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The aim of this paper is to study the solvability for a coupled system of fractional integrodifferential equations with multipoint
fractional boundary value problems on the half-line. An example is given to demonstrate the validity of our assumptions.

1. Introduction

The theory of derivatives and integrals of fractional order
has undergone rapid development over the years and played
a very important role in modern applied mathematical
models of real processes arising in phenomena studied in
physics, mechanics, engineering, and so on [1–3]. Recently,
the existence of solutions for coupled systems involving
fractional differential equations is one of the theoretical fields
investigated by many authors [4–13].

Very recently, Wang et al. [10] studied the existence
of solutions for the following coupled system of nonlinear
fractional differential equations by using Schauder’s fixed
point theorem:

𝐷
𝑝
𝑢 (𝑡) + 𝑓 (𝑡, V (𝑡)) = 0, 2 < 𝑝 < 3, 𝑡 ∈ 𝐽 := [0,∞) ,

𝐷
𝑞V (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) = 0, 2 < 𝑞 < 3, 𝑡 ∈ 𝐽 := [0,∞) ,

𝑢 (0) = 𝑢
󸀠
(0) = 0, 𝐷

𝑝−1
𝑢 (∞) =

𝑚−2

∑

𝑖=1

𝛽𝑖𝑢 (𝜉𝑖) ,

V (0) = V󸀠 (0) = 0, 𝐷
𝑞−1V (∞) =

𝑚−2

∑

𝑖=1

𝛾𝑖V (𝜉𝑖) ,

(1)

where 𝑓, 𝑔 ∈ 𝐶(𝐽 × R,R), 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ < 𝜉𝑚−2 < ∞, and
𝐷
𝑝 and 𝐷

𝑞 denote Riemann-Liouville fractional derivatives

of order 𝑝 and order 𝑞, respectively; also 𝛽𝑖 > 0, 𝛾𝑖 > 0 are
such that 0 < ∑

𝑚−2

𝑖=1
𝛽𝑖𝜉
𝑝−1

𝑖
< Γ(𝑝) and 0 < ∑

𝑚−2

𝑖=1
𝛾𝑖𝜉
𝑞−1

𝑖
<

Γ(𝑞).
Motivated by [10], in this paper, we consider a coupled

system of nonlinear fractional integrodifferential equations
on an unbounded domain and more general boundary
conditions:

𝐷
𝛼
𝑢 (𝑡) + 𝑓 (𝑡, V (𝑡) , 𝐼𝛼V (𝑡)) = 0, 𝑡 ∈ 𝐽 = [0,∞) ,

𝐷
𝛽V (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡) , 𝐼

𝛽
𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐽 = [0,∞) ,

𝑢 (0) = 𝑢
󸀠
(0) = 0, V (0) = V󸀠 (0) = 0,

𝐷
𝛼−1

𝑢 (∞) =

𝑚−2

∑

𝑖=1

𝑎𝑖𝑢 (𝜉𝑖) +

𝑚−2

∑

𝑖=1

𝑏𝑖𝐷
𝛼−1

𝑢 (𝜉𝑖) ,

𝐷
𝛽−1V (∞) =

𝑚−2

∑

𝑖=1

𝑐𝑖V (𝜉𝑖) +
𝑚−2

∑

𝑖=1

𝑑𝑖𝐷
𝛽−1V (𝜉𝑖) ,

(2)

where 2 < 𝛼, 𝛽 ≤ 3, 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ < 𝜉𝑚−2 < ∞,
𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ≥ 0 are real numbers, 𝑓, 𝑔 ∈ 𝐶(𝐽 × R × R,R),
and 𝐷denotes Riemann-Liouville fractional derivative. It is
clear that boundary value problem (2) includes problem (1)
as special case.
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Integrodifferential equations have become important in
recent years as mathematical models of phenomena in both
the physical and social sciences. In particular, some physical
phenomena involving certain type of memory effects are
represented by integrodifferential equations [14–18].

