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Stability of switching systems with an infinite number of subsystems is important in some structure of systems, like fuzzy systems,
neural networks, and so forth. Because of the relationship between stability of a set ofmatrices and switching systems, this paper first
studies the stability of a set of matrices, then and the results are applied for stability of switching systems. Some new conditions for
globally uniformly asymptotically stability (GUAS) of discrete-time switched linear systems with an infinite number of subsystems
are proposed. The paper considers some examples and simulation results.

1. Introduction

A switched system is a dynamical system that consists of
a finite or infinite number of subsystems and a logical
rule that orchestrates switching between these subsystems.
Mathematically, these subsystems are usually described by
a collection of indexed differential or difference equations.
One convenient way to classify switched systems is based on
the dynamics of their subsystems, for example, continuous-
time or discrete-time, linear or nonlinear, and so on [1]. In
the recent years, many researchers have investigated on the
stability of switching systems. Lin and Antsaklis proposed a
necessary and sufficient condition for asymptotic stabiliza-
tion of switched linear systems [1]. In [2] absolute asymptotic
stability of discrete linear inclusions in Banach (both finite
and infinite dimensional) space was studied and the relation
between absolute asymptotic stability, asymptotic stability,
uniform asymptotic stability, and uniform exponential stabil-
ity was established.

The concept of state-norm estimators for switched non-
linear systems under averaged well-time switching signals

was studied in [3]. Liberzon and Trenn showed that switching
between stable subsystemsmay lead to instability and that the
presence of algebraic constraints leads to a larger variety of
possible instability mechanisms [4].

Some new sufficient conditions for exponential stability
of switched linear systems under arbitrary switching were
proposed in [5]. Hien et al. considered the problem of
exponential stability and stabilization of switched linear time-
delay systems.They assumed system parameter uncertainties
are time varying and unknown but norm bounded [6].

A new sufficient condition that guarantees global
exponential stability of switched linear systems based on
Lyapunov-Metzler inequalities was proposed in [7]. A class of
uncertain impulsive systems with delayed input was studied
in [8]. It was shown that these systems can be transformed
into switched systems without time delay.

Hante and Sigalotti considered switched systems on
Banach and Hilbert spaces governed by strongly continuous
one-parameter semigroups of linear evolution operators.
They provided necessary and sufficient conditions for their
global exponential stability, uniform with respect to the
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switching signal, in terms of the existence of a Lyapunov
function common to all modes [9].

Du et al. proposed finite-time stability and stabilization
problems for switched linear systems. Firstly, they extended
the concept of finite-time stability to switched linear systems.
Then, a necessary and sufficient condition for finite-time
stability of switched linear systems was presented based on
the state transition matrix of the system [10]. Stability and
𝐿
2
gain properties for a class of switched systems which are

composed of normal discrete-time subsystems were studied
in [11]. It was shown that when all subsystems are Schur
stable, 𝑉(𝑥) = 𝑥

𝑇
𝑥 is a common quadratic Lyapunov

function for the subsystems and the switched normal system
is exponentially stable under arbitrary switching.

The exponential stability and stabilization problems of
a class of nonlinear impulsive switched systems with time-
varying disturbances were studied in [12], and some sufficient
conditions were obtained by using the switched Lyapunov
function method as algebraic inequality constraints and
linear matrix inequalities.

Santarelli studied switched state feedback control law
for the stabilization of LTI systems of arbitrary dimension
[13]. A unified approach to stability analysis for switched
linear descriptor systems under arbitrary switching in both
continuous-time and discrete-time domains was studied
in [14]. The proposed approach was based on common
quadratic Lyapunov functions incorporated with linear
matrix inequalities (LMIs). The boundedness and attractive-
ness of nonlinear switched delay systems whose subsystems
have different equilibria were studied in [15]. It was shown
that the nonlinear switched delay system is attractive and
obtained the attractive region. The authors of the paper
proposed threemethods for existence of a common quadratic
Lyapunov function for robust stability analysis of fuzzy Elman
neural network [16].

