝑖

= 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2

𝑢
2
+ ⋅ ⋅ ⋅ (14)

be the solution of𝐻(𝑢, 𝑝) = 0; by [22] we can know that this
series is uniformly convergent in the 𝑝 ∈ [0, 1].Thus, it yields
that

𝑢 =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) = 𝑢

0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ . (15)

In order to obtain the approximate solution of (8), we
substitute (14) into the equation 𝐻(𝑢, 𝑝) = 0. By taking the
auxiliary function V = V

1
(𝑥, 𝑡), and comparing the coefficients

of the same power of 𝑝, one can obtain that

𝑝
0

: 𝐿 (𝑢
0
) = 𝐿 (V) = 𝐿 (V

1
) , (16)

𝑝
1

: 𝐿 (𝑢
1
) = − 𝐿 (V

1
) − 𝑢
0
𝑢
0𝑥

− 𝛼 (𝑡) 𝑢
0𝑥𝑥

= −𝛼 (𝑡) 𝑢
0𝑥𝑥

,

(17)

𝑝
2

: 𝐿 (𝑢
2
) = − 𝑢

0
𝑢
1𝑥

− 𝑢
1
𝑢
0𝑥

− 𝛼 (𝑡) 𝑢
1𝑥𝑥

. (18)

From (16) we have

𝑢
0
(𝑥, 𝑡) = V

1
(𝑥, 𝑡) . (19)

By using the Fourier transform, one can obtain the
solution of (17) with the initial condition𝑢

1
|
𝑡=0

= 0 as follows:

𝑢
1
(𝑥, 𝑡) = −

1

2𝜋
∫

𝑡

0

∬

+∞

−∞

𝛼 (𝜏) V
1𝜉𝜉

× cos [−𝜆3𝛽 (𝑡 − 𝜏)

+ 𝜆 (𝑥 − 𝜉) ] 𝑑𝑥 𝑑𝜉 𝑑𝜏.

(20)
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Similarly, one also finds the solution of (18) with the initial
condition 𝑢

2
|
𝑡=0

= 0 as

𝑢
2
(𝑥, 𝑡) =

1

2𝜋
∫

𝑡

0

∫

+∞

−∞

(−V
1
𝑢
1𝜉
− 𝑢
1
V
1𝜉
− 𝛼 (𝑡) 𝑢

1𝜉𝜉
)

× ∫

+∞

−∞

cos [−𝜆3𝛽 (𝑡 − 𝜏)

+ 𝜆 (𝑥 − 𝜉) ] 𝑑𝑥 𝑑𝜉 𝑑𝜏.

(21)

From (11), (12), (13), (20), and (21) the two-degree approxi-
mate solution of (8) can be obtained as follows:

𝑢
∗

2
(𝑥, 𝑡)

= 𝑐
0
− 𝛽

6𝑘
2

𝑚
2

𝑠𝑛 (𝜉, 𝑚) + 12𝑘
2

(𝑚
2

− 1) 𝑐𝑛 (𝜉,𝑚)

𝑠𝑛 (𝜉,𝑚) + 𝑐𝑛 (𝜉,𝑚) + 𝑑𝑛 (𝜉,𝑚)

+ 𝛽
3𝑘
2

𝑚
4

𝑠𝑛
2

(𝜉, 𝑚) − 12𝑘
2

𝑐𝑛
2

(𝜉, 𝑚)

(𝑠𝑛 (𝜉, 𝑚) + 𝑐𝑛 (𝜉,𝑚) + 𝑑𝑛 (𝜉,𝑚))
2

+
1

2𝜋
∫

𝑡

0

∬

+∞

−∞

(−𝛼 (𝜏) V
1𝜉𝜉

− V
1
𝑢
1𝜉

−𝑢
1
V
1𝜉
− 𝛼 (𝜏) 𝑢

1𝜉𝜉
)

× cos [−𝜆3𝛽 (𝑡 − 𝜏)