However, to the best of our knowledge, no work has
been reported on the existence results for coupled system
of nonlinear fractional integrodifferential equations on an
unbounded domain.

The paper is organized as follows. In Section 2, we
recall some basic definitions, notations, and preliminary
facts. Section 3 is devoted to the existence results for system
of nonlinear fractional integrodifferential equations on an
unbounded domain. In Section 4, an example is given to
demonstrate the applicability of our results.

2. Preliminaries

In this section, we will first recall some basic definitions and
lemmas which are used in what follows and can be found in
[2, 19].

Definition 1. The Riemann-Liouville fractional integral of
order 𝛿 > 0 of a function 𝑓 : (0,∞) → R is given by

𝐼
𝛿
𝑓 (𝑡) =

1

Γ (𝛿)
∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑓 (𝑠) 𝑑𝑠, (3)

provided that the right-hand side is pointwise defined.

Definition 2. The Riemann-Liouville fractional derivative of
order 𝛿 > 0 of a continuous function 𝑓 : (0,∞) → R is
given by

𝐷
𝛿
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛿)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛿−1

𝑓 (𝑠) 𝑑𝑠, (4)

where 𝑛 = [𝛼] + 1, provided that the right-hand side is
pointwise defined.

Remark 3. The following properties are well known:

𝐷
𝛿
𝐼
𝛿
𝑓 (𝑡) = 𝑓 (𝑡) , 𝛿 > 0, 𝑓 (𝑡) ∈ 𝐿

1
(0,∞) ,

𝐷
𝛼
𝐼
𝛿
𝑓 (𝑡) = 𝐼

𝛿−𝛼
𝑓 (𝑡) , 𝛿 > 𝛼 > 0, 𝑓 (𝑡) ∈ 𝐿

1
(0,∞) ,

𝐷
𝛿
𝑡
𝜆
=

Γ (𝜆 + 1)

Γ (𝜆 − 𝛿 + 1)
𝑡
𝜆−𝛿

, 𝜆 > −1, 𝑡 > 0.

(5)

Lemma 4. For 𝛿 > 0, the equation 𝐷
𝛿
𝑢(𝑡) = 0 is valid if and

only if

𝑢 (𝑡) = 𝑐1𝑡
𝛿−1

+ 𝑐2𝑡
𝛿−2

+ ⋅ ⋅ ⋅ + 𝑐𝑛𝑡
𝛿−𝑛

,

𝑐𝑖 ∈ R, 𝑗 = 1, 2, . . . , 𝑛,

(6)

where 𝑛 is the smallest integer greater than or equal to 𝛿.

Lemma 5. Assume that𝐷𝛿𝑢(𝑡) ∈ 𝐿
1
(0,∞); then,

𝐼
𝛿
𝐷
𝛿
𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐1𝑡

𝛿−1
+ 𝑐2𝑡
𝛿−2

+ ⋅ ⋅ ⋅ + 𝑐𝑛𝑡
𝛿−𝑛

,

𝑐𝑖 ∈ R, 𝑗 = 1, 2, . . . , 𝑛,

(7)

where 𝑛 is the smallest integer greater than or equal to 𝛿.

For any 𝛿 > 1 we can define the space

𝑋𝛿 = {𝑢 ∈ 𝐶 [0,∞) : sup
𝑡∈𝐽

|𝑢 (𝑡)|

1 + 𝑡𝛿−1
< ∞} , (8)

equipped with the norm

‖𝑢‖𝛿 = sup
𝑡∈𝐽

|𝑢 (𝑡)|

1 + 𝑡𝛿−1
. (9)

Clearly, (𝑋𝛿, ‖𝑢‖𝛿) is a Banach space [19]. For (𝑢, V) ∈ 𝑋𝛼×𝑋𝛽

we define

‖(𝑢, V)‖𝛼,𝛽 = max {‖𝑢‖𝛼, ‖V‖𝛽} ; (10)

then, (𝑋𝛼 × 𝑋𝛽, ‖ ⋅ ‖𝛼,𝛽) is a Banach space.

