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We study a fractional differential model of HIV infection of CD4+ T-cell, in which the CD4+ T-cell proliferation plays an
important role in HIV infection under antiretroviral therapy. An appropriate method is given to ensure that both the equilibria
are asymptotically stable for 𝜏 ≥ 0. We calculate the basic reproduction number 𝑅

0
, the IFE 𝐸

0
, two IPEs 𝐸∗

1
and 𝐸∗

2
, and so on,

and judge the stability of the equilibrium. In addition, we describe the dynamic behaviors of the fractional HIVmodel by using the
Adams-type predictor-corrector method algorithm. At last, we extend the model to incorporate the term which we consider the
loss of virion and a bilinear term during attacking the target cells.

1. Introduction

Human immunodeficiency virus (HIV) is a lentivirus (a
member of the retrovirus family) that causes acquired
immunodeficiency syndrome (AIDS) [1], a condition in
humans inwhich the immune systembegins to fail, leading to
life-threatening opportunistic infections.HIV infects primar-
ily vital cells in the human immune system such as helper T-
cell (to be specific, CD4+ T-cell), macrophages, and dendritic
cells. When CD4+ T-cell numbers decline below a critical
level, cell-mediated immunity is lost and the body becomes
progressively more susceptible to opportunistic infections
(see [2]).

There are only a few results for dynamics of HIV infection
of CD4+ T-cell. In 1992, Perelson et al. [3] examined a model
for the interaction of HIV with CD4+ T-cell who considered
four populations: uninfected T-cell, latently infected T-cell,
actively infected T cells, and free virus, and they also con-
sidered effects of AZT on viral growth and T-cell population
dynamics. In 2000, Culshaw and Ruan [4] firstly simplified
their model into one consisting of only three components:
the healthy CD4+ T-cell, infected CD4+ T-cell, and free virus

and discussed the existence and stability of the infected steady
state, and they studied the effect of the time delay on the
stability of the endemically infected equilibrium; criteria were
given to ensure that the infected equilibrium is asymptotically
stable for all delay.

For backward bifurcations in other disease models, we
refer the reader to [5–12]. In [12], this paper analyzed the
backward bifurcation sources and application in infectious
disease model. HIV/AIDS infectionmodel is a special case of
infectious disease model. For recent work on global analysis
and persistence of HIVmodels, we refer the reader to [13–18]
and references therein. A discussion on HIV infection and
CD4+ T-cell depletion is given in the review paper [19].

In 2012, Shu andWang [12] considered a newmodel frame
that included full logistic growth terms of both healthy and
infected CD4+ T-cell:

𝑑

𝑑𝑡

𝑇 (𝑡) = 𝑠 − 𝜇
1
𝑇 (𝑡) + 𝑟

𝑇 (𝑡) 𝑉
𝐼
(𝑡)

𝐶 + 𝑉
𝐼 (
𝑡)

− 𝑘 (1 − 𝑛rt) 𝑉𝐼 (𝑡) 𝑇 (𝑡) ,

𝑑

𝑑𝑡

𝐼
𝑖
(𝑡) = 𝑘 (1 − 𝑛rt) 𝑉𝐼 (𝑡) 𝑇 (𝑡) − 𝜇2𝑇

𝑖
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𝑑

𝑑𝑡

𝑉
𝐼 (
𝑡) = (1 − 𝑛

𝑝
)𝑁𝜇
2
𝑇
𝑖
(𝑡) − 𝜇3

𝑉
𝐼 (
𝑡) ,

𝑑

𝑑𝑡

𝑉NI (𝑡) = 𝑛
𝑝
𝑁𝜇
2
𝑇
𝑖
(𝑡) − 𝜇

3
𝑉NI (𝑡) .

(1)

Fractional differential equations arise in many engineer-
ing and scientific disciplines as the mathematical model-
ing of systems and processes in various fields, such as
physics,mechanics, chemical technology, population dynam-
ics, biotechnology, and economics (see e.g., [20–26]). As one
of the important topics in the research differential equations,
the boundary value problem has attained a great deal of
attention (see [27–41] and the references therein).

Many mathematicians and researchers in the field of
application are trying to model fractional order differential
equations. In biology, the researchers found that biological
membranes with fractional order have the nature of elec-
tronic conductivity, so it can be classified as a model of the
fractional order. Because of the memory property of frac-
tional calculus, we introduce the fractional calculus into HIV
model. Both in mathematics and biology, fractional calculus
will correspond with objective reality more than ODE. It is
particularly important for us to study fractional HIV model.

Furthermore, delay plays an important role in the process
of spreading infectious diseases; it can be used to simulate
the incubation period of infectious diseases, the period of
patients infected with disease, period of patients immune to
disease, and so on. The basic fact reflected by the specific
mathematical model with time delay is that the change of
trajectory about time 𝑡 not only depends on the 𝑡 moment
itself but also is affected by some certain conditions before,
even the reflection of some certain factors before. This kind
of circumstance is abundant in the objective world.

