Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 297127, 7 pages
http://dx.doi.org/10.1155/2014/297127

Research Article

TSMC: A Novel Approach for Live Virtual Machine Migration

Jiaxing Song, Weidong Liu, Feiran Yin, and Chao Gao

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Jiaxing Song; jxsong@tsinghua.edu.cn

Received 23 January 2014; Accepted 6 May 2014; Published 20 May 2014

Academic Editor: Young-Sik Jeong

Copyright © 2014 Jiaxing Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing attracted more and more attention in recent years, and virtualization technology is the key point for deploying
infrastructure services in cloud environment. It allows application isolation and facilitates server consolidation, load balancing,
fault management, and power saving. Live virtual machine migration can effectively relocate virtual resources and it has become
an important management method in clusters and data centers. Existing precopy live migration approach has to iteratively copy
redundant memory pages; another postcopy live migration approach would lead to a lot of page faults and application degradation.
In this paper, we present a novel approach called TSMC (three-stage memory copy) for live virtual machine migration. In TSMC,
memory pages only need to be transmitted twice at most and page fault just occurred in small part of dirty pages. We implement it
in Xen and compare it with Xen’s original precopy approach. The experimental results under various memory workloads show that
TSMC approach can significantly reduce the cumulative migration time and total pages transferred and achieve better network IO

performance in the same time.

1. Introduction

After the wave of pervasive computing and grid computing
[1-3], the conception of cloud computing was officially pro-
posed by Google. Since it appeared, cloud computing has a
huge impact on the entire IT industry. There are many hot
research areas in cloud computing. For example, resource
management [4, 5] becomes more important in cloud com-
puting. A lot of research works have been done worldwide
[6-9].

Virtualization technology has played a very vital role in
resource management of cloud computing and it develops
rapidly in recent years. The resources of a single physical
machine are divided into multiple isolated virtual resources
by using some virtualization softwares [10]. The isolated
virtual environment is called virtual machine (VM) [11]. It
can provide application isolation, server consolidation, better
multiplexing of data center resources, the ability to flexibly
remap physical resources, and so on [12].

Live migration is the key point of virtualization tech-
nologies. It allows VMs fast relocation in data center and
nonawareness of downtime. Lots of live migration techniques
have been brought up these years [13, 14]. Most of them
use precopy approach. It first transfers all memory pages

to the target VM and then copies pages which are dirtied
iteratively. However, great service degradation would happen
in precopy phase because migration daemon continually
consumes network bandwidth to transfer dirty pages in each
round. Another approach called postcopy is also introduced
into live migration of VMs. In this approach, all memory
pages are transferred only once during the whole migration
process and the baseline total migration time is achieved. But
the downtime is much higher than that of precopy due to the
latency of fetching pages from the source node before VM can
be resumed on the target.

In this paper, we present an optimized memory copy
approach for live virtual machine migration. We combine
the advantages of active pushing and on-demand copys; first
copy all memory pages to target and record dirty bitmap
in this phase (full memory copy stage), then suspend the
VM, transmit CPU state and dirty bitmap (dirty bitmap
copy stage), and finally resume the new VM and copy dirty
pages from source to target (dirty page copy stage). We
call it TSMC (three-stage memory copy). The main goal
of TSMC is to minimize total migration time and reduce
network traffic. Most of the memory pages need to be copied
once in full memory copy stage; only dirtied pages need to
be copied twice. Many approaches have been proposed to

http://dx.doi.org/10.1155/2014/297127

evaluate the performance of virtualization [15]. We chose to
implement this TSMC approach on Xen [16] and compared it
with original precopy method in Xen. The experiment results
under various memory workloads show that our approach
can significantly reduce the cumulative migration time and
total pages transferred.

This paper is organized as follows. In Section 2, we
describe related work. Then, in Section 3, we describe the
design and implementation of TSMC and we present the
experimental results in Section 4. Finally, we make a conclu-
sion in Section 5.

