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A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The
pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of # pebbles on G allows one
pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. This paper determines the pebbling
numbers and the 2-pebbling property of the middle graph of fan graphs.

1. Introduction

Pebbling on graphs was first introduced by Chung [1].
Consider a connected graph with a fixed number of pebbles
distributed on its vertices. A pebbling move consists of the
removal of two pebbles from a vertex and the placement of
one of those pebbles on an adjacent vertex. The pebbling
number of a vertex v in a graph G is the smallest number
f(G,v) with the property that from every placement of
f(G, v) pebbles on G, it is possible to move a pebble to v by a
sequence of pebbling moves. The pebbling number of a graph
G, denoted by f(G), is the maximum of f(G, v) over all the
vertices of G.

In a graph G, if each vertex (except v) has at most one
pebble, then no pebble can be moved to v. Also, if u is of
distance d from v and at most 29 — 1 pebbles are placed on
u (and none elsewhere), then no pebble can be moved from u
to v. So it is clear that f(G) > max{|V(G)], 2P}, where [V(G)|
is the number of vertices of G and D is the diameter of G.

Throughout this paper, let G be a simple connected graph
with vertex set V(G) and edge set E(G). For a distribution of
pebbles on G, denote by p(H) and p(v) the number of pebbles
on a subgraph H of G and the number of pebbles on a vertex
v of G, respectively. In addition, denote by p(H) and p(v) the
number of pebbles on H and the number of pebbles on v after
a specified sequence of pebbling moves, respectively. For uv €

E(G), u 5 v refers to taking 2/ pebbles off u and placing m
pebbles on v. Denote by (v, v,, ..., v,) the path with vertices
V1> Vy,...,V, in order.

We now introduce some definitions and give some lem-
mas, which will be used in subsequent proofs.

Definition 1. A fan graph, denoted by F,, is a path P,_; plus
an extra vertex v, connected to all vertices of the path P,_,,

where P,_; = (v, V5, ..., V,_1).

Definition 2. The middle graph M(G) of a graph G is the
graph obtained from G by inserting a new vertex into every
edge of G and by joining by edges those pairs of these new
vertices which lie on adjacent edges of G.

Now one creates the middle graph of F,. Edges

ViV VaVas oo s Viayney Of F, are the inserted new
vertices Uy, Uys, .- > Uy n-1) 1D the sequence, and edges
VoV VoVas - - -» VoV, Of F, are the inserted new vertices
Ugps Ugys -+ - » Ug(u1)> TSpectively. By joining by edges those

pairs of these inserted vertices which lie on adjacent edges of
F,, this obtains the middle graph of F, (see Figure 1).

Definition 3. A transmitting subgraph is a path
(Vg> 15 ..> ) such that there are at least two pebbles
on v,, and after a sequence of pebbling moves, one can
transmit a pebble from v, to v;.

Lemma 4 (see [2]). Let P,y = (vp, Vy5---

,Vk>~ If

po) +2p(v) -+ 27p (v) + -+ 2 p (v ) 2 25,
)

then Py, is a transmitting subgraph.


http://dx.doi.org/10.1155/2014/304514

U, &)

v, v, v U Uss U3
Upy s U3
————————— >
Vo Vo
Fy M(F,)

FIGURE 1: M(F,).

Definition 5. The t-pebbling number, f,(G), of a connected
graph, G, is the smallest positive integer such that from every
placement of f,(G) pebbles, t pebbles can be moved to a
specified target vertex by a sequence of pebbling moves.

Lemma 6 (see [3]). IfK,, is the complete graph withn (n > 2)
vertices, then f,(K,) =2t +n—2.

Lemma 7 (see [4]). Consider f(M(P,)) =2" +n-2.

Chung found the pebbling numbers of the n-cube Q", the
complete graph K,,, and the path P, (see [1]). The pebbling
number of C,, was determined in [5]. In [6, 7], Ye et al. gave
the number of squares of cycles. Feng and Kim proved that
f(FE,) = nand f(W,) = n (see [8]). Liu et al. determined the
pebbling numbers of middle graphs of P,, K,,,and K, ,, ; (see
[4]). In [9], Ye et al. proved that f(M(C,,)) = 2" 4o —
2 (n = 2)and f(M(Cy,,,)) = [2""*/3] + 2n, where M(C,)
denotes the middle graph of C,. Motivated by these works,
we will determine the value of the pebbling number and the
2-property of middle graphs of F,,.