Since switched systems are used in many applications
such as robotics, integrated circuit design, manufacturing,
power electronics, switched-capacitor networks, chaos gen-
erators, and automated highway systems, some applications
for linear or nonlinear switched systems have been further
investigated, and many valuable results and simulations have
been obtained; see [17–20] and some references therein.

In [17], an optimal control problem with dynamics that
switch between several subsystems of nonlinear differential
equations was considered. It was shown that an approximate
solution for this optimal control problem can be computed
by solving a sequence of conventional dynamic optimization
problems.

An optimal control problem was considered in which
the control takes values from a discrete set, the state and
control are subject to continuous inequality constraints, and a
new computationalmethodwas proposed for solving optimal
discrete-valued control problems [18].

In [19] an approach with an existing hybrid power system
model was explained. The problem of choosing an operating
schedule to minimize generator, battery, and switching costs
was first posed as a mixed discrete dynamic optimization
problem. Some of the latest computational techniques for

generating optimal control laws for switched systems with
nonlinear dynamics and continuous inequality constraints
were reviewed in [20].

In [21, 22], some theorems for stability analysis of TSK
and linguistic fuzzy models were proposed by the authors.

In the recent years, there aremany articles about switched
systems and stability of them with a finite number of switch-
ing but there is no research about the stability of switched
systems when the number of subsystems is infinite. Since the
study of this class of switching systems is important in some
structure of systems, like fuzzy systems, and so forth, so in
this paper, stability analysis of discrete-time switched linear
systems with an infinite number of switching is investigated
and somenew conditions are proposed for globally uniformly
asymptotically stability (GUAS) of these systems.

The paper is organized as follows.
Section 2 introduces basic definitions and concepts. In

Section 3, we derive some conditions for convergence to
zero of infinite product of matrices. In Section 4, we extract
some new methods for stability analysis of linear switching
systemswith infinite number of subsystems andprovide some
illustrative examples. Section 5 gives conclusions.

2. Problem Statement

Consider a set Σ of matrices 𝐴
𝑖𝑘
and pick an initial point 𝑥

0
,

at 𝑡 = 0. A switched linear system is a dynamical system of
the type:

𝑥
𝑘+1

= 𝐴
𝑖𝑘
𝑥
𝑘
, 𝐴
𝑖𝑘
∈ Σ, 𝑖

𝑘
∈ 𝐼, 𝑘 ∈ Z

+
, (1)

where 𝐼 is an infinite index set, 𝑖
𝑘
is switching law, and the

state 𝑥 ∈ R𝑛 and 𝐴
𝑖𝑘
∈ R𝑛×𝑛 for all 𝑖

𝑘
∈ 𝐼 [23, 24].

This note means that, at every instant, the matrix 𝐴
𝑖𝑘

defined to evolve the system can be replaced by another one
from the set Σ.

The stability of a switching system when there is no
restriction on the switching signals is usually called stability
analysis under arbitrary switching. For this analysis, it is
necessary that all the subsystems are asymptotically stable.
However, even when all the subsystems of a switching system
are exponentially stable, it is still possible to construct a diver-
gent trajectory from any initial condition. So, in general, the
assumption of subsystems’ stability is not sufficient to ensure
stability of switching systems under arbitrary switching,
except for some special cases, such as pairwise commutative
systems and symmetric or normal systems (all subsystems).
Consequently, if there exists a common Lyapunov function
for all the subsystems, then the stability of the switching
system is guaranteed under arbitrary switching [23].

Definition 1. The linear switching system (1) is globally
uniformly asymptotically stable (GUAS) if for any initial
condition 𝑥

0
∈ R𝑛 and any switching law 𝑖

𝑘
[23, 25]:

lim
𝑘→∞

𝑥
𝑘
= 0, ∀ (𝑖

𝑘
) . (2)
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As this is supposed to hold for any initial vector 𝑥
0
, it is

equivalent to saying that all matrix products taken from Σ

converge to the zero matrix; that is,

lim
𝑘→∞

𝐴
𝑖𝑘
𝐴
𝑖𝑘−1
⋅ ⋅ ⋅ 𝐴
𝑖1
= 0, ∀ (𝑖

𝑘
) . (3)

The GUAS problem is closely related to determining
the joint spectral radius (JSR) of the set of matrices Σ =

{𝐴
1
, . . . , 𝐴

𝑛
}, denoted by 𝜌(Σ) [26].