2. Related Work

Precopy [17] live virtual machine migration approach was
firstly proposed. In precopy approach, it first transfers all
memory pages and then copies pages just modified during
the last round iteratively, until writable working set (WWS)
becomes small or the preset number of iterations is reached.
Eventually, it suspends VM in source node and sends CPU
state and the remaining dirty pages in the last round to
the target, where the VM is restarted. There are many
virtualization platforms using this approach, such as Xen [16],
KVM [18], and VMware [19]. Precopy is the prevailing live
migration technique to perform live migration of VMs, but in
write-intensive workloads, memory pages will be repeatedly
dirtied and may have to be transmitted multiple times.

Postcopy [20] instead of precopy was proposed to solve
this problem and reduce total migration time. Postcopy
migration defers the memory transfer phase until after the
VM’s CPU state has already been transferred to the target
and resumed there. Postcopy ensures that each memory
page is transferred at most once, thus avoiding the duplicate
transmission overhead of precopy. But the downtime is much
higher than that of the precopy due to the latency of fetching
pages from the source node before VM can be resumed on
the target.

Jin et al. [21] proposed a new mechanism using adaptive
compression of migrated data; different compression algo-
rithms are chosen depending on characteristics of memory
pages. They first used memory compression to provide
fast VM migration and they also designed a zero-aware
characteristics-based compression (CBC) algorithm for live
migration. In the source node, data being transferred in each
round are first compressed by their algorithm. When arriving
on the target, compressed data are then decompressed. How-
ever, memory compression increases the system overhead.

To overcome the shortcomings of precopy and postcopy
approaches, many other live migration methods [22, 23] are
proposed, but almost all of them have their own limitations.

3. Design and Implementation

In this section, we introduce the phase of live migration and
describe the design of TSMC approach and its implementa-
tion on Xen. The performance of any live virtual machine
migration strategy could be gauged by the following metrics.

Journal of Applied Mathematics

Downtime. The time during which the migrating VMs are not
executed.

Readiness Time. The time between the start of migration and
the start of downtime.

Recover Time. The time between resuming the VMs execution
at the target and the end of migration.

Total Migration Time. The total time of all migration times
from start to finish.

Pages Transferred. The total amount of memory pages trans-
ferred, including duplicates, across all periods.

3.1. Memory Migration Phases. Efficient synchronization of
the memory state is the key issue of live virtual machine
migration. Memory transfer can be achieved by following
three phases [17].

Push. The source VM continues running while certain pages
are pushed across the network to the new destination. To
ensure consistency, pages modified during this process must
be resent.

Stop-and-Copy. The source VM is stopped, pages are copied
across to the destination VM, and then the new VM is started.

Pull. The new VM is executed and, if it accesses a page that
has not yet been copied, this page is faulted in “pulled” across
the network from the source VM.

Figure 1(a) shows precopy approach; it combines push
copying and stop-and-copy. Another approach called post-
copy in Figure 1(b) uses stop-and-copy and pull copying.

3.2. Design of TSMC. To solve the weaknesses of existing live
migration methods, we propose a new approach called three-
stage memory copy (TSMC) which combines three phases
of memory transfer. The entire memory synchronization is
divided into three stages. Figure 1(c) is the three-stage copy
timeline.

Full Memory Copy. Copy all memory pages from source VM
to destination when the source VM continues running and
record pages modified during this process.

Dirty Bitmap Copy. Suspend source VM, copy recorded dirty
bitmap to target node, and mark corresponding pages as dirty
in destination VM.

Dirty Pages Copy. Resume new VM and then active push or
copy dirty pages on demand from source VM to destination.

Compared with precopy, three-stage copy avoids iterative
copy of dirty pages; most of the memory pages are just copied
once and only dirtied pages in full memory copy stage need
to be copied twice. It significantly reduces pages transferred,
thus reducing the usage of network bandwidth. Meanwhile,
only dirty bitmap and CPU state need to be transferred in
suspend phase; downtime of VM is also shortened. Although

Journal of Applied Mathematics

Push memory Suspend Resume
[Iteration: 1 2 3| ... |N Dirty memory] Time
t I I :
! Total migration time i i
! > |
' Downtime “-
(@)
Suspend Resume
[Postcopy pull memory] Time
I
I , '.
v i Total migration time |
>
* " Downtime ' I
(b)
Suspend Resume
Full memory | Dirty bitmap | Dirty memory] Time

TTIARTTT

I

Toltal migration time |
[— :
' Downtime !