2. Pebbling Numbers of M(F,)

In this section, we study the pebbling number of
M(F,). Let § = {vo, Ug1> Ugps - - - Ug—py}, and  let
A = {v,up vy Uyss..., v, 1} Obviously, the subgraph
induced by S is a complete graph with # vertices. For n = 3,
M(F;) = M(C;). Hence we have the following theorem.

Theorem 8 (see [9]). Consider f(M(F;)) =7.

Lemma9. Let f(M(F,_,)) = p. If p + 3 pebbles are placed on
M(F,), then one pebble can be moved to any specified vertex of
S by a sequence of pebbling moves.

Proof. Letvbe our target vertex, and let p(v) = 0, wherev € S.
We may assume that v # u,; (after relabeling if necessary).
Let B = {v,,uy,,uy}. If p(B) = 5, then p(uy) > 2 by
Lemma 6, and we can move one pebble to v. If p(B) = 4, then

B Uy, We delete v, u,,, and u,, to obtain the subgraph
M(F,_,) with p pebbles, thus we can move one pebble to
v. If p(B) < 3, then we delete v,u,,, and u;, to obtain
the subgraph M(F,_,) with at least p pebbles and we are
done. O

Theorem 10. Consider f(M(F,)) = 11.
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Proof. We place 7 pebbles on v, and one pebble on each vertex
of the set {v,, uy,, v,}, other vertices have no pebble, then no
pebble can be moved to v,. So p(M(F,)) > 11. We now
place 11 pebbles on M(F,). We assume that v is our target
vertex and p(v) = 0. Recall S = {v,, uy;, Uy, tps} and A =
V1> g, v U3, 3}

(1) Consider v € S. By Theorem 8 and Lemma 9, we can
move one pebble to v.

(2) Consider v = v, (or v = v;). Let A = A — {»}, let
A, ={u,, v}, andlet A; = A, - A, If p(S) = t, then
p(A,) = 11 — t. Thus we can move at least [ (8 — t)/2]
pebbles from A, to S so that p(S) = [(8 +1)/2] > 6
for t > 4. By Lemma 6, p(uy;) = 2 and we can move
one pebble to v;. Ift < 2, then p(A) > 9. By Lemma 7,
we can move one pebble to v,. If ¢ = 3, then at least
one of u,, and uy; can obtain one pebble from every
placement of 3 pebbles on S by a sequence of pebbling

moves. If p(A;) > 7, then A, 3 Ups. SO (Uys, Ugy> V1)
is a transmitting subgraph. If 4 < p(A;) < 6,then 2 <
p(A,) < 4. By Lemma 6, p(u,;) > 2 and p(u;,) > 1.
So (uy3, Uy,, vy ) is a transmitting subgraph. If p(A;) <
3, then p(A,) = 5. So (v,,u;,, v;) is a transmitting
subgraph.

(3) Consider v = v,. If p(S) > 4 or p(S) < 2, then we are
done with (2). If p(S) = 3, then p(v,) + p(u,,) = 4 or
Ppuys) + p(v3) = 4. So (vy, Uy, v,) OF (V3,1Uy3,1,) isa
transmitting subgraph.

(4) Consider v = uy, (or v = uy). If p(S) > 4 or
p(S) < 2, then we are done with (2). If p(S) = 3, then
p(vy) + p(vy) + puys) + p(vs) = 8. Obviously, we are
done if p(v;) > 2 or p(v,) > 2. Next suppose that
p(vy) < 1and p(v,) < 1. Thus p(u,;) + p(v;) = 6. So
(V3, Uy3, Uy,) is a transmitting subgraph.

O
Theorem 11. Consider f(M(F,)) =3n—-1 (n > 4).

Proof. We place 7 pebbles on v,_; and one pebble on each
vertex of M(F,) except vy,ugy;, Uy Uy o)n-1)> Yon-1)> a0d
v,_1. In this configuration of pebbles, we cannot move one
pebble to v;. So f(M(F,)) = 3n—1. Next, let us use induction
onntoshowthat f(M(F,)) = 3n—1.Forn = 4, our theorem is
true by Theorem 10. Suppose that f(M(Fy)) = 3k—1ifk < n.
Now 3n — 1 pebbles are placed arbitrarily on the vertices of
M(F,). Suppose that v is our target vertex and p(v) = 0.

(1) Consider v € S. By induction and Theorem 8, we can
move one pebble to v.