Recently, Yan and Kou [2] have introduced fractional-
order derivatives into a model of HIV infection of CD4+ T-
cell with time delay:

𝐷
𝛼
𝑇 (𝑡) = 𝑠 − 𝜇

𝑇
𝑇 (𝑡) + 𝑟𝑇 (𝑡) (1 −

𝑇 (𝑡) + 𝐼 (𝑡)

𝑇max
)

− 𝑘
1
𝑇 (𝑡) 𝑉 (𝑡) ,

𝐷
𝛼
𝐼 (𝑡) = 𝑘

󸀠

1
𝑇 (𝑡 − 𝜏)𝑉 (𝑡 − 𝜏) − 𝜇𝐼

𝐼 (𝑡) ,

𝐷
𝛼
𝑉 (𝑡) = 𝑁𝜇

𝑏
𝐼 (𝑡) − 𝑘

1
𝑇 (𝑡) 𝑉 (𝑡) − 𝜇V𝑉 (𝑡) ,

(2)

with the initial conditions:

𝑇 (𝜃) = 𝑇
0
, 𝐼 (0) = 0, 𝑉 (𝜃) = 𝑉

0
, 𝜃 ∈ [−𝜏, 0] . (3)

Motivated by the works mentioned above, we will con-
sider this model where the CD4+ T-cell proliferation does
play an important role in HIV infection under antiretroviral
therapy; a more appropriate method is given to ensure that
both equilibria are asymptotically stable for 𝜏 ≥ 0. We
calculate the basic reproduction number 𝑅

0
, the IFE 𝐸

0
,

two IPEs 𝐸∗
1
and 𝐸

∗

2
, and so on under certain conditions

and judge the stability of the equilibrium. In addition,
we describe the dynamic behaviors of the fractional HIV

model by using the Adams-type predictor-corrector method
algorithm. At last, we extend the model to incorporate the
term which we consider the loss of virion and a bilinear term
during attacking the target cells. In this paper, we establish
mathematical model as follows:

𝐷
𝛼
𝑇 (𝑡) = 𝑠 − 𝜇

1
𝑇 (𝑡) +

𝑟𝑇 (𝑡) 𝑉𝐼 (
𝑡)

𝐶 + 𝑉
𝐼
(𝑡)

− 𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) ,

𝐷
𝛼
𝐼 (𝑡) = 𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) − 𝜇2𝐼 (𝑡) ,

𝐷
𝛼
𝑉 (𝑡) = (1 − 𝑛

𝑃
)𝑁𝜇
2
𝐼 (𝑡) − 𝜇3

𝑉
𝐼 (
𝑡) ,

(4)

with the initial conditions:
𝑇 (𝜃) = 𝑇

0
, 𝐼 (0) = 0, 𝑉 (𝜃) = 𝑉

0
, 𝜃 ∈ [−𝜏, 0] , (5)

where 𝐷𝛼 denotes Caputo’s fractional derivative of order 𝛼
with the lower limit zero. 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡) represent the
concentration of healthyCD4+ T-cell at time 𝑡, infectedCD4+
T-cell at time 𝑡, and free HIV virus particles in the blood
at time 𝑡, respectively. The positive constant 𝜏 represents the
length of the delay in days. A complete list of the parameter
values for the model is given in Table 1.

Furthermore, we assume that 𝑇(𝑡) > 0, 𝐼(𝑡) ≥ 0, and
𝑉(𝑡) ≥ 0 for all 𝑡 ≥ −𝜏.

This paper is organized in the following way. In the
next section, some necessary definitions and lemmas are
presented. In Section 3, the stability of the equilibria is given.
In Section 4, we calculate some of the data and judge the
stability of the equilibrium. In Section 5, we will give the
numerical simulation for the fractional HIV model. Finally,
the conclusions are given.

2. Preliminaries

In this section, we introduce definitions and lemmas which
will be used later.

Definition 1 (see [20, 25]). The fractional (arbitrary) order
integral of the function 𝑓 : [0,∞) → 𝑅 of order 𝑝 > 0 is
defined by

𝐼
𝑝
𝑓 (𝑥) =

1

Γ (𝑝)

∫

𝑥

0

(𝑥 − 𝑠)
𝑝−1

𝑓 (𝑠) 𝑑𝑠. (6)

Definition 2 (see [20]). Let 𝛼 ≥ 0, 𝑛 = [𝛼] + 1, where [𝛼]
denotes the integer part of number 𝛼. If 𝑓 ∈ 𝐴𝐶

𝑛
[𝑎, 𝑏], the

Caputo fractional derivative of order 𝛼 of 𝑓 is defined by

𝑐
𝐷

𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑎

𝑓
(𝑛)
(𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠,

𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛.

(7)

Lemma 3 (see [44]). The equilibrium point (𝑥
𝑒𝑞
, 𝑦
𝑒𝑞
) of the

fractional differential system:

𝐷
𝛼
𝑥 (𝑡) = 𝑓

1
(𝑥, 𝑦) , 𝐷

𝛼
𝑦 (𝑡) = 𝑓

2
(𝑥, 𝑦) , 𝛼 ∈ (0, 1] ,

𝑥 (0) = 𝑥
0
, 𝑦 (0) = 𝑦

0

(8)
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Table 1: Parameters and values of model (4).