The joint spectral radius characterizes the maximal
asymptotic growth rate of a point submitted to a switching
linear system in discrete time. On the other hand, it charac-
terizes the maximal asymptotic growth rate of the norms of
long products of matrices taken in as a set Σ. The stability of
the system is ensured when the growth rate is less than one
[25, 27].

Let ‖ ⋅ ‖ : R𝑛 → R
+
denote the Euclidean vector norm

and denote [27]

𝜌
𝑘
(Σ) = max {𝐴 𝑖1𝐴 𝑖2 ⋅ ⋅ ⋅ 𝐴 𝑖𝑘



1/𝑘

, 𝑖
𝑗
∈ {0, 1, . . . , 𝑛}} , (4)

and then the joint spectral radius is defined as

𝜌 (Σ) = lim
𝑘→∞

𝜌
𝑘
(Σ) . (5)

The switching system (1) is GUAS if and only if 𝜌(Σ) < 1
[26].

Some results show that computing or even approximating
the JSR is extremely hard [25]. Here it is proposed some
matrix structures for the subsystems in which the stability of
a switching system is guaranteed.

Consider the discrete-time switching linear system as
follows:

𝑥 (𝑘 + 1) = Σ
𝑘
𝑥 (𝑘) , 𝑘 = 1, 2, . . . , (6)

where Σ
𝑘
∈ Σ, Σ = {Σ

1
, Σ
2
, . . .}.

A switching dynamical system of the form (6) is stable
if for any initial condition 𝑥

0
∈ R𝑛 and any sequence of

matrices Σ𝑘 ≜ {Σ
1
Σ
2
⋅ ⋅ ⋅ Σ
𝑘
}, lim
𝑘→∞

𝑥(𝑘) = 0 [25].

Lemma 2. Let {𝐴
𝑘
}
𝑘∈𝑁

be a set of square matrices. If there
exists 𝛼 < 1 such that for all 𝑘 ∈ 𝑁, ‖𝐴

𝑘
‖ ≤ 𝛼, then

lim
𝑘→∞

𝐴
𝑘
𝐴
𝑘−1

⋅ ⋅ ⋅ 𝐴
1
= 0. (7)

Proof. From the submultiplicity property of norms,

‖𝐴𝐵‖ ≤ ‖𝐴‖ ‖𝐵‖ (8)

the following equation is correct:
𝐴𝑘𝐴𝑘−1 ⋅ ⋅ ⋅ 𝐴1

 ≤
𝐴𝑘



𝐴𝑘−1
 ⋅ ⋅ ⋅

𝐴1
 . (9)

Since, for all 𝑘 ∈ N, ‖𝐴
𝑘
‖ ≤ 𝛼, therefore,

lim
𝑘→∞

𝐴𝑘


𝐴𝑘−1
 ⋅ ⋅ ⋅

𝐴1
 ≤ lim
𝑘→∞

𝛼
𝑘
→ 0. (10)

So,

lim
𝑘→∞

𝐴𝑘𝐴𝑘−1 ⋅ ⋅ ⋅ 𝐴1
 → 0, (11)

by continuity of the norms, it is extracted that

lim
𝑘→∞

𝐴
𝑘
𝐴
𝑘−1

⋅ ⋅ ⋅ 𝐴
1
→ 0. (12)

The next proof is based on the geometric series. It proves
the sufficient condition for invertibility ofmatrices.The space
of 𝑛 × 𝑛-matrices with real or complex numbers as elements
is considered.

Lemma 3. Let 𝐴 be a real or complex 𝑛 × 𝑛-matrix and let 𝐼
be the identity matrix. If ‖𝐼 − 𝐴‖ < 1, then 𝐴 is invertible.

Proof. Let 𝐵 = 𝐼 − 𝐴, 𝐴 ∈ M
𝑛×𝑛
(C), and ‖𝐵‖ = 𝛾 < 1.