(2) Consider v = v, (or v = v,_;). Obviously, p(uy,) < 1.
Otherwise, p(uy;) > 1. v; can obtain one pebble. Let B; =
{Uigi1)> o1y Vier} 1 Si<n—2).

If p(B,_,) < 3, then we delete B, _, to obtain the subgraph
M(F,_,) with at least 3(n—1)—1 pebbles. By induction, we can

move one pebble to v,. If p(B,_,) = 4, then B, _, &R Up(n-2)-
Thus we delete B,_, to obtain the subgraph M(F,_,) with
3(n— 1) — 1 pebbles. By induction, we are done.
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Next, suppose that p(B,_,) > 5. By Lemma 6, p(u(,_1)) =
2. If p(ug) = 1, then (ugy,_yy, gy, v;) is a transmitting

subgraph. If p(v,) > 2, then v, 5 uy;> and we are done. If

there exists some B; with p(B;) > 5 (i # n—2), then B; 5 Up1>
and we are done. Thus we assume that p(uy,) = 0, p(v,) < 1,
and p(B;) <4forl<i<n-3.

Now, we consider B; (1 < i < n — 3). Clearly, if p(B,) =
4, then we are done. Suppose that there exists some B; with
p(Bj) =4 (j # 1). It is clear that if one of the three cases ((i)
p(uoj) >1 (uoj € Bj_l), (ii) p(Bj_l) > 3, and (iii) p(vj) >2
(v; € B;_;)) happens, then we can move one pebble to v. Thus
we assume that p(B;) =4 (2 <i <n-3), p(B,_;) < 2, puy,;) =
0, and p(v;) < 1.If there are r sets B; ,B; ,..., B; such that
p(B;) = 4forl < k < r, then p(B; ;) < 2 forl <k <r.
Let Ny = {ij,iy...,0 5, let N, = {iy — Li, — 1,...,i, — 1},
and let N; = {1,2,...,n -3} = N, — N,. pr(Bj) = 2 for all
j € Nyand p(B) = 3forallk € Nj, then p(uj(,y) = 1
and p(uyx41)) = 1. Recall that p(B;) = 4 foralli € N; and
P(B,_,) = 5. Then p(u;;,)) = 1 and p(u,y)(n-1y) = 2. Thus
(U(n-2)(n-1)> Y(n-3)(n-2)> - - - » Y125 V1) 18 @ transmitting subgraph.
So there is at least some j in N, such that p(B;) < 1 or at
least some k in N; such that p(B;) < 2. If there are two j'
and j" in N, such that p(By) < 1and p(Bjy) < 1 or two
k' and k" in N, such that p(By) < 2 and p(Byr) < 2 or
some j in N, such that p(B;) < 1 and some k in Nj such that
p(By) < 2, then p(B,_,) > 9. By Lemma 6, p(uy(,_1)) = 4.
Hence (ug(,_1)» to;> v1) is @ transmitting subgraph.

Finally, there are two remaining cases, (i) there is only
some j in N, such that p(B;) < 1, and (ii) there is only
some k in Nj such that p(B,) < 2. So p(B,_,) = 8. If
PW-2)(n-1)) = 0, then (v,,_;, uy,-1), Upy» v;) 18 @ transmitting
subgraph. If p(t4(,_3)s-1)) # 0, then, in B,_», p(t4, 2)(s-1)) =
2 and p(ugy,-y)) = 2. For (i), we have p(u;;,p) = 1
for j +2 < i < n - 3. By the transmitting subgraph
(Un-2)(n-1) U(n-3)(n-2)> - - - > U(j1)(j+2))> P(Bj1) = 5 and we are
done. Suppose that (ii) holds. If p(B;) = 2, then we can move
one pebble from w4, 1) to 141y s0 that p(By) = 3, and we
are done. If p(By) < 1, then p(B,_,) > 9 and we are done.

(3) Consider v = uy, (or v = U, 2),-1))- Obviously,
puy;) < 1and p(v;) < 1 (i = 1,2). Otherwise, one pebble
can be moved to u,,. The proof is similar to (2).