3. Main Results

In this section, we prove the existence results for the bound-
ary value problem (2). For convenience we use the following
notation:

Δ 𝛼 = Γ (𝛼) −

𝑚−2

∑

𝑖=1

𝑎𝑖𝜉
𝛼−1

𝑖
− Γ (𝛼)

𝑚−2

∑

𝑖=1

𝑏𝑖. (11)

By replacing 𝛼, 𝑎𝑖, 𝑏𝑖 with 𝛽, 𝑐𝑖, 𝑑𝑖, respectively, we can define
Δ 𝛽.

Lemma 6. Let ℎ ∈ 𝐶[0,∞) and Δ 𝛼 > 0; then, the unique
solution of

𝐷
𝛼
𝑢 (𝑡) + ℎ (𝑡) = 0, 2 < 𝛼 < 3, 𝑡 ∈ 𝐽 = [0,∞) , (12)

𝑢 (0) = 𝑢
󸀠
(0) = 0, (13)

𝐷
𝛼−1

𝑢 (∞) =

𝑚−2

∑

𝑖=1

𝑎𝑖𝑢 (𝜉𝑖) +

𝑚−2

∑

𝑖=1

𝑏𝑖𝐷
𝛼−1

𝑢 (𝜉𝑖) (14)

is given by

𝑢 (𝑡) = ∫

∞

0

𝐺𝛼 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (15)

where 𝐺𝛼(𝑡, 𝑠) is Green’s function given by

𝐺𝛼 (𝑡, 𝑠) = 𝐾𝛼 (𝑡, 𝑠) +
𝑡
𝛼−1

Δ 𝛼

𝑚−2

∑

𝑖=1

𝑎𝑖𝐾𝛼 (𝜉𝑖, 𝑠)

+
𝑡
𝛼−1

Δ 𝛼

𝑚−2

∑

𝑖=1

𝑏𝑖𝐻(𝜉𝑖, 𝑠) ,

(16)

with

𝐾𝛼 (𝑡, 𝑠)

=
1

Γ (𝛼)
{
𝑡
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 < ∞,

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 < ∞,

(17)

𝐻(𝑡, 𝑠) = {
0, 0 ≤ 𝑠 ≤ 𝑡 < ∞,

1, 0 ≤ 𝑡 ≤ 𝑠 < ∞.
(18)



Abstract and Applied Analysis 3

Proof. By Lemma 5, the solution of (12) can be writen as

𝑢 (𝑡) = 𝑐1𝑡
𝛼−1

+ 𝑐2𝑡
𝛼−2

+ 𝑐3𝑡
𝛼−3

− 𝐼
𝛼
ℎ (𝑡) . (19)

Using the boundary conditions (13), we find that 𝑐2 = 𝑐3 = 0

and

𝐷
𝛼−1

𝑢 (𝑡) = 𝑐1Γ (𝛼) − 𝐼
1
ℎ (𝑡) . (20)

Now considering the second boundary condition, we have

𝑐1 =
1

Δ 𝛼

(∫

∞

0

ℎ (𝑠) 𝑑𝑠

−
∑
𝑚−2

𝑖=1
𝑎𝑖

Γ (𝛼)
∫

𝜉𝑖

0

(𝜉𝑖 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

−

𝑚−2

∑

𝑖=1

𝑏𝑖 ∫

𝜉𝑖

0

ℎ (𝑠) 𝑑𝑠) .