Since ‖𝐵𝑛‖ ≤ ‖𝐵‖
𝑛
= 𝛾
𝑛, ∑∞
𝑛=0

‖𝐵
𝑛
‖ ≤ ∑

∞

𝑛=0
𝛾
𝑛
< ∞,

hence, 𝐶 = ∑∞
𝑛=0

𝐵
𝑛 converges inM

𝑛×𝑛
(C).

If 𝐶
𝑛
= 𝐼 + 𝐵 + 𝐵

2
+ ⋅ ⋅ ⋅ + 𝐵

𝑛, then

𝐶
𝑛
(𝐼 − 𝐵) = (𝐼 + 𝐵 + 𝐵

2
+ ⋅ ⋅ ⋅ + 𝐵

𝑛
)

− (𝐵 + 𝐵
2
+ ⋅ ⋅ ⋅ + 𝐵

𝑛+1
)

= 𝐼 − 𝐵
𝑛+1
,

(13)

whereas

𝐵
𝑛+1

≤ 𝛾
𝑛+1
, so 𝐵𝑛+1 → 0 as 𝑛 → ∞. (14)

As a result,

𝐶 (𝐼 − 𝐵) = lim𝐶
𝑛
(𝐼 − 𝐵) = 𝐼. (15)

Similarly, (𝐼 − 𝐵)𝐶 = 𝐼.
So (𝐼 − 𝐵) is invertible and (𝐼 − 𝐵)−1 = ∑∞

𝑛=0
𝐵
𝑛.

Finally, 𝐼 − 𝐵 = 𝐼 − (𝐼 − 𝐴) = 𝐴 (for more details see
[28]).

3. Infinite Product of Matrices

In this section some conditions are studied for convergence
to zero of infinite product of matrices.

Theorem4. Let𝐴
1
, 𝐴
2
, . . . be a sequence of 𝑛×𝑛matrices and

‖ ⋅ ‖ a matrix norm. If the sequence satisfies (1) and (2):

(1) ∑∞
𝑘=1
(‖𝐴
𝑘
‖
+
− 1) converges,

(2) ∑∞
𝑘=1
(1 − ‖𝐴

𝑘
‖
−
) diverges,

where ‖𝐴‖
+

= max{‖𝐴‖, 1}, ‖𝐴‖
−

= min{‖𝐴‖, 1}, and
𝐴
𝑖1
, 𝐴
𝑖2
, . . . is any rearrangement of the sequence, then

∏
∞

𝑘=1
𝐴
𝑖𝑘
= 0.

Thus, this sequence converges to 0, and so 𝐴
𝑖1
, 𝐴
𝑖2
𝐴
𝑖1
, . . .

converges to 0 [27].

Theorem 5. Let Σ be a compact matrix set as Σ = {Σ
1
, Σ
2
, . . .}.

Then every infinite product taken from Σ converges to 0 iff
𝜌(Σ) < 1, where 𝜌(Σ) is the joint spectral radius of a set of
matrices [27].

Corollary 6. LetΣ be a compactmatrix set.Then every infinite
product, taken fromΣ, converges to 0 iff there is a norm ‖⋅‖ such
that ‖𝐴‖ ≤ 𝛾, 𝛾 < 1, for all𝐴 ∈ Σ [27].
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Thenext theorem refers to a specific structure ofmatrices.
Consider the discrete-time switching linear system (6)

such that

Σ
𝑘
= [

𝐴
𝑘
𝐵
𝑘

0 𝐶
𝑘

] , (16)

where Σ
𝑘
∈ Σ, Σ = {Σ

1
, Σ
2
, . . .} and 𝑘 is an infinite index set,

𝑘 = 1, 2, . . .. [𝐴
𝑘
] ∈ 𝑅
𝑛1×𝑛2 , [𝐵

𝑘
] ∈ 𝑅
𝑛1×𝑛2 and [𝐶

𝑘
] ∈ 𝑅
𝑛2×𝑛2 ,

and the state 𝑥 ∈ R𝑛, Σ
𝑘
∈ R𝑛×𝑛.