(4) Consider v = v;(2 < i <n-2)(orv = uj(j+1)(2 <
j < mn-3))and p(v;) = 0. Let B = {v;,u;,, Uy}, and let
B = Voo 1> Y2y (n-1)> o1y} If p(B) < 3, then delete B to
obtain the subgraph M(F,_,) with atleast 3(n—1)—1 pebbles.
By induction, we can move one pebble to v. If p(B) = 4, then
we can move one pebble from B to u,y,, after deleting B to
obtain the subgraph M(F,_,) with 3(n— 1) — 1 pebbles. Hence
we assume that p(B) > 5. According to symmetry, p(B') > 5.
Therefore we are done. O

3. The 2-Pebbling Property of M(F,)

For a distribution of pebbles on G, let g be the number of
vertices with at least one pebble. We say a graph G satisfies
the 2-pebbling property if two pebbles can be moved to any
specified vertex when the total starting number of pebbles

is 2f(G) — q + 1. Next we will discuss the 2-pebbling
property of M(F,). For the convenience of statement, let S =
{x1,%5,...,x,},andlet A = {y}, ¥, ..., ¥5,_3}, where x; = v,
Xy = Uy os Xy = Uguo1ys Y1 = Vi and yy = Upy, o0y ¥y 3 =
v,_1. In this section let g = g, + q,, where g, and g, are
the number of vertices with at least one pebble in S and A,
respectively.

Lemma 12. Suppose that p(M(F,)) > 2(3n—1) —qand q,
2n-4.Ifp(S) =g, +t (t =0,1,2)and p(y,) =0 (1 < r
2n — 3), then one can move 2 pebbles to y,.

IN I

Proof. Let r = 2k — 1 (or r = 2k). Since q, = 2n — 4 and
p(S) = g, +t,s0 p(A) > 4n + 2 — 2q, — t. Without loss of
generality, there exists a positive integer j (j > r) such that
the corresponding vertex y; with p(y;) > 2 and p(y;) = 1 for

1
r+1 sisj—l."[husyji»y-_1 - -~-i>yr.Usingthe

remaining 4n + 2 — t — 2q, — (j — v + 1) pebbles on vertices
Y1 Yaroo s Yr10Vjp Vjslo o+ > Yap-3> WE Can move at least n +
[(5—-1)/2] — g, pebbles to S so that p(S) = n+ [(5+1)/2]. By
Lemma 6, p(x;,;) = 2. So we can move one additional pebble
from x;.,, to y, so that p(y,) = 2. O

Lemma 13. Suppose that p(M(F,)) = 2(3n—1) — g+ 1 and
Gu=2n-51fp(S) =g, +t (t=0,1) and p(y,) =0 (1 <r <
2n — 3), then one can move 2 pebbles to y,.

Proof. Letr = 2k—1 (orr = 2k). Since g, = 2n—5, we see that
there is only some vertex y; (i, # r) with p(y; ) = 0. Without
loss of generality, there exists a positive integer j (j > r)
such that the corresponding vertex y; with p(y;) > 2 and
p(y) < Lforr < i < jIfiy = 2ky —1(ky # K) or
iy ¢ {r+ 1,7 +2,...,j — 1}, then we can move one pebble
to y, by the transmitting subgraph (y;, y;_5,-..» Y1, ¥,) Or
(Vj» ¥j=1>Vj=3>++> Yrs1> ¥r)- Now using the remaining at least
4n + 4 -t — 2q, — (j — r + 1) pebbles on the set A; =
{yl,yz,...,yr_l,yj,yj,...,yZn_3}, we can move n + [(7 -
t)/2]—q, pebbles from the A to Sso that p(S) = n+[(7+t)/2].
By Lemma 6, p(x;,;) = 2 and we can move one additional
pebble from x;,, to y, so that p(y,) = 2.

Suppose thati, = 2k, (k, > k) andi, € {r+1,r+2,..., j-

1. If j =iy + 1, then y; 5 Yi,- Thus there must exist one
vertex y; (j' = j) with p(yy) = 2and p(y;) < lforr <i<
j'. Using the transmitting subgraph Djis Yjiase s Vee1s Vi)
or (¥jr, ¥ji—1> ¥j'-3> -+ +» Vr+1> Yy )» We can move one pebble to
,. Now, using the remaining 4n + 4 — t — 29, — (j' — r +
2) pebbles on the set {y;, y5,..., ¥,o1s ¥t Vis1s - > Vansb
we can move n + [(6 — t)/2] — q, pebbles from the set
V6 Y2 5 Vet ¥ Yirets -+ -5 Yans} to S so that p(S) > n +
[(6 +t)/2]. By Lemma 6, p(x;,;) = 2 and we are done. Next,
suppose that j > i, + 2.

(1) Consider p(y,;) = 1. We divide into three subcases.