(21)

Therefore, the unique solution of the boundary value problem
(12)–(14) is

𝑢 (𝑡) =
𝑡
𝛼−1

Δ 𝛼

(∫

∞

0

ℎ (𝑠) 𝑑𝑠

−
∑
𝑚−2

𝑖=1
𝑎𝑖

Γ (𝛼)
∫

𝜉𝑖

0

(𝜉𝑖 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

−

𝑚−2

∑

𝑖=1

𝑏𝑖 ∫

𝜉𝑖

0

ℎ (𝑠) 𝑑𝑠)

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

= ∫

∞

0

𝐾𝛼 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠

+
∑
𝑚−2

𝑖=1
𝑎𝑖𝑡
𝛼−1

Δ 𝛼

∫

∞

0

𝜉
𝛼−1

𝑖

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

+
Γ (𝛼)∑

𝑚−2

𝑖=1
𝑏𝑖𝑡
𝛼−1

Δ 𝛼

∫

∞

0

ℎ (𝑠)

Γ (𝛼)
𝑑𝑠

−
∑
𝑚−2

𝑖=1
𝑎𝑖𝑡
𝛼−1

Δ 𝛼

∫

𝜉𝑖

0

(𝜉𝑖 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

−
Γ (𝛼)∑

𝑚−2

𝑖=1
𝑏𝑖𝑡
𝛼−1

Δ 𝛼

∫

𝜉𝑖

0

ℎ (𝑠)

Γ (𝛼)
𝑑𝑠

= ∫

∞

0

𝐾𝛼 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠

+
∑
𝑚−2

𝑖=1
𝑎𝑖𝑡
𝛼−1

Δ 𝛼

∫

∞

0

𝐾𝛼 (𝜉𝑖, 𝑠) ℎ (𝑠) 𝑑𝑠

+
∑
𝑚−2

𝑖=1
𝑏𝑖𝑡
𝛼−1

Δ 𝛼

∫

∞

0

𝐻(𝜉𝑖, 𝑠) ℎ (𝑠) 𝑑𝑠

= ∫

∞

0

𝐺𝛼 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠,

(22)

where 𝐺𝛼(𝑡, 𝑠), 𝐾𝛼(𝑡, 𝑠), and 𝐻(𝑡, 𝑠) are defined by (16), (17),
and (18), respectively. The proof is complete.

Now, we introduce the following function:

𝐺𝛽 (𝑡, 𝑠) = 𝐾𝛽 (𝑡, 𝑠) +
𝑡
𝛽−1

Δ 𝛽

𝑚−2

∑

𝑖=1

𝑐𝑖𝐾𝛽 (𝜉𝑖, 𝑠)

+
𝑡
𝛽−1

Δ 𝛽

𝑚−2

∑

𝑖=1

𝑑𝑖𝐻(𝜉𝑖, 𝑠) ,

(23)

where

𝐾𝛽 (𝑡, 𝑠)

=
1

Γ (𝛽)
{
𝑡
𝛽−1

− (𝑡 − 𝑠)
𝛽−1

, 0 ≤ 𝑠 ≤ 𝑡 < ∞,

𝑡
𝛽−1

, 0 ≤ 𝑡 ≤ 𝑠 < ∞.

(24)

Remark 7. From the definition of𝐺𝛼(𝑡, 𝑠) and𝐺𝛽(𝑡, 𝑠), for any
(𝑠, 𝑡) ∈ [0,∞) × [0,∞), we have

𝐺𝛼 (𝑡, 𝑠)

1 + 𝑡𝛼−1
≤ 𝑄,

𝐺𝛽 (𝑡, 𝑠)

1 + 𝑡𝛽−1
≤ 𝑄, (25)

where

𝑄 = max{ 1

Γ (𝛼)
+
∑
𝑚−2

𝑖=1
𝑎𝑖𝜉
𝛼−1

𝑚−2

Γ (𝛼) Δ 𝛼

+
∑
𝑚−2

𝑖=1
𝑏𝑖

Δ 𝛼

,

1

Γ (𝛽)
+
∑
𝑚−2

𝑖=1
𝑐𝑖𝜉
𝛽−1

𝑚−2

Γ (𝛽) Δ 𝛽

+
∑
𝑚−2

𝑖=1
𝑑𝑖

Δ 𝛽

} .