Theorem 7. Let (Σ
𝑘
)
𝑘∈N be a sequence of Matrices of the

form (16) and let there exist two numbers 𝛼 and 𝛾 such
that 𝛾 < 1, 𝛼 < 1, and ‖𝐴

𝑖
‖ ≤ 𝛼, ‖𝐶

𝑖
‖ ≤ 𝛾 for

some matrix norm ‖ ⋅ ‖. The sequence 𝑃
𝑘
= Σ
1
Σ
2
⋅ ⋅ ⋅ Σ
𝑘

(infinite product of matrices) converges to zero if and only if
𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1 converges to zero.

Proof. To prove the sufficient condition, by construction 𝑃
𝑘

from Σ
𝑘
as follows:

𝑃
𝑘
= Σ
1
Σ
2
⋅ ⋅ ⋅ Σ
𝑘
, Σ
𝑘
∈ Σ, 𝑘 ∈ N,

𝑃
𝑘
= [

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘

𝑋
𝑘

0 𝐶
1
𝐶
2
⋅ ⋅ ⋅ 𝐶
𝑘

] ,

(17)

where

𝑋
𝑘
= 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
+ 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−2
𝐵
𝑘−1
𝐶
𝑘

+ 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−3
𝐵
𝑘−2
𝐶
𝑘−1
𝐶
𝑘
+ ⋅ ⋅ ⋅ .

(18)

By hypothesis of the theorem and Lemma 2, since ‖𝐴
𝑖
‖ ≤

𝛼 < 1, ‖𝐶
𝑖
‖ ≤ 𝛾 < 1, where 𝑖 ∈ N,

lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘
= lim
𝑘→∞

𝐶
1
𝐶
2
⋅ ⋅ ⋅ 𝐶
𝑘
= 0. (19)

Therefore lim
𝑘→∞

𝑃
𝑘
= 0 implies that lim

𝑘→∞
𝑋
𝑘
→ 0

and so

lim
𝑘→∞

𝑋
𝑘
− 𝑋
𝑘−1

= 0. (20)

By some calculations, between𝑋
𝑘
and𝑋

𝑘−1
, the following

relation is achieved:

𝑋
𝑘
= 𝑋
𝑘−1
𝐶
𝑘
+ 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
, (𝑘 ∈ N) . (21)

By subtraction𝑋
𝑘−1

, the above equation is

𝑋
𝑘
− 𝑋
𝑘−1

= 𝑋
𝑘−1
𝐶
𝑘
+ 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
− 𝑋
𝑘−1

= 𝑋
𝑘−1

(𝐶
𝑘
− 𝐼) + 𝐴

1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
.

(22)

According to Lemma 3 and because of ‖𝐶
𝑖
‖ ≤ 𝛾 < 1,

clearly, (𝐶
𝑘
− 𝐼) is invertible. Therefore,

(𝑋
𝑘
− 𝑋
𝑘−1
) (𝐶
𝑘
− 𝐼)
−1

= 𝑋
𝑘−1

+ 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐶
𝑘
− 𝐼)
−1

,

(𝑋
𝑘
− 𝑋
𝑘−1
) (𝐼 − 𝐶

𝑘
)
−1

= 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

− 𝑋
𝑘−1
.

(23)

From (20) and (23),

lim
𝑘→∞

𝑋
𝑘
= lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

, (24)

and consequently

lim
𝑘→∞

𝑃
𝑘
= [

0 lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

0 0

] . (25)

Namely, by considering the assumed conditions of
the Theorem 7, 𝑃

𝑘
converges to zero if 𝐴

1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1

𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1 converges to zero.

To prove the necessary condition of the theorem, it
must be verified that if lim

𝑘→∞
𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

converges to zero, then lim
𝑘→∞

𝑃
𝑘
= 0.

To prove this, first it must be proved that

lim
𝑘→∞

𝑋𝑘
 = lim
𝑘→∞


𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

. (26)

By defining 𝐷
𝑘
as the difference between 𝑋

𝑘
in (18) and

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1,

𝐷
𝑘
= 𝑋
𝑘
− 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

; 𝑘 ∈ N (27)

and 𝑌
𝑘
as

𝑌
𝑘
= 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘
𝐵
𝑘+1
(𝐼 − 𝐶

𝑘+1
)
−1

− 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

.