(1.1) Consider p(xi,,) = 0. We delete vertices
V> Vrato+ > Yok Xks2 to Obtain the subgraph with two sets
A= A Dy yy} and S, = S - {xgu,)y and
p(Ay)) =4n+4-2gq,—t - 2k, —r—1)and p(S,) = g, + t.
Thus we can move n + [ (10 — t)/2] — g, pebbles from A, to



S, so that p(S;) =n+ [(10 +t)/2]. By Lemma 6, p(x,,) = 4
and we can move two pebbles from x;,; to y,.

(1.2) Consider p(x;,,) = 1. Suppose that j = 2k’ or j =
2K'+1 (K" > k). Let A; = {50, Yorr4, ). Obviously, p(A;) > 3.
If p(A;) > 5, then

2 1 1 1
A3 T X4 T X2 T Vel 7 Ve (2)

We delete y,, .15 > Yok, » Xk to Obtain the subgraph with
two sets A, and S;. So p(A,) = 4n—2q, —t — 2k, —r - 1)
and p(S;) = g, — 1 +t. We can move n + [(6 — 1)/2] — g,
pebbles from A, to S; so that p(S;) = n+ [(4 + t)/2]. By
Lemma 6, p(x;,;) = 2 and we are done. If p(A;) = 3,4 and
Pp(xpr4,) # 0, then

1 1 1 1
Az — Xy = Xy = Yep1 — Ve 3)

We delete y,, .15 > Yok, » Xis2 to Obtain the subgraph with
twosets A, and S,.So p(A,) = 4n+2-2q,—t—(2k,—r—1) and
p(S;) = g,—2+t. We can move n+| (8—t)/2] —q, pebbles from
A, to S, sothat p(S;) = n+|(4+t)/2]. By Lemma 6, p(x;,,) =
2 and we are done. If p(A;) = 3,4 and p(xp,,) = 0, then

1
Az = Xy Wedelete y,, y,i1s - Yok Yak's Yok +1 X 42 1O
obtain the subgraph with two sets A, = A, — A;and S, =

S — {xypr42}. So p(A,) = 4n —2q, —t — 2k, —r — 1) and
p(S,) =g, + 1 +t. We can move n + [(8 — t)/2] — g, pebbles
from A, to S, so that p(S,) = n+ [(10 +¢)/2]. By Lemma 6,
P(xy) =4

(1.3) Consider p(xy,,) = 2 fort = 1. Thus x;,, 5 Yok 5
Yy We delete y,, ¥,,15- .5 Yai,» Xpqp to oDtain the subgraph
with two sets A, and ;. So p(A,) = 4n+3-2¢q,— (2k,—r-1)
and p(S;) = g, — 1. n+ 4 — g, pebbles can be moved from A,
to S; so that p(S;) = n+ 3. By Lemma 6, p(x;,;) = 3. So we
can move one additional pebble from x;,, to y,.

(2) Consider p(y,,) = 0; that is, k = k,. We divide into
three subcases.

(2.1) Consider p(x,1,,) = 0. We delete ¥, ¥,.1> Vri2> Xokr2
to obtain the subgraph with two sets As = A—{y,, ¥,,1> V112}
and S;. One has p(A;) =4n+3 —2gq,—tand p(S,) =g, + 1.
We can move n + [(10 — t)/2] — g, pebbles from A; to S, so
that p(S;) = n+ [(10 + ¢)/2]. By Lemma 6, p(x;,,) = 4 and
we can move two pebbles from x;,, to y,.

(2.2) Consider p(xy,,) = 1. We have

1 1 1 1 1 (4)
Vi Yj-1 = T V2 7 X2 T Xper1

We delete vertices ¥,, Y415 ---> ¥j-1> Xk4, to oObtain the sub-
graph with two sets A; and S;. So p(A,) =4n+4-2gq,—t -
(j—r)and p(S;) = g, +t — 1 (except one moved pebble on
Xp41)- We can move n+ | (8 —t)/2] — g, pebbles from A to S;
so that p(S;) = n+ [(6 +t)/2] (except one moved pebble on
Xj41)- By Lemma 6, we can move 3 additional pebbles to x4
so that p(x;,,) = 4.

1

(2.3) p(x4,,) = 2 fort = 1. Thus x;, — X,,. Deleting
V> Vre> Vrsas Xicsn to obtain the subgraph with two sets A
and S;. One has p(A;) = 4n+2-2q,and p(S;) = g,—1 (except
one moved pebble on x;, ). We can move n + 4 — g, pebbles
from A, to S, so that p(S,) = n+ 3 (except one moved pebble
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on x;;). By Lemma 6, we can move 3 additional pebbles to
Xjy1 SO that p(x,,) = 4. O

Theorem 14. M(F,) has the 2-pebbling property.