Parameter Description Value
𝑇 Uninfected CD4+ T-cell population size 1000mm−3

𝐼 Infected CD4+ T-cell density 0
𝑉
𝐼 Free infectious virus particles 10

−3mm−3

𝑉NI Noninfectious virus particles 10
−3mm−3

𝑇
0 CD4+ T-cell population for HIV-negative persons 1000mm−3

𝜇
1 Natural death rate of CD4+ T-cell 0.02 day−1

𝜇
2 Blanket death rate of infected CD4+ T-cell 0.26 day−1

𝜇
3 Death rate of free virus 2.4 day−1

𝑘 Rate of CD4+ T-cell becoming infected with virus 2.4 × 10
−5mm3 day−1

𝑘
󸀠 Rate of infected cells becoming active 2 × 10

−5mm3 day−1

𝑠 Source term for uninfected CD4+ T-cell 10 day−1mm−3

𝑁 Number of virions produced by infected CD4+ T-cell Varies
𝑟 Themaximal proliferation rate (𝑟 < 𝜇

1
) Varies

𝐶 The half saturation constant of the proliferation process Varies

𝑛rt
The effectiveness of RTIs (𝑛rt = 0 means the therapy is totally ineffective, while 𝑛rt = 1
indicates the therapy is 100% effective and the cell-to-cell infection is completely stopped) Varies

𝑛
𝑝

The effectiveness of PIs (𝑛
𝑝
= 1 meaning the therapy with PIs is 100% effective and no

newly infectious virus particles will be produced [42]) Varies

𝑟

𝑇𝑉
𝐼

𝐶 + 𝑉
𝐼

The stimulation of T-cell to proliferate in the presence of virus [43] Varies

is locally asymptotically stable if all the eigenvalues of the
Jacobian matrix

𝐴 = (

𝜕𝑓
1

𝜕𝑥

𝜕𝑓
1

𝜕𝑦

𝜕𝑓
2

𝜕𝑥

𝜕𝑓
2

𝜕𝑦

) , (9)

evaluated at the equilibrium point satisfying the following
condition:

󵄨
󵄨
󵄨
󵄨
arg (𝑒𝑖𝑔 (𝐴))󵄨󵄨󵄨

󵄨
>

𝛼𝜋

2

. (10)

The stable and unstable regions for 0 < 𝛼 ≤ 1 are shown in
Figure 1 [45, 46].

Proposition 4 (see [12]). Consider model (4).

(i) Assume that (H1): 𝑟 ≤ 𝑘(1 − 𝑛
𝑟𝑡
)𝐶 is satisfied.

(a) If 𝑅
0
≤ 1, then the IFE 𝐸

0
is the only equilibrium

(Table 3).
(b) If 𝑅

0
> 1, then there are two equilibria: the IFE

𝐸
0
and a unique IPE 𝐸∗.

(ii) Assume that (H2): 𝑟 > 𝑘(1 − 𝑛
𝑟𝑡
)𝐶 is satisfied. Let

𝑎 = (√𝑟 − √𝑘(1 − 𝑛
𝑟𝑡
)𝐶)

2

/𝜇
1
; then 0 < 𝑎 < 1 (𝑎 < 1

follows from the assumption that 𝑟 < 𝜇
1
).

(a) If 𝑅
0
< 1 − 𝑎, then the IFE 𝐸

0
is the only equilib-

rium.

Stable

Stable Stable

Stable

Im(eig(A))

/2

/2 Re(eig(A))

Unstable

Unstable

𝛼𝜋

𝛼𝜋

Figure 1: Stability region of system (4) with order 0 < 𝛼 ≤ 1.

(b) If 1 − 𝑎 < 𝑅
0
< 1, then there are three equilibria:

the IFE 𝐸
0
and two IPEs, denoted by 𝐸

∗

1
=

(𝑇
∗

1
, 𝑇
𝑖

1
, 𝑉
∗

𝐼1
) and 𝐸

∗

2
= (𝑇
∗

2
, 𝑇
𝑖

2
, 𝑉
∗

𝐼2
) such that

𝑉
∗

𝐼2
> 𝑉
∗

𝐼1
.

(c) If𝑅
0
= 1−𝑎 or𝑅

0
≥ 1, then there are two equilib-

ria: the IFE 𝐸
0
and a unique IPE.

Remark 5. It is similar to [47, 48] to prove the existence of
solution of the fractional delay equations, and the onewithout
no delay time is also parallel to [29, 30].

By the next generation matrix method [11], we easily get

F = (

𝑘 (1 − 𝑛rt) 𝑉𝐼𝑇

(1 − 𝑛
𝑝
)𝑁𝜇
2
𝑇
𝑖) , V = (

𝜇
2
𝑇
𝑖

𝜇
3
𝑉
𝐼

) ; (11)
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we obtain the basic reproduction number of model (4)

𝑅
0
=
√

𝑠 (1 − 𝑛
𝑝
) (1 − 𝑛rt) 𝑘𝑁

𝜇
1
𝜇
3

.
(12)

3. The Stability of the Equilibria

In this section, we investigate the existence of equilibria of
system (4).