(26)

Let an operator 𝑇 : 𝑋𝛼 × 𝑋𝛽 → 𝑋𝛼 × 𝑋𝛽 be defined by

𝑇 (𝑢, V) = (𝑇1 (V) , 𝑇2 (𝑢))

= (∫

∞

0

𝐺𝛼 (𝑡, 𝑠) 𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠)) 𝑑𝑠,

∫

∞

0

𝐺𝛽 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠) , 𝐼
𝛽
𝑢 (𝑠)) 𝑑𝑠) .

(27)

From the definition of operator 𝑇, the problem (2) has a
solution if and only if the operator 𝑇 has a fixed point.

Theorem 8. Assume the following.

(H1) There exist nonnegative functions 𝑎(𝑡), 𝑏(𝑡), 𝜙(𝑡) ∈

𝐶[0,∞) such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) |𝑥| + 𝑏 (𝑡)
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + 𝜙 (𝑡) ,

∫

∞

0

𝜙 (𝑡) 𝑑𝑡 < ∞, Δ 𝛼 > 0,
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∫

∞

0

(1 + 𝑡
𝛼−1

) 𝑎 (𝑡) 𝑑𝑡

+
1

Γ (𝛼)
∫

∞

0

[
𝑡
𝛼

𝛼
+ 𝐵 (𝛼, 𝛼) 𝑡

2𝛼−1
] 𝑏 (𝑡) 𝑑𝑡

<
1

𝑄
,

(28)

where 𝐵(𝛼, 𝛼) is the beta-function.
(H2) There exist nonnegative functions 𝑐(𝑡), 𝑑(𝑡), 𝜑(𝑡) ∈

𝐶[0,∞) such that
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑐 (𝑡) |𝑥| + 𝑑 (𝑡)
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + 𝜑 (𝑡) ,

∫

∞

0

𝜑 (𝑡) 𝑑𝑡 < ∞, Δ 𝛽 > 0,

∫

∞

0

(1 + 𝑡
𝛽−1

) 𝑐 (𝑡) 𝑑𝑡

+
1

Γ (𝛽)
∫

∞

0

[
𝑡
𝛽

𝛽
+ 𝐵 (𝛽, 𝛽) 𝑡

2𝛽−1
]𝑑 (𝑡) 𝑑𝑡

<
1

𝑄
,

(29)

where 𝐵(𝛽, 𝛽) is the beta-function.
Then, the system (2) has a solution.

Proof. Take

𝑅 > max{(𝑄∫

∞

0

𝜙 (𝑡) 𝑑𝑡)

× (1 − 𝑄∫

∞

0

(1 + 𝑡
𝛼−1

) 𝑎 (𝑡) 𝑑𝑡 −
𝑄

Γ (𝛼)

× ∫

∞

0

[
𝑡
𝛼

𝛼
+ 𝐵 (𝛼, 𝛼) 𝑡

2𝛼−1
] 𝑏(𝑡)𝑑𝑡)

−1

,

(𝑄∫

∞

0

𝜑 (𝑡) 𝑑𝑡)

× (1 − 𝑄∫

∞

0

(1 + 𝑡
𝛽−1

) 𝑐 (𝑡) 𝑑𝑡 −
𝑄

Γ (𝛽)

× ∫

∞

0

[
𝑡
𝛽

𝛽
+ 𝐵 (𝛽, 𝛽) 𝑡

2𝛽−1
]𝑑 (𝑡) 𝑑𝑡)

−1

} ,

(30)

and define a ball

𝐵𝑅 = {(𝑢, V) ∈ 𝑋𝛼 × 𝑋𝛽 : ‖(𝑢, V)‖𝛼,𝛽 ≤ 𝑅} . (31)

At the first step, we prove that the operator 𝑇 transforms the
ball 𝐵𝑅 into itself. For any (𝑢, V) ∈ 𝐵𝑅 we have
󵄩󵄩󵄩󵄩𝑇1 (V)