+ 𝜆 (𝑥 − 𝜉) ] 𝑑𝑥 𝑑𝜉 𝑑𝜏,

(22)

where 𝜉 = 𝑘𝑥 + [−𝑐
0
𝑘 + 𝛽𝑘

3

(4𝑚
2

− 5)]𝑡 + 𝜉
0
, 𝑘, 𝑐
0
, and 𝜉

0
are

any constant,𝑚 is the module, and 0 ≤ 𝑚 ≤ 1. Consider

V
0
= 𝑐
0
− 𝛽

6𝑘
2

𝑚
2

𝑠𝑛 (𝜉,𝑚) + 12𝑘
2

(𝑚
2

− 1) 𝑐𝑛 (𝜉,𝑚)

𝑠𝑛 (𝜉, 𝑚) + 𝑐𝑛 (𝜉,𝑚) + 𝑑𝑛 (𝜉,𝑚)

+ 𝛽
3𝑘
2

𝑚
4

𝑠𝑛
2

(𝜉, 𝑚) − 12𝑘
2

𝑐𝑛
2

(𝜉, 𝑚)

(𝑠𝑛 (𝜉,𝑚) + 𝑐𝑛 (𝜉,𝑚) + 𝑑𝑛 (𝜉,𝑚))
2
,

𝑢
1
(𝑥, 𝑡)

= −
1

2𝜋
∫

𝑡

0

∬

+∞

−∞

𝛼 (𝜏) V
1𝜉𝜉

× cos [−𝜆3𝛽 (𝑡 − 𝜏)

+𝜆 (𝑥 − 𝜉) ] 𝑑𝑥 𝑑𝜉 𝑑𝜏.

(23)

When 𝑚 → 1 and 𝑚 → 0, 𝑢∗
2
(𝑥, 𝑡) degenerates to the

following approximate solutions:

𝑢
∗

2.1
(𝑥, 𝑡)

= 𝑐
0
−

6𝛽𝑘
2 tanh 𝜉

tanh 𝜉 + sech𝜉 + sech𝜉

+ 𝛽
3𝑘
2tanh2𝜉 − 12𝑘

2sech2𝜉
(tanh 𝜉 + sech𝜉 + sech𝜉 )2

−
1

2𝜋
∫

𝑡

0

∬

+∞

−∞

(𝛼 (𝜏) 𝑢
1𝜉𝜉

+ V
1
𝑢
1𝜉

+ 𝑢
1
V
1𝜉
+ 𝛼 (𝜏) 𝑢

1𝜉𝜉
)

× cos [−𝜆3𝛽 (𝑡 − 𝜏)

+ 𝜆 (𝑥 − 𝜉) ] 𝑑𝑥 𝑑𝜉 𝑑𝜏,

𝑢
∗

2.2
(𝑥, 𝑡)

= 𝑐
0
+ 𝛽

−6𝑘
2 sin 𝜉 + 12𝑘

2 cos 𝜉
sin 𝜉 + cos 𝜉 + 1

−
12𝑘
2

𝛽cos2𝜉
(sin 𝜉 + cos 𝜉 + 1)

2

−
1

2𝜋
∫

𝑡

0

∬

+∞

−∞

cos [−𝜆3𝛽 (𝑡 − 𝜏) + 𝜆 (𝑥 − 𝜉)]

× (𝛼 (𝜏) V
1𝜉
+ V
1
𝑢
1𝜉

+ 𝑢
1
V
1𝜉
+ 𝛼 (𝜏) 𝑢

1𝜉𝜉
) 𝑑𝑥 𝑑𝜉 𝑑𝜏.

(24)

By comparing the higher power coefficients of 𝑝, more
higher power approximate solutions of (8) can also be
obtained.

4. Conclusion

This work studies the variable coefficients KdV-Burgers
equations by using the homotopy analysis method, and
the two-degree approximate solution of the Jacobi elliptic
function form is obtained, which can degenerate to soli-
tary wave approximate solution and trigonometric function
approximate solution in the limit case. Our results show that
the homotopy analysis method is applicable to the variable
solution equations; how to apply this method to high-degree
and high-dimensional system remains to be further studied.
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