In order to find the equilibria of system (4), we put

𝑠 − 𝜇
𝑇
𝑇 (𝑡) +

𝑟𝑇 (𝑡) 𝑉𝐼 (
𝑡)

𝐶 + 𝑉
𝐼 (
𝑡)

− 𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) = 0,

𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) − 𝜇2𝐼 (𝑡) = 0,

(1 − 𝑁
𝑃
)𝑁𝜇
2
𝐼 (𝑡) − 𝜇

3
𝑉
𝐼
(𝑡) = 0.

(13)

Following the analysis in [12], we get that system (13)
has always the infection free equilibrium (IFE) 𝐸

0
=

((𝑠/𝜇
1
), 0, 0) and the infection persistent equilibrium (IPE)

𝐸
∗
= (𝑇
∗
, 𝑇
𝑖∗
, 𝑉
∗

𝐼
), where

𝑇
∗
=

𝜇
3

(1 − 𝑛
𝑝
) (1 − 𝑛rt)𝑁𝑘

, 𝐼
∗
=

𝜇
3

(1 − 𝑛
𝑝
)𝑁𝜇
2

𝑉
∗

𝐼
,

𝑔 (𝑉
𝐼
) = 𝑉
2

𝐼
+ (𝑝 −

𝑟

𝑘 (1 − 𝑛rt)
+ 𝐶)𝑉

𝐼
+ 𝑝𝐶,

𝑝 =

𝜇
1

(𝑘 (1 − 𝑛rt)) (1 − 𝑅0)
.

(14)

Next, we will discuss the stability for the local asymptotic
stability of the viral free equilibrium 𝐸

0
and the infected

equilibrium 𝐸
∗.

For the local asymptotic stability of the viral free equilib-
rium 𝐸

0
, we have the following result.

Lemma 6. If 𝑅
0
< 1, then 𝐸

0
is locally asymptotically stable

for 𝜏 ≥ 0. If 𝑅
0
= 1, then 𝐸

0
is locally stable for 𝜏 ≥ 0. If

𝑅
0
> 1, then 𝐸

0
is a saddle point with a two-dimensional stable

manifold and a one-dimensional unstable manifold.

Proof. The associated transcendental characteristic equation
at 𝐸
0
= (𝑇
0
, 0, 0) is given by

(𝜆 + 𝜇
1
) [𝜆
2
+ (𝜇
2
+ 𝜇
3
) 𝜆 + 𝜇

2
𝜇
3
− 𝑘 (1 − 𝑛rt)

× (1 − 𝑛
𝑝
)𝑁𝜇
2
𝑇
0
𝑒
−𝜆𝜏

] = 0.

(15)

Obviously, the above equation has the characteristic root

𝜆
1
= −𝜇
1
< 0. (16)

Next, we consider the transcendental polynomial

𝜆
2
+ (𝜇
2
+ 𝜇
3
) 𝜆 + 𝜇

2
𝜇
3

− 𝑘 (1 − 𝑛rt) (1 − 𝑛𝑝)𝑁𝜇2𝑇0𝑒
−𝜆𝜏

= 0.

(17)

For 𝜏 = 0, we get

𝜆
2
+ (𝜇
2
+ 𝜇
3
) 𝜆 + 𝜇

2
𝜇
3
− 𝑅
2

0
𝜇
2
𝜇
3
= 0. (18)

We have

𝜆
2,3

=

− (𝜇
2
+ 𝜇
3
) ± √(𝜇

2
+ 𝜇
3
)
2
− 4𝜇
2
𝜇
3
(1 − 𝑅

2

0
)

2

.
(19)

If 𝑅2
0
> 1, the characteristic equation has a positive eigen-

value and two negative eigenvalues. 𝐸
0
is thus unstable with

a two-dimensional stable manifold and a one-dimensional
unstablemanifold. If𝑅2

0
= 1, 𝜆

2,3
= 0, then𝐸

0
is locally stable.

If 𝑅2
0
< 1, the other two eigenvalues have negative real parts if

and only if𝜇
2
𝜇
3
−𝑅
2

0
𝜇
2
𝜇
3
> 0, then𝐸

0
is locally asymptotically

stable.
For 𝜏 ̸= 0, we get

𝜆
2
+ (𝜇
2
+ 𝜇
3
) 𝜆 + 𝜇

2
𝜇
3

− 𝑘 (1 − 𝑛rt) (1 − 𝑛𝑝)𝑁𝜇2𝑇0𝑒
−𝜆𝜏

= 0.

(20)

Assume that the above equation has roots 𝜆 =

𝜔(cos(𝛽𝜋/2) ± 𝑖 sin(𝛽𝜋/2)) for 𝜔 > 0 and 𝜏 > 0; we get

𝜔
2
(cos

𝛽𝜋

2

± 𝑖 sin
𝛽𝜋

2

)

2

+ 𝜔 (𝜇
2
+ 𝜇
3
) (cos

𝛽𝜋

2

± 𝑖 sin
𝛽𝜋

2

) + 𝜇
2
𝜇
3

−𝑘 (1 − 𝑛rt) (1 − 𝑛𝑝)𝑁𝜇2𝑇0𝑒
−𝜏𝜔(cos(𝛽𝜋/2)±𝑖 sin(𝛽𝜋/2))

= 0.