(c)

FIGURE I: Timeline for live migration approach.

Migration start

(1) Copy all memory pages to destination and record
pages modified during this process

!

(2) Suspend source VM

!

(3) Copy recorded dirty bitmap and CUP state to
destination

!

(4) Resume the new VM on destination

!

(5) Active push dirty pages from source VM to
destination

)

Fault pages in new VM?

6. Copy the fault pages to destination on demand

~L No

All the memory pages
transferred?

Migration end

F1GURE 2: Procedure of TSMC.

3
Read/write Machine <> Phys PT .
PTE/PGD \ XenLinux
PD Machine addr
Guest
pagetable | \pochine addr —,—,
Shadow T Xen
agetable PD
pag Machine addr
Machine addr
N
CR3 Hardware

FIGURE 3: Shadow page table.

it would be interrupted in dirty pages copy stage because of
page fault, but relative to full memory copy after resuming
new VM in postcopy approach, three-stage copy just transfers
dirtied pages after resuming, which significantly reduces the
page fault rate and avoids obvious application degradation;
also, it shortens the duration of the migration.

There are two methods used for transferring dirty page:
on-demand copy and active push. Once the VM is resumed
on the target, page faults would happen when memory access
dirtied page; it can be serviced by requesting the referenced
page over the network from the source node. However, page
faults in new VM are unpredictable; on-demand copy would
lead to longer resume time, so we combine it with active
push whose source host periodically pushes dirty pages to the
target in a preset time interval.

The procedure of TSMC is shown in Figure 2. In full
memory copy phase, the update of memory pages should be
recorded to dirty pages bitmap. Otherwise, memory changes
of applications during the process cannot be updated to
the new VM. Operating system (OS) on VM maintains
the mapping page table from VM’ linear addresses to OS’s
physical addresses, while VM monitor maintains translation
page table from VM’s physical addresses to physical host’s
physical addresses. VM monitor cannot monitor the memory
changes of VM directly due to the transparency demand.
So we utilize translation page table in virtualization tools to
monitor the update of pages. In dirty pages copy phase, the
page faults also need to be captured by VM monitor, which
also can be achieved in the same way.

On-demand copy is the easiest and the slowest way.
When the VM on destination resumes, the page faults will
be transferred to source VM via the network and request the
corresponding memory pages. Although on-demand copy
copies dirty pages only once, it lengthens recovery time
and degrades software performance. So it is unacceptable to
transfer memory pages using on-demand copy alone.

Active push can reduce recovery time efficiently. It also
reduces the long-time occupation of source VM’s resources.
After new VM resumes, active push pushes dirty pages from
source VM to destination in a preset interval. It avoids some
page faults on new VM. When page faults occur, we request

Total migration time

100 + : :

T 80 - S

£

TG0

S

s

Boaod ,

g

E 204 o :

© 1l

0 T T T)
128 256 512 1024
VM memory size (M)
B Precopy

Three-stage copy
(@)

160 -
140 +
120 +
100 A

Downtime (ms)

Journal of Applied Mathematics

Pages transferred

1400 -
& 1200
2
= 1000 +
&
5800 4
§ 600 - : : : : : :
¢ 400 : : : : :
o0
<
~ | m I |
0 T T T)
128 256 512 1024
VM memory size (M)
B Precopy
Three-stage copy
(b)
Downtime

80 - : : :

60 - : : :

40 - : : :

20 - : : :

0 . ; ; .
128 256 512

1024

VM memory size (M)

B Precopy
Three-stage copy

(0)

FIGURE 4: Comparison of total migration time, pages transferred, and downtime.

pages from source VM in the way of on-demand copy. The
performance will be improved greatly by combining on-
demand copy and active push.