󵄩󵄩󵄩󵄩𝛼

= sup
𝑡∈𝐽

1

1 + 𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

∞

0

𝐺𝛼 (𝑡, 𝑠) 𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑡∈𝐽

1

1 + 𝑡𝛼−1

× ∫

∞

0

𝐺𝛼 (𝑡, 𝑠) [𝑎 (𝑠) |V (𝑠)| + 𝑏 (𝑠)
󵄨󵄨󵄨󵄨𝐼
𝛼V (𝑠)󵄨󵄨󵄨󵄨 + 𝜙 (𝑠)] 𝑑𝑠

≤ 𝑄∫

∞

0

𝑎 (𝑠) |V (𝑠)| 𝑑𝑠 +
𝑄

Γ (𝛼)

× ∫

∞

0

𝑏 (𝑠) [∫

𝑠

0

(𝑠 − 𝜏)
𝛼−1V (𝜏) 𝑑𝜏] 𝑑𝑠

+ 𝑄∫

∞

0

𝜙 (𝑠) 𝑑𝑠

≤ 𝑄‖V‖𝛼 ∫
∞

0

(1 + 𝑠
𝛼−1

) 𝑎 (𝑠) 𝑑𝑠

+
𝑄‖V‖𝛼
Γ (𝛼)

∫

∞

0

𝑏 (𝑠) [∫

𝑠

0

(1 + 𝜏
𝛼−1

) (𝑠 − 𝜏)
𝛼−1

𝑑𝜏] 𝑑𝑠

+ 𝑄∫

∞

0

𝜙 (𝑠) 𝑑𝑠

≤ 𝑄‖V‖𝛼 ∫
∞

0

(1 + 𝑠
𝛼−1

) 𝑎 (𝑠) 𝑑𝑠

+
𝑄‖V‖𝛼
Γ (𝛼)

∫

∞

0

𝑏 (𝑠) [𝑠
𝛼
∫

1

0

(1 − 𝜃)
𝛼−1

+ 𝑠
2𝛼−1

× ∫

1

0

𝜃
𝛼−1

(1 − 𝜃)
𝛼−1

𝑑𝜃] 𝑑𝑠

+ 𝑄∫

∞

0

𝜙 (𝑠) 𝑑𝑠

≤ 𝑄‖V‖𝛼 ∫
∞

0

(1 + 𝑠
𝛼−1

) 𝑎 (𝑠) 𝑑𝑠

+
𝑄‖V‖𝛼
Γ (𝛼)

∫

∞

0

𝑏 (𝑠) [
𝑠
𝛼

𝛼
+ 𝐵 (𝛼, 𝛼) 𝑠

2𝛼−1
] 𝑑𝑠

+ 𝑄∫

∞

0

𝜙 (𝑠) 𝑑𝑠 < 𝑅.

(32)

In a similar way, we can get

󵄩󵄩󵄩󵄩𝑇2 (𝑢)
󵄩󵄩󵄩󵄩𝛽

≤ 𝑄‖𝑢‖𝛽 ∫

∞

0

(1 + 𝑠
𝛽−1

) 𝑐 (𝑠) 𝑑𝑠

+

𝑄‖𝑢‖𝛽

Γ (𝛽)
∫

∞

0

𝑑 (𝑠) [
𝑠
𝛽

𝛽
+ 𝐵 (𝛽, 𝛽) 𝑠

2𝛽−1
]𝑑𝑠

+ 𝑄∫

∞

0

𝜑 (𝑡) 𝑑𝑠 < 𝑅.