(21)

Separating the real and imaginary parts gives

𝜔
2
(cos2

𝛽𝜋

2

− sin2
𝛽𝜋

2

) + 𝜔 cos
𝛽𝜋

2

(𝜇
2
+ 𝜇
3
) + 𝜇
2
𝜇
3

−

𝑘 (1 − 𝑛rt) (1 − 𝑛𝑝)𝑁𝜇2𝑠𝑒
−𝜏𝜔 cos(𝛽𝜋/2)

𝜇
1

× cos(−𝜏𝜔 sin
𝛽𝜋

2

) = 0,

2𝑖𝜔
2 cos

𝛽𝜋

2

sin
𝛽𝜋

2

+ 𝑖𝜔 sin
𝛽𝜋

2

(𝜇
2
+ 𝜇
3
)

−

𝑘 (1 − 𝑛rt) (1 − 𝑛𝑝)𝑁𝜇2𝑠𝑒
−𝜏𝜔 cos(𝛽𝜋/2)

𝜇
1

× 𝑖 sin(−𝜏𝜔 sin
𝛽𝜋

2

) = 0.

(22)
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From the second equation of (22), we have

sin
𝛽𝜋

2

= 0, (23)

that is (𝛽𝜋/2) = 𝑘𝜋, 𝑘 = 0, 1, 2, . . ..
For (𝛽𝜋/2) = 𝑘𝜋, 𝑘 = 0, 2, 4, . . ., substituting into the first

equation of (22), we have

𝜔
2
+ 𝜔 (𝜇

2
+ 𝜇
3
) + 𝜇
2
𝜇
3
=

𝑘 (1 − 𝑛rt) (1 − 𝑛𝑝)𝑁𝜇2𝑠𝑒
−𝜏𝜔

𝜇
1

.

(24)

For the parameter values given in Table 1, we take any
𝑅
2

0
< 1, then the infected equilibrium 𝐸

0
= ((𝑠/𝜇

1
), 0, 0), and

we get that the above equation is unequal for𝜔 > 0.Therefore,
𝛽 ≥ 2 > 𝛼.

According to Lemma 3, the uninfected equilibrium 𝐸
0
is

locally asymptotically stable. The proof is completed.
Next, for the sake of convenience, at 𝐸∗ = (𝑇

∗
, 𝐼
∗
, 𝑉
∗
),

we give the following symbols:

𝐴 = 𝜇
1
+ 𝜇
2
+ 𝜇
3
−

𝑟𝑉
∗

𝐼

𝐶 + 𝑉
∗

𝐼

,

𝐵 = 𝑘 (1 − 𝑛rt) 𝑉
∗

𝐼
,

𝐶 = 𝜇
2

1
+ 𝜇
1
𝜇
3
−

𝑟𝑉
∗

𝐼
(𝜇
2
+ 𝜇
3
)

𝐶 + 𝑉
∗

𝐼

,

𝐷 = 𝑘 (1 − 𝑛rt) 𝑉
∗

𝐼
(𝜇
2
+ 𝜇
3
) ,

𝐸 = 𝜇
1
𝜇
2
𝜇
3
−

𝑟𝑉
∗

𝐼
𝜇
2
𝜇
3

𝐶 + 𝑉
∗

𝐼

,

𝐹 = 𝑘 (1 − 𝑛rt) 𝑉
∗

𝐼
𝜇
2
𝜇
3
−

𝑉
∗

𝐼
𝜇
2
𝜇
3
𝑟𝐶

(𝐶 + 𝑉
∗

𝐼
)
2
− 𝜇
1
𝜇
2
𝜇
3
+

𝜇
2
𝜇
3
𝑟𝑉
∗

𝐼

𝐶 + 𝑉
∗

𝐼

.

(25)

Then the characteristic equation of the linear system is

𝜆
3
+ (𝐴 + 𝐵𝑒

−𝜆𝜏
) 𝜆
2
+ (𝐶 + 𝐷𝑒

−𝜆𝜏
) 𝜆 + 𝐸 + 𝐹𝑒

−𝜆𝜏
= 0.

(26)

Using the results in [49], we get

𝐷(𝜆) = 𝜆
3
+ (𝐴 + 𝐵) 𝜆

2
+ (𝐶 + 𝐷) + 𝐸 + 𝐹,

𝐷
󸀠
(𝜆) = 3𝜆

2
+ 2 (𝐴 + 𝐵) 𝜆 + (𝐶 + 𝐷) .

(27)

Denote

𝐷 (𝜆) = −

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 𝐴 + 𝐵 𝐶 + 𝐷 𝐸 + 𝐹 0

0 1 𝐴 + 𝐵 𝐶 + 𝐷 𝐸 + 𝐹

3 2 (𝐴 + 𝐵) 𝐶 + 𝐷 0 0

0 3 2 (𝐴 + 𝐵) 𝐶 + 𝐷 0

0 0 3 2 (𝐴 + 𝐵) 𝐶 + 𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 18 (𝐴 + 𝐵) (𝐶 + 𝐷) (𝐸 + 𝐹) + (𝐴 + 𝐵)
2
(𝐶 + 𝐷)

2

− 4 (𝐸 + 𝐹) (𝐴 + 𝐵)
3
− 4(𝐶 + 𝐷)

3
− 27(𝐸 + 𝐹)

2
.