Prepull was first brought up to predict the recent working
set of softwares and it was based on software’s running history.
In three-state copy, prepull is used to predict page faults in
new VM. When page faults occur, then the pages around
the missing page will probably be accessed, which leads to
another page fault. Prepull increases the memory transfer
window. When requesting pages from source VM, it transfers
the pages around along with the request pages. In this way,
less page faults will occur in the future.

3.3. Implementation on Xen. We implemented TSMC on Xen
4.1.4. The point of our approach is to capture and recode dirty
pages. Shadow page tables are used by Xen’s hypervisor to
keep track of the memory state of guest OS; it can be used
to capture dirty pages. Figure 3 shows the process of shadow
page table. Shadow page tables are a set of read-only page
tables for each VM maintained by the hypervisor that maps
the VM’s memory pages to the physical frames. Actually, it
is equivalent to a backup of the original page tables; any

updates in guest OS’s page table will notify Xen’s hypervisor
by Hypercall.

Because all page tables in guest OS are mapped to read-
only shadow page tables, any updates in page tables trigger
page faults which would be captured by Xen’s hypervisor. Xen
checks the PTE access right of the guest OS and sets PTE
in shadow page tables to writable if the guest OS is writable
to the PTE. Then we can record the updates in shadow page
tables into a dirty bitmap.

By this way, we will be able to capture the occurrence
of dirty pages and obtain a dirty page bitmap. Xen provides
an API function xc_shadow_control() to handle shadow
page tables. This feature can be turned on by calling xc_
shadow_control() and setting flag as XEN_DOMCTL.
SHADOW _OP_ENABLE_LOGDIRTY before live migration
and turned off by setting XEN_DOMCTL_SHADOW_OP_
OFF flag after migration finished.

4. Experiment Results

In this section, we present an evaluation of three-stage copy
on Xen 4.1.4 and compare it with Xen’s original precopy
approach.

Journal of Applied Mathematics

Total migration time

140

120
o 100
£
S804
2
B 60 :
5
g 40 + : : : : .
g

O 1 T T T 1

128 256 512 1024
VM memory size (M)
B Precopy

Three-stage copy

1000 -
800 -

600 -

Downtime (ms)

Pages transferred
2000 -

1500 -

1000 4 - oo
500 4 I
=N I |

128 256 512

VM memory size (M)

Pages transferred (MB)

1024

B Precopy
Three-stage copy

(b)

Downtime

400 . . .
0 T T T
128 256 512

1024

VM memory size (M)

B Precopy
Three-stage copy

(c)

FIGURE 5: Comparison of total migration time, pages transferred, and downtime.

We conduct our experiments on two identical server-
class machines, each with 2-way quad-core Xeon E5506
2.13 GHz CPUs and 32 GB DDR RAM, connected via a Giga-
bit Ethernet switch. All VM images are stored in a NFS server.
We use Ubuntu 12.04 (Linux version 3.5.0-23) as guest OS
and the privileged domain OS (domain 0). The host kernel
is the modified version of Xen 4.1.4. Both the VM in each
experiment and the domain 0 are configured to use two
VCPUs. Guest VM sizes range from 128 MB to 1024 MB. And
we use memtester [24] in virtual machine to generate high
memory usage.

Each experiment is repeated five times and every test
result comes from the arithmetic average of five values.
In migration process, we evaluate three primary metrics
discussed in Section 3: downtime, total migration time, and
page transferred.

4.1. Low Dirty Pages Rate. Figure 4(a) shows that three-stage
copy significantly reduces the total migration time for diverse
VM memory size compared with precopy. With memory
size increasing, the total migration time is reduced more. It
reduces total migration time by average of 36.2%. In clusters

or data centers, less total migration time of VMs would get
higher flexibility.