(33)

Hence, ‖𝑇(𝑢, V)‖𝛼,𝛽 ≤ 𝑅 and this shows that 𝑇𝐵𝑅 ⊂ 𝐵𝑅.
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Next, we show that 𝑇 : 𝐵𝑅 → 𝐵𝑅 is completely
continuous. First, Let (𝑢𝑛, V𝑛) → (𝑢, V) as 𝑛 → ∞ in 𝐵𝑅.
From (32) we have

∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠 <
𝑅

𝑄
. (34)

Then, by the Lebsegue dominated convergence theorem and
continuity of 𝑓, we obtain

∫

∞

0

𝑓 (𝑠, V𝑛 (𝑠) , 𝐼
𝛼V𝑛 (𝑠)) 𝑑𝑠

󳨀→ ∫

∞

0

𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠)) 𝑑𝑠,
(35)

as 𝑛 → ∞. Therefore, by Remark 7, we have
󵄩󵄩󵄩󵄩𝑇1 (V𝑛) − 𝑇1 (V)

󵄩󵄩󵄩󵄩𝛼

≤ 𝑄

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

∞

0

𝑓 (𝑠, V𝑛 (𝑠) , 𝐼
𝛼V𝑛 (𝑠)) 𝑑𝑠

− ∫

∞

0

𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0,

(36)

as 𝑛 → ∞. Similar process can be repeated for 𝑇2; thus,
operator 𝑇 is continuous.

Now, we show that 𝑇 : 𝐵𝑅 → 𝐵𝑅 is equicontinuous
operator. Let 𝐿 > 0 and 𝑡1, 𝑡2 ∈ [𝐿,∞); without loss of
generality, we may assume that 𝑡1 < 𝑡2. Since 𝐾𝛼(𝜉𝑖, 𝑠) ≤

𝜉
𝛼−1

𝑚−2
/Γ(𝛼) and𝐻(𝜉𝑖, 𝑠) ≤ 1, for any 𝑠 > 0 and 𝑖 = 1, 2, . . . , 𝑚−

2, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇1 (𝑢) (𝑡2)

1 + 𝑡
𝛼−1
2

−
𝑇1 (𝑢) (𝑡1)

1 + 𝑡
𝛼−1
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝐺𝛼 (𝑡2, 𝑠)

1 + 𝑡
𝛼−1
2

−
𝐺𝛼 (𝑡1, 𝑠)

1 + 𝑡
𝛼−1
1

)

× 𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

≤ ∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝐾𝛼 (𝑡2, 𝑠)

1 + 𝑡
𝛼−1
2

−
𝐾𝛼 (𝑡1, 𝑠)

1 + 𝑡
𝛼−1
1

)

× 𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

+ [
∑
𝑚−2

𝑖=1
𝑎𝑖𝜉
𝛼−1

𝑚−2

Γ (𝛼) Δ 𝛼

+
∑
𝑚−2

𝑖=1
𝑏𝑖

Δ 𝛼

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝛼−1

2

1 + 𝑡
𝛼−1
2

−
𝑡
𝛼−1

1

1 + 𝑡
𝛼−1
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× ∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑠, V (𝑠) , 𝐼𝛼V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠.

(37)

In view of (37), by the similar process used in [20], we
can easily prove that operator 𝑇1 is equicontinuous. Similar
process can be repeated for 𝑇2; thus, 𝑇 is equicontinuous. On

the other hand, 𝑇𝐵𝑅 is uniformly bounded as 𝑇𝐵𝑅 ⊂ 𝐵𝑅.
Therefore, 𝑇 is completely continuous operator. Hence, by
Schauder fixed point theorem the boundary value problem
(2) has at least one solution in 𝐵𝑅.

4. An Example

Consider the following boundary value problem on un-
bounded domain:

𝐷
2.25

𝑢 (𝑡) =
cos 𝑡 sin (|V (𝑡)|)

(1 + 𝑡1.25) (10 + 𝑡)
2

+

󵄨󵄨󵄨󵄨󵄨
∫
∞

0
(𝑡 − 𝑠)

1.25
𝑒
−5𝑡V (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨

Γ (2.25) (𝑡2.25 + 0.248𝑡3.5)
+

𝑡
2
𝑒
−𝑡

1 + 𝑡2
,

𝐷
2.5V (𝑡) =

sin 𝑡 arctan (|𝑢 (𝑡)|)
(1 + 𝑡1.5) (8 + 𝑡)

2

+

󵄨󵄨󵄨󵄨󵄨
∫
∞

0
(𝑡 − 𝑠)