(28)

Lemma 7 (see [49]). The infected equilibrium 𝐸
∗ is asymptot-

ically stable for any time delay 𝜏 ≥ 0 if either
(i) 𝐴 + 𝐵 > 0, 𝐸 + 𝐹 > 0, (𝐴 + 𝐵)(𝐶 + 𝐷) > 𝐸 + 𝐹 if

𝐷(𝜆) > 0;
(ii) if𝐷(𝜆) < 0, 𝐴+𝐵 ≥ 0, 𝐶+𝐷 ≥ 0, 𝐸+𝐹 > 0, 𝛼 < 2/3;
(iii) if 𝐷(𝜆) < 0, 𝐴 + 𝐵 < 0, 𝐶 + 𝐷 < 0, 𝛼 > 2/3, then all

roots of𝐷(𝜆) = 0 satisfy | arg(𝜆)| < 𝛼𝜋/2;
(iv) if𝐷(𝜆) < 0, 𝐴+𝐵 > 0, 𝐶+𝐷 > 0, (𝐴+𝐵)(𝐶+𝐷) = 𝐸+𝐹

for all 𝛼 ∈ [0, 1).

4. Comparison with Some of the Data

In this section, we calculate the basic reproduction number
𝑅
0
, the IFE 𝐸

0
, two IPEs 𝐸∗

1
and 𝐸

∗

2
, 𝐷(𝜆), 𝐴 + 𝐵, 𝐶 + 𝐷,

𝐸 + 𝐹, and (𝐴 + 𝐵)(𝐶 + 𝐷). On the basis of these data, we
apply all the conditions in Lemma 7 to judge the stability of
the equilibrium 𝐸

∗

1
and 𝐸∗

2
(Table 2).

Remark 8. (1) If 𝑛rt = {0.1, 0.5, 0.5425}, there are two
equilibria: the IFE 𝐸

0
and a unique IPE 𝐸

∗

1
. In addition, the

system at 𝐸∗
1
satisfies the second condition in Lemma 7, then

the IPE 𝐸∗
1
is locally asymptotically stable (Table 5).

(2) If 𝑛rt = {0.5426, 0.55, 0.6, 0.7, 0.7252}, there are three
equilibria: the IFE 𝐸

0
and two IPEs. The system at 𝐸∗

1
doesn’t

satisfy all the conditions in Lemma 7, then the IPE 𝐸
∗

1
is

unstable. The system at 𝐸∗
2
satisfies the second condition in

Lemma 7, then the IPE 𝐸∗
2
is locally asymptotically stable.

(3) If 𝑛rt = {0.7253, 0.8, 0.82, 0.8446, 0.85}, the IFE 𝐸
0
is

the only equilibrium.

Remark 9. If 𝐶 = {10, 100, 300, 500, 700, 830, 900}, there are
two equilibria: the IFE 𝐸

0
and a unique IPE 𝐸

∗

1
. In addition,

the system at 𝐸∗
1
satisfies the second condition in Lemma 7,

then the IPE 𝐸∗
1
is locally asymptotically stable.

Remark 10. If 𝑟 = {0, 0.004, 0.008, 0.015, 0.019}, there are two
equilibria: the IFE 𝐸

0
and a unique IPE 𝐸

∗

1
. In addition, the

system at 𝐸∗
1
satisfies the second condition in Lemma 7, then

the IPE 𝐸∗
1
is locally asymptotically stable.

Remark 11. (1) If 𝑁 = {10, 30, 40, 47}, the IFE 𝐸
0
is the only

equilibrium.
(2) If 𝑁 = 48, there are three equilibria: the IFE 𝐸

0
and

two IPEs. The system at 𝐸∗
1
and 𝐸

∗

2
does not satisfy all the

conditions in Lemma 7, then the IPEs𝐸∗
1
and𝐸∗

2
are unstable.

(3) If𝑁 = {60, 88}, there are two equilibria: the IFE𝐸
0
and

a unique IPE𝐸∗
1
. In addition, the system at𝐸∗

1
does not satisfy

all the conditions in Lemma 7, then the IPE 𝐸
∗

1
is unstable.

The system at 𝐸∗
2
satisfies the second condition in Lemma 7,

then the IPE 𝐸∗
2
is locally asymptotically stable.

(4) If 𝑁 = {89, 100, 200, 600, 1000}, there are two
equilibria: the IFE 𝐸

0
and a unique IPE 𝐸∗

1
. The system at 𝐸∗

1

satisfies the second condition in Lemma 7, then the IPE 𝐸∗
2
is

locally asymptotically stable.
(5) If 𝑁 = {10000, 20000}, there are two equilibria: the

IFE 𝐸
0
and a unique IPE 𝐸

∗

1
. The system at 𝐸∗

1
satisfies

the first condition in Lemma 7, then the IPE 𝐸
∗

1
is locally

asymptotically stable.
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Table 2: We take 𝑟 = 0.01, 𝐶 = 1, 𝑁 = 100, 𝐸
0
= (500, 0, 0), and 𝑎 = (√𝑟 − √𝑘(1 − 𝑛rt)𝐶)

2

/𝜇
1
, and we get the following.