Proof. Suppose that v is our target vertex. If p(v) = 1, then
the number of pebbles on M(F,) except one pebble on v is
2(3n-1)+1-gq—-1 (> 3n—1). By Theorem 11, we can move
one additional pebble to v so that p(v) = 2. Next we assume
that p(v) = 0.

(1) Consider v = x, (1 < r < n). If there exists some vertex

x; with p(x;) = 2 (i # r), then x; EN x,. Using the remaining
2(3n—-1)+1-q—-2 > 3n—1 pebbles, we can move one additional
pebble to x, so that p(x,) = 2.If p(x;) < 1 for 1 <i < n, then
p(A) =203n-1)-q+1-q,=6n-1-q,-2q, > 4n+2-2q,.
Thus we can move at least n + 2 — g, pebbles from A to S so
that p(S) = n + 2. By Lemma 6, we can move two pebbles to
X,.

(2) Consider v = y, (1 < r < 2n—-3). Letr = 2k -1
(or v = 2k). If p(x;,;) = 2, then we can put one pebble on
y,. After that, the remaining 2(3n - 1) - q+1-2 (> 3n-1)
pebbles on M(F,) suffice to put one additional pebble on y,
by Theorem 11. Next we assume p(x;,;) < L.

(2.1) Suppose that p(x;,;) = 1. If there is some vertex

x; with p(x;) > 2 (i # k + 1), then x; 5 X1 5 y,. The
remaining 2(3n—1)—gq+1-3 (> 3n—1) pebbles on M(F,) will
suffice to put one additional pebble on y, so that p(y,) = 2.
Next we assume that p(x;) < 1for 1 < i < n. Obviously,
p(S) =g, and p(A) = 2(3n-1)-q+1-q, = 6n—1-q,-2q,.If
q, < 2n—5,then p(A) > 4n+4-2q,. Thus we can move at least
n+5-q, pebbles from A to S so that p(S) = n+5. By Lemma 6,
we can move 3 additional pebbles to x;,, so that p(x;,,) = 4
and we are done. If g, = 2n — 4, then, by Lemma 12, we are
done.

(2.2) Suppose that p(x;,,) = 0. If we can find some vertex
x; with p(x;) > 4 or find two vertices x; with p(v;) > 2 and
xj with p(x ;1) > 2, then using 4 pebbles on x; or two pebbles
on x; and two pebbles on x; we can move one pebble to y,.
Then the remaining 2(3n—1) —q+1—-4 (> 3n—1) pebbles on
M(F,) will suffice to put one additional pebble to y, so that
p(y,) =2.

Consider only some vertex x; with 2 < p(x;) < 3. If
p(x;) = 3, then x; — x,.,,, p(S) = g, and p(A) = 2(3n - 1) -
qs—q,+1-(q,+2) =6n-3-2q,—q,. When g, < 2n-5and
p(A) > 4n + 2 — 2q,, we can move at least n + 4 — g, pebbles
from A to S so that p(S) > n + 4 except for one pebble on
Xj.1- By Lemma 6, we can put 3 additional pebbles on x4
so that p(x;,;) = 4. When g, = 2n — 4, we are done with

Lemma 12. If p(x;) = 2, then x; 5 Xpi1> P(S) = g, — 1, and
p(A)=2B3n-1)-qg,—q,+1-(g,+1) =6n-2-2q,—q,.
When g, < 2n -6 and p(A) > 4n + 4 — 2g,, we can move at
least n+5 — g, pebbles from A to S so that p(S) > n+4 except
for one pebble on x;, ;. By Lemma 6, we can put 3 additional
pebbles on x;,, so that p(x;,,) = 4. When g, = 2n — 4 and
4. = 2n -5, we are done with Lemmas 12 and 13.

Consider p(x;) < 1for1 < i < n. Obviously, p(S) =
g, and p(A) = 6n—-1-¢q, — 2q,. When g, < 2n -6
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and p(A) > 4n+5-2¢,, we can move at least n+6—g, pebbles
from A to S so that p(S) > n + 6. By Lemma 6, p(x;,) = 4
and we are done. When g, = 2n -4 and g, = 2n — 5, we are
done with Lemmas 12 and 13. O
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