(28)

From (27) and (28) it is obtained that

𝐷
𝑘+1

= 𝑋
𝑘+1

− 𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘
𝐵
𝑘+1
(𝐼 − 𝐶

𝑘+1
)
−1

= (𝐷
𝑘
− 𝑌
𝑘
) 𝐶
𝑘+1
.

(29)

So, ‖𝐷
𝑘+1
‖ ≤ (‖𝐷

𝑘
‖+‖𝑌
𝑘
‖)‖𝐶
𝑘+1
‖, such that ‖𝐶

𝑖
‖ ≤ 𝛾, and

therefore,
𝐷𝑘+1

 ≤ (
𝐷𝑘

 +
𝑌𝑘

) 𝛾,

𝐷𝑘
 ≤ (

𝐷𝑘−1
 +

𝑌𝑘−1
) 𝛾,

𝐷𝑘−𝑖
 ≤ (

𝐷𝑘−𝑖−1
 +

𝑌𝑘−𝑖−1
) 𝛾.

(30)

By repeating the above inequalities it is obtained that

𝐷𝑘
 ≤

𝐷𝑘−𝑖
 𝛾
𝑖
+
𝑌𝑘−𝑖

 𝛾
𝑖
+
𝑌𝑘−𝑖+1

 𝛾
𝑖−1
+ ⋅ ⋅ ⋅ +

𝑌𝑘−1
 𝛾
1
,

𝐷𝑘
 ≤

𝐷1
 𝛾
𝑘−1

+

𝑘−1

∑

𝑖=1

𝑌𝑘−𝑖
 𝛾
𝑖
, 𝑖 = 1, 2, . . . , 𝑘 − 1.

(31)

Therefore,

lim
𝑘→∞

𝐷𝑘
 ≤ lim
𝑘→∞

𝑘−1

∑

𝑖=1

𝑌𝑘−𝑖
 𝛾
𝑖
, 0 ≤ 𝛾 < 1, (32)

because of lim
𝑘→∞

‖𝐷
1
‖𝛾
𝑘−1

= 0.
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By considering 𝑆 = lim sup
𝑘→∞

‖𝐷
𝑘
‖ < ∞ and since

lim
𝑘→∞

‖𝑌
𝑘
‖ = 0, so sequence {‖𝑌

𝑘
‖}
∞

𝑘=1
is bounded; that is,

there exist 𝑀 > 0 such that for all 𝑘, ‖𝑌
𝑘
‖ ≤ 𝑀. Moreover

∑
𝑘−1

𝑖=1
‖𝑌
𝑘−𝑖
‖𝛾
𝑖
≤ 𝑀∑

𝑘−1

𝑖=1
𝛾
𝑖
≤ 𝑀𝛾/(1 − 𝛾) for all 𝑘.

Thus the sequence {∑𝑘−1
𝑖=1

‖𝑌
𝑘−𝑖
‖𝛾
𝑖
}
∞

𝑘=1
is bounded. So there

exist 𝑆 ∈ R such that lim sup
𝑘→∞

∑
𝑘−1

𝑖=1
‖𝑌
𝑘−𝑖
‖𝛾
𝑖
= 𝑆.

Now, let

𝑆
𝑘+1

=

𝑘

∑

𝑖=1

𝑌𝑘+1−𝑖
 𝛾
𝑖
=
𝑌𝑘

 𝛾 +

𝑘

∑

𝑖=2

𝑌𝑘+1−𝑖
 𝛾
𝑖

=
𝑌𝑘

 𝛾 + 𝛾

𝑘−1

∑

𝑖=1

𝑌𝑘−𝑖
 𝛾
𝑖
=
𝑌𝑘

 𝛾 + 𝛾𝑆𝑘.