(a)

Line 𝑛rt 𝑛
𝑝

𝑘(1 − 𝑛rt)𝐶 1 − 𝑎 𝑅
0

𝐸
∗

1
𝐸
∗

2

1 0.1 0.05 0.00002 0.5454 1.6016 (194.9317, 30.9602, 1911.7950) not exist
2 0.5 0.25 0.00001 0.5340 1.0607 (444.4444, 21.3511, 1040.8668) not exist
3 0.5425 0.27125 0.00001 0.5326 1.0001 (499.8953, 19.2137, 910.1286) not exist
4 0.5426 0.2713 0.00001 0.5326 1.0000 (500.0390, 0.000003, 0.0002) (500.0389, 19.2082, 909.8039)
5 0.55 0.275 0.00001 0.5323 0.9893 (510.8556, 0.0009, 0.0444) (510.8557, 18.7911, 885.5296)
6 0.6 0.3 0.000009 0.5305 0.9165 (595.2381, 0.0104, 0.4716) (595.2381, 15.5354, 706.8618)
7 0.7 0.35 0.000007 0.5265 0.7649 (854.7009, 0.1186, 5.0099) (854.7009, 5.4462, 230.1012)
8 0.7252 0.3626 0.000007 0.5254 0.7249 (951.5244, 0.8287, 34.3354) (951.5245, 1.0116, 41.9104)
9 0.7253 0.3627 0.000007 0.5253 0.7247 Not exist Not exist
10 0.8 0.4 0.000005 0.5217 0.6000 Not exist Not exist
11 0.82 0.41 0.000005 0.5206 0.5644 Not exist Not exist
12 0.8446 0.4223 0.000004 0.5191 0.5190 Not exist Not exist
13 0.85 0.425 0.000004 0.5188 0.5087 Not exist Not exist

(b)

Line 𝐷(𝜆) 𝐴 + 𝐵 𝐶 + 𝐷 𝐸 + 𝐹 (𝐴 + 𝐵)(𝐶 + 𝐷) Stability
1 −1.7882 2.7113 0.1317 0.0258 0.3570 (ii)
2 −0.5611 2.6825 0.0550 0.0078 0.1477 (ii)
3 −0.4497 2.6800 0.0484 0.0062 0.1297 (ii)
4 0.0165, −0.4495 2.6800, 2.6800 0.0484, 0.0484 −0.000001, 0.0062 0.1297, 0.1297 Unsuited (ii)
5 0.0346, −0.4305 2.6796, 2.6796 0.0473, 0.0473 −0.0003, 0.0060 0.1267, 0.1267 Unsuited (ii)
6 0.1125, −0.3054 2.6768, 2.6768 0.0399, 0.0399 −0.0014, 0.0042 0.1068, 0.1068 Unsuited (ii)
7 0.0681, −0.0707 2.6717, 2.6717 0.0263, 0.0263 −0.0008, 0.0010 0.0703, 0.0703 Unsuited (ii)
8 0.0060, 0.0015 2.6705, 2.6705 0.0232, 0.0232 −0.00003, 0.00003 0.0618, 0.0618 Unsuited (i)

Table 3: We take 𝑟 = 0.01, 𝑛rt = 0.5, 𝑛
𝑝
= 0.25, 𝑁 = 100, 𝐸

0
= (500, 0, 0), and 𝑎 = (√𝑟 − √𝑘(1 − 𝑛rt)𝐶)

2

/𝜇
1
, and we have the following.

(a)

Line 𝐶 𝑘(1 − 𝑛rt)𝐶 1 − 𝑎 𝑅
0

𝐸
∗

1
𝐸
∗

2

14 10 0.0001 0.6035 1.0607 (444.4444, 21.2037, 1033.6821) Not exist
15 100 0.0012 0.7864 1.0607 (444.4444, 19.7599, 963.2939) Not exist
16 300 0.0036 0.9200 1.0607 (444.4444, 16.7808, 818.0663) Not exist
17 500 0.0060 0.9746 1.0607 (444.4444, 14.1982, 692.1614) Not exist
18 700 0.0084 0.9965 1.0607 (444.4444, 12.0858, 589.1841) Not exist
19 830 0.0100 1.0000 1.0607 (444.4444, 10.9728, 534.9223) Not exist
20 900 0.0108 0.9992 1.0607 (444.4444, 10.4534, 509.6013) Not exist

(b)

Line 𝐷(𝜆) 𝐴 + 𝐵 𝐶 + 𝐷 𝐸 + 𝐹 (𝐴 + 𝐵)(𝐶 + 𝐷) Stability
14 −0.5531 2.6825 0.0550 0.0077 0.1477 (ii)
15 −0.4782 2.6825 0.0551 0.0067 0.1477 (ii)
16 −0.3449 2.6825 0.0550 0.0049 0.1477 (ii)
17 −0.2523 2.6825 0.0550 0.0037 0.1477 (ii)
18 −0.1926 2.6825 0.0551 0.0029 0.1477 (ii)
19 −0.1668 2.6825 0.0550 0.0025 0.1477 (ii)
20 −0.1561 2.6825 0.0550 0.0024 0.1477 (ii)
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Figure 2: In (a)–(d), 𝛼 = 0.9,𝑁 = 100, and 𝜏 = 0.
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Figure 3: In (a)–(d), 𝛼 = 0.9, 𝜏 = 2, 𝐶 = 1, and 𝑟 = 0.01.
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Figure 4: In (a)–(d), 𝑛rt = 0.5, 𝑛
𝑝
= 0.25, 𝛼 = 0.9, 𝜏 = 0, 𝐶 = 10, and 𝑟 = 0.01.
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Figure 5: In (a)–(d), 𝑛rt = 0.5, 𝑛
𝑝
= 0.25, 𝛼 = 0.9, 𝜏 = 2, 𝐶 = 10, and 𝑟 = 0.01.
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Figure 6: In (a)–(d), 𝑛rt = 0.5, 𝑛
𝑝
= 0.25,𝑁 = 100, 𝜏 = 0, 𝐶 = 10, and 𝑟 = 0.01.