Figure 4(b) shows that three-stage copy approach also has
the advantage in pages transferred; this should be attributed
to less data transferred and lower network bandwidth needed.
Experimental results show that the three-stage copy reduces
pages transferred by average of 22%.

Evaluation in downtime Figure 4(c) shows that precopy
could get stable downtime and three-stage copy’s downtime
would increase along with the increase of memory size. Atlow
memory environment, three-stage copy needs less downtime
than precopy, but it needs more downtime in large memory
environment. It is due to the three-stage copy need to transfer
dirty bitmap in suspend phase that large memory size would
have more dirty pages. Nevertheless, the tradeoff between
total migration time and downtime may be acceptable.

4.2. High Dirty Pages Rate. Figure 5(a) shows that in the case
of high dirty pages rate the total migration time increases
obviously in precopy while three-stage copy still maintains
a shorter migration time. The three-stage copy reduces total
migration time by average of 44.1% compared with precopy.

Throughout changes in precopy

- 144
)
1
0
2
=
5
=
[s1s)
j=)
2
=
40 45 50 55 60
Time (s)

@

Throughout changes in three-stage copy

14,
3
1S
0
2
=
5
=
)
=)
2
=
10 15 20 25 30
Time (s)

()

FIGURE 6: Comparison of total migration time, pages transferred,
and downtime.

Figure 5(b) shows that three-stage copy approach still has
the advantage in pages transferred over the precopy in the
case of high dirty pages rate. As shown in the figure, it reduces
pages transferred by average of 35.7%, which has a better
optimization effect than in the case of low dirty pages rate.

Evaluation in Figure 5(c) shows that both precopy and
three-stage copy have a large increase in downtime. This
is because more dirty pages or dirty bitmap need to be
transferred in downtime. In this test, longer downtime is
needed in three-stage copy, but it still remains below 1 second
in the worst case.

4.3. Network 10. We focus on the network throughput in
the network IO test. As shown in Figure 5, the throughputs
of both precopy and three-stage copy stay stable over a
period of time and then suddenly drop and recover soon.
The time when throughputs suddenly drop is the stage when
the VMs down and copy pages. We can see that the duration
of throughputs volatility is shorter in the three-stage copy.
It means that throughput recovers faster from the bottom.
It is because three-stage copy speeds up the transmission by
the means of active push and prefetch pages after the VMs
resume. As shown in Figure 6, it costs about 3 seconds to
recover to normal throughput in precopy while only less than
1 second in three-stage copy.

5. Conclusions

This paper presents a three-stage memory copy (TSMC)
approach for live virtual machine migration. In TSMC
approach, the entire memory copy is divided into three stages:
full memory copy, dirty bitmap copy, and dirty pages copy.

Journal of Applied Mathematics

Most of the memory pages are just copied once; only dirtied
pages need to be copied twice. It can significantly reduce
the total pages transferred and cumulative migration time.
Furthermore, because the TSMC approach just transfers
dirty bitmap in stop phase of virtual machine, downtime is
also shortened. Experimental results show that the TSMC
approach could get better performance than Xens precopy.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] T. Ohkawara, A. Aikebaier, T. Enokido, and M. Takizawa, “Quo-
rums-based replication of multimedia objects in distributed
systems,” Human-Centric Computing and Information Sciences,
vol. 2, article 11, 2012.

S. Silas, K. Ezra, and E. B. Rajsingh, “A novel fault tolerant ser-
vice selection framework for pervasive computting,” Human-
Centric Computing and Information Sciences, vol. 2, article 5,
2012.

[3] B. Meroufel and G. Belalem, “Dynamic replication based on
availability and popularity in the presence of failures,” The
Journal of Information Processing Systems, vol. 8, no. 2, pp. 263-
278, 2012.

[4] N.Y.Yen andS. Y. E Kuo, “An intergrated approach for internet
resources mining and searching,” The KITCS/FTRA Journal of
Convergence, vol. 3, no. 3, pp. 37-44, 2012.

S

[5] E Xhafa, “Processing and analysing large log data files of a
virtual campus,” The KITCS/FTRA Journal of Convergence, vol.
3, no. 2, pp. 1-8, 2012.