1.5
𝑒
−4𝑡

𝑢 (𝑠) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨

Γ (2.5) (𝑡2.5 + 0.183𝑡4)
+

𝑡
4
𝑒
−𝑡

1 + 𝑡4
,

𝑢 (0) = 𝑢
󸀠
(0) = 0, V (0) = V󸀠 (0) = 0,

𝐷
1.25

𝑢 (∞) =
1

2
𝑢 (

1

4
) +

1

4
𝑢 (1) +

1

10
𝐷
1.25

𝑢 (
1

4
)

+
3

10
𝐷
1.25

𝑢 (1) ,

𝐷
1.5V (∞) =

1

5
V (

1

4
) +

1

10
V (1) +

3

11
𝐷
1.5V (

1

4
)

+
1

7
𝐷
1.5V (1) .

(38)

Here 𝑡 ∈ [0,∞), 𝛼 = 2.25, 𝛽 = 2.5, 𝜉1 = 1/4, 𝜉2 = 1, 𝑎1 = 1/2,
𝑎2 = 1/4, 𝑏1 = 1/10, 𝑏2 = 3/10, 𝑐1 = 1/5, 𝑐2 = 1/10, 𝑑1 = 3/11,
and 𝑑2 = 1/7. We have

𝑓 (𝑡, 𝑥, 𝑦) =
cos 𝑡 sin (|𝑥|)

(1 + 𝑡1.25) (10 + 𝑡)
2

+
𝑒
−5𝑡 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

(𝑡2.25 + 0.248𝑡3.5)
+

𝑡
2
𝑒
−𝑡

1 + 𝑡2
,

𝑔 (𝑡, 𝑥, 𝑦) =
sin 𝑡 arctan (|𝑥|)
(1 + 𝑡1.5) (8 + 𝑡)

2

+
𝑒
−4𝑡 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

(𝑡2.5 + 0.183𝑡4)
+

𝑡
4
𝑒
−𝑡

1 + 𝑡4
.

(39)

For

𝑎 (𝑡) =
1

(1 + 𝑡1.25) (10 + 𝑡)
2
,

𝑏 (𝑡) =
𝑒
−5𝑡

(𝑡2.25 + 0.248𝑡3.5)
,
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𝜙 (𝑡) = 𝜑 (𝑡) = 𝑒
−𝑡
,

𝑐 (𝑡) =
1

(1 + 𝑡1.5) (8 + 𝑡)
2
,

𝑑 (𝑡) =
𝑒
−4𝑡

(𝑡2.5 + 0.183𝑡4)
,

(40)

by direct calculation we obtain Δ 𝛼 = 0.342, Δ 𝛽 = 0.645, 𝑄 =

3.98, and

∫

∞

0

(1 + 𝑡
1.25

) 𝑎 (𝑡) 𝑑𝑡 +
1

Γ (2.25)

× ∫

∞

0

[
𝑡
2.25

2.25
+ 𝐵 (2.25, 2.25) 𝑡3.5] 𝑏 (𝑡) 𝑑𝑡

= 0.17480 <
1

𝑄
= 0.25125,

∫

∞

0

(1 + 𝑡
1.5
) 𝑐 (𝑡) 𝑑𝑡 +

1

Γ (2.5)

× ∫

∞

0

[
𝑡
2.5

2.5
+ 𝐵 (2.5, 2.5) 𝑡4]𝑑 (𝑡) 𝑑𝑡

= 0.20000 < 1

𝑄
= 0.25125.

(41)

Thus all the conditions of Theorem 8 are satisfied and the
problem (38) has at least one solution.

5. Conclusion

In the current paper, we have studied the existence results for
a coupled system of nonlinear fractional integrodifferential
equations with m-point fractional boundary conditions on
an unbounded domain. The result obtained in this paper is
based on Schauder’s fixed point theorem. In order to show
the validity of the assumptions made in our result, we also
include an illustrative example.
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