(33)

In fact, we have 𝑆
𝑘+1

= ‖𝑌
𝑘
‖𝛾 + 𝛾𝑆

𝑘
. By taking the limit

superior of both sides of the above equation, it is obtained
that lim sup

𝑘→∞
𝑆
𝑘+1

= 𝛾 lim sup
𝑘→∞

𝑆
𝑘
, hence 𝑆 = 𝛾𝑆, and

since 𝛾 ̸= 1, then it implies that 𝑆 = 0.
The above equation means that lim

𝑘→∞
𝐷
𝑘
= 0 and from

(27),

lim
𝑘→∞

𝑋
𝑘
= lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

, 𝑘 ∈ N. (34)

So, if lim
𝑘→∞

‖𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1
‖ = 0, then

lim
𝑘→∞

‖𝑋
𝑘
‖ = 0, and also by hypothesis of Theorem 7 and

Lemma 2,

lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘
= lim
𝑘→∞

𝐶
1
𝐶
2
⋅ ⋅ ⋅ 𝐶
𝑘
= 0. (35)

Therefore,

lim
𝑘→∞

𝑃

𝑘

= 0. (36)

So it completes the proof.

4. Stability of Switching Linear Systems with
Infinite Number of Subsystems

The following conditions are extracted for stability of a
switching linear systemwhen it comprises an infinite number
of subsystems. They are reached from the conditions for
convergence to zero of infinite product of matrices.

Corollary 8. The switching linear system (6) is GUAS if the
following conditions are satisfied:

(1) ∑∞
𝑘=1
(‖Σ
𝑘
‖
+
− 1) converges,

(2) ∑∞
𝑘=1
(1 − ‖Σ

𝑘
‖
−
) diverges.

Proof. Thereby establishing these two conditions, from
Theorem 4, it is obtained that∏∞

𝑘=1
Σ
𝑖𝑘
= 0. FromCorollary 6,

Lemma 2, and byDefinition 1, ‖Σ
𝑘
‖ ≤ 𝛾, 𝛾 < 1, for all Σ

𝑘
∈ Σ.

Therefore, according to Theorem 5, 𝜌(Σ) < 1, and so the
system (6) is GUAS.

Corollary 9. Let (Σ
𝑘
)
𝑘∈N be a sequence of switching systems of

the form (16) with ‖𝐴
𝑖
‖ ≤ 𝛼 < 1, ‖𝐶

𝑖
‖ ≤ 𝛾 < 1. The discrete

−4 −3 −2 −1 0 1 2 3 4 5
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−3

−2
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1

2

3

4

x1

x2

Figure 1: Phase portrait of switching linear system with two
subsystems.

time switching linear system (6) with an infinite number of
switching system is GUAS under arbitrary switching if

lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1

= 0. (37)

Arbitrary switching refers to switching systems that there
are no restrictions on the discrete event dynamics.

Proof. By Definition 1 andTheorem 7, any infinite product of
this kind of switching linear system under these conditions
converges to 0. By definition of the joint spectral radius
mentioned in (5),

𝜌 (Σ) = lim
𝑘→∞

𝜌
𝑘
(Σ)

= limmax {𝐴 𝑖1𝐴 𝑖2 ⋅ ⋅ ⋅ 𝐴 𝑖𝑘


1/𝑘

: 𝑖
𝑗
∈ {0, 1, . . . , 𝑛}} ,

(38)

and because of ‖𝐴
𝑖
‖ ≤ 𝛼 < 1,



𝑘

∏

𝑗=1

𝐴
𝑖𝑗



1/𝑘

≤

𝑘

∏

𝑗=1


𝐴
𝑖𝑗



1/𝑘

≤ 𝛼
𝑘
< 1, ∀𝑘. (39)

Then,

𝜌
𝑘
(Σ) ≤ 𝛼 < 1 ⇒ lim

𝑘→∞

𝜌
𝑘
(Σ) ≤ 𝛼 < 1. (40)

So, 𝜌(Σ) < 1 and the switching linear system is GUAS.

Lemma 10. Consider the discrete-time switching linear system
(6) with matrix structure of the form (16) and 𝐵

𝑘
= 0. The

switching system is GUAS if and only if {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑘
, . . .},

{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
, . . .} are GUAS.
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(a) 𝑘 = 10
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(b) 𝑘 = 100
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(c) 𝑘 = 1000
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(d) 𝑘 = 2000

Figure 2: Phase portrait and switching surfaces with 10, 100, 1000, and 2000 subsystems.

Proof. Let {Σ
𝑘
} of the form [

𝐴𝑘 0

0 𝐶𝑘
] where [𝐴

𝑘
] ∈ 𝑅
𝑛1×𝑛1 and

[𝐶
𝑘
] ∈ 𝑅
𝑛2×𝑛2 .