[6] Y. Pan and J. Zhang, “Parallel programming on cloud com-
puting platforms—challenges and solutions,” The KITCS/FTRA
Journal of Convergence, vol. 3, no. 4, pp. 23-28, 2012.

[7] E.-H. Song, H.-W. Kim, and Y.-S. Jeong, “Visual monitoring
system of multi-hosts behavior for trustworthiness with mobile
cloud;” The Journal of Information Processing Systems, vol. 8, no.
2, pp. 347-358, 2012.

[8] B.J.Oommen, A. Yazidi,and O.-C. Granmo, “An adaptive work-
flow scheduling scheme based on an estimated data processing
rate for next generation sequencing in cloud computing,” The
Journal of Information Processing Systems, vol. 8, no. 4, pp. 191-
212, 2012.

[9] C. Waldspurger, “Memory resource management in VMware
ESX server;” in ACM Operating Systems Design and Implemen-
tation, pp. 181-194, VMware, 2002.

[10] R. P. Goldberg, “Survey of virtual machine research,” IEEE
Computer, pp. 34-45,1974.

[11] G. H. S. Carvalho, I. Woungang, A. Anpalagan, and S. K.
Dhurandher, “Virtual machine history model framework for a
data cloud digital investigation,” The KITCS/FTRA Journal of
Convergence, vol. 3, no. 4, pp. 15-22, 2012.

[12] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-
box and gray-box strategies for virtual machine migration,”
in Proceedings of the 4th USENIX Symposium on Networked
Systems Design and Implementation, pp. 229-242, 2007.

[13] D.Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine migra-
tion techniques: survey and research challenges,” in Proceedings

Journal of Applied Mathematics

(16]

(17]

(18]

(19]

(20]

(22]

of the Advance Computing Conference (IACC ’13), pp. 963-969,
2013.

P. G. J. Leelipushpam and J. Sharmila, “Live VM migration
techniques in cloud environment—a survey;” in Proceedings of
the Information & Communication Technologies (ICT ’13), pp.
408-413, 2013.

X. Xie, H. Jiang, H. Jin, W. Cao, P. Yuan, and L. Yang, “Metis: a
profiling toolkit based on the virtualization of hardware perfor-
mance counters,” Human-Centric Computing and Information
Sciences, vol. 2, article 8, 2012.

P. Barham, B. Dragovic, K. Fraser et al., “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP °03), pp. 164-177, October
2003.

C. Clark, K. Fraser, S. Hand et al., “Live migration of virtual
machines,” in Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation (NSDI 05), pp.
273-286, 2005.

A. Kivity, Y. Kamay, and D. Laor, “KVM: the linux virtual
machine monitor,” in Proceedings of the Ottawa Linux Sympo-
sium, pp. 225-230, 2007.

M. Nelson, B. Lim, and G. Hutchines, “Fast transparent migra-
tion for virtual machines,” in Proceedings of the USENIX Annual
Technical Conference, pp. 391-394, 2005.

M. R. Hines and K. Gopalan, “Post-copy based live vir-
tual machine migration using pre-paging and dynamic self-
ballooning,” in Proceedings of the ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments
(VEE °09), pp. 51-60, March 2009.

H. Jin, D. Li, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive memory compression,” in Proceedings
of the IEEE International Conference on Cluster Computing and
Workshops (CLUSTER ’09), September 2009.

L. Haikun, J. Hai, L. Xiaofei, H. Liting, and Y. Chen, “Live
migration of virtual machine based on full system trace and
replay;” in Proceedings of the 18th ACM International Symposium
on High Performance Distributed Computing (HPDC 09), pp.
101-110, June 2009.

H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant et al., “SnowFlock:
Virtual machine cloning as a first-class cloud primitive,;” ACM
Transactions on Computer Systems, vol. 29, no. 1, article 2, 2011.
A utility for testing memory, http://pyropus.ca/software/mem-
tester/.