Then,

𝑃
𝑘
= Σ
1
Σ
2
⋅ ⋅ ⋅ Σ
𝑘
= [

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘

0

0 𝐶
1
𝐶
2
⋅ ⋅ ⋅ 𝐶
𝑘

] , (41)

such that the state 𝑥 ∈ R𝑛, Σ
𝑘
∈ R𝑛×𝑛. So

lim
𝑘→∞

𝑃
𝑘
→ 0 if and only if,

lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘
→ 0, lim

𝑘→∞
𝐶
1
𝐶
2
⋅ ⋅ ⋅ 𝐶
𝑘
→

0.

In fact, the discrete-time switching linear system (6)
with 𝐵

𝑘
= 0 is GUAS if and only if {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑘
, . . .},

{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
, . . .} are GUAS.

Result 1. The discrete time switching linear system (6) with
an infinite number of switching systems of the form (16) is

GUAS under arbitrary switching if there exist two numbers 𝛼
and 𝛾 such that, ‖𝐴

𝑖
‖ ≤ 𝛼 < 1, ‖𝐶

𝑖
‖ ≤ 𝛾 < 1, and 𝐵

𝑖
≤ 𝛽 < ∞

is bounded.

Result 2. Because of 𝜌(⋅) ≤ ‖ ⋅ ‖, the discrete time switching
linear system (6) with an infinite number of switching
systemswith the form (16) is GUAS under arbitrary switching
if 𝜌(𝐴

𝑖
) < 1, 𝜌(𝐶

𝑖
) < 1.

Example 11. Consider switching linear system (6) with two
subsystems of the form (16) and let Σ be a set of triangular
block matrices with blocks on the diagonal:

Σ = {Σ
1
, Σ
2
} =

{

{

{

[

[

−.1 .3 5

−.5 .1 2

0 0 .8

]

]

,[

[

−.4 −.2 4

−.5 .3 5

0 0 .2

]

]

}

}

}

. (42)

So

Σ
𝑘
= [

𝐴
𝑘
𝐵
𝑘

0 𝐶
𝑘

] , 𝑘 = 1, 2. (43)
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Because of

𝐴1
 =



−.1 .3

−.5 .1



= 0.5414 < 1,

𝐴2
 =



−.4 −.2

−.5 .3



= 0.6531 < 1,

𝐶1
 = 0.8 < 1,

𝐶2
 = 0.2 < 1,

𝐵1
 =



5

2



< ∞,
𝐵2

 =



4

5



< ∞,

(44)

the switching linear system under arbitrary switching is
GUAS.

Figure 1 shows the simulation result of Example 11.

Example 12. Consider a discrete time switching linear system
of the form (16) that Σ = {Σ

1
, Σ
2
, . . .}, and

Σ
𝑘
=

[
[
[
[
[

[

1

3𝑘
cos (𝑘) 4

.5
1

4𝑘
3 sin (𝑘)

0 0
1

2𝑘

]
]
]
]
]

]

, 𝑘 = 1, 2, . . . . (45)

According to Result 2 of this paper, this switching system
with infinite number of subsystems is GUAS under arbitrary
switching because of

𝜌 (𝐴
𝑘
) = 𝜌(

[
[

[

1

3𝑘
cos (𝑘)

.5
1

4𝑘

]
]

]

) < 1,

𝜌 (
1

2𝑘
) < 1, for 𝑘 = 1, 2, . . . .

(46)

So lim
𝑘→∞

𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴
𝑘−1
𝐵
𝑘
(𝐼 − 𝐶

𝑘
)
−1
= 0 for all 𝑘 ∈ N.

Figure 2 shows some simulation results for 𝑘 = 10, 100, 1000,
and 2000 subsystems that switch in a switching system.

5. Conclusion

This paper proposed a new necessary and sufficient condition
for convergence to zero of infinite product of matrices.
Using the conditions to convergence to zero of matrices,
stability of switching linear system with an infinite number
of subsystems was investigated. Some sufficient conditions
were extracted for globally uniformly asymptotically stability
(GUAS) of the discrete time switching linear systems.
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