5. Numerical Simulations

In this section, we use the Adams-type predictor-corrector
method for the numerical solution of nonlinear system (4)
with time delay.

Firstly, we will replace system (4) by the following equi-
valent fractional integral equations:

𝑇 (𝑡) = 𝑇 (0) + 𝐼
𝛼
[𝑠 − 𝜇

𝑇
𝑇 (𝑡) +

𝑟𝑇 (𝑡) 𝑉
𝐼
(𝑡)

𝐶 + 𝑉
𝐼
(𝑡)

− 𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) ] ,

𝐼 (𝑡) = 𝐼 (0) + 𝐼
𝛼

× [𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) − 𝜇2𝐼 (𝑡)] ,

𝑉 (𝑡) = 𝑉 (0) + 𝐼
𝛼
[(1 − 𝑛

𝑃
)𝑁𝜇
2
𝐼 (𝑡) − 𝜇3

𝑉
𝐼 (
𝑡)] .

(29)

Next, we apply the predict, evaluate, correct, evaluate
(PECE) method.

The approximate solution is displayed in (Figures 2(a)–
2(d), 3(a)–3(d), 4(a)–4(d), 5(a)–5(d), 6(a)–6(d), and 7(a)–
7(d)). When 𝛼 = 1, system (4) is the classical integer-order
ODE.

Remark 12. Figures 2 and 3 show that, if 𝑛rt = {0.7253,

0.8, 0.85} and 𝜏 = {0, 2}, the system at 𝐸
0
= (500, 0, 0) is

locally stable.

Remark 13. Figures 4 and 5 show that, if𝑁 = {10, 30, 40, 47}

and 𝜏 = {0, 2}, the system at 𝐸
0
= (500, 0, 0) is locally stable.

Remark 14. Figures 6 and 7 show that, if 𝛼 = {0.9, 0.93,

0.96, 0.99, 1} and 𝜏 = {0, 2}, the system at 𝐸
0
= (500, 0, 0)

is locally stable. As 𝛼 increases, the trajectory of the system
approaches the steady state faster and gets close to the integer-
order ODE.

6. Extending the Model

In this section, we add the term −𝜇
3
𝑉
𝐼
in the third equation

of model (4) which we consider the loss of virions due to all
causes, and we also add the bilinear term −𝑘(1 − 𝑛rt)𝑇(𝑡 −
𝜏)𝑉
𝐼
(𝑡 − 𝜏) which we consider free infectious virions when

they enter the target cells. We extend model (4) to the
following system of differential equations:

𝐷
𝛼
𝑇 (𝑡) = 𝑠 − 𝜇

1
𝑇 (𝑡) +

𝑟𝑇 (𝑡) 𝑉
𝐼
(𝑡)

𝐶 + 𝑉
𝐼
(𝑡)

− 𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) ,

𝐷
𝛼
𝐼 (𝑡) = 𝑘

󸀠
(1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) − 𝜇2𝐼 (𝑡) ,
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Figure 7: In (a)–(d), 𝑛rt = 0.5, 𝑛
𝑝
= 0.25,𝑁 = 100, 𝜏 = 2, 𝐶 = 10, and 𝑟 = 0.01.

𝐷
𝛼
𝑉 (𝑡) = (1 − 𝑛

𝑃
)𝑁𝜇
2
𝐼 (𝑡) − 𝜇

3
𝑉
𝐼
(𝑡)

− 𝑘 (1 − 𝑛rt) 𝑇 (𝑡 − 𝜏)𝑉𝐼 (𝑡 − 𝜏) .

(30)

Following the analysis in [12], we get that system (30) has
always the uninfected equilibrium 𝐸

0
= ((𝑠/𝜇

1
), 0, 0), and the

infected equilibrium 𝐸
∗∗

= (𝑇
∗∗
, 𝐼
∗∗
, 𝑉
∗∗

𝐼
), where

𝑇
∗∗

=

𝜇
3

(1 − 𝑛
𝑝
) [(1 − 𝑛rt)𝑁𝑘

󸀠
− 𝑘]

,

𝐼
∗∗

=

𝜇
3
𝑘
󸀠

𝜇
2
[(1 − 𝑛

𝑝
)𝑁𝑘
󸀠
− 𝑘]

𝑉
∗∗

𝐼
,

𝑔 (𝑉
𝐼
) = 𝑉
2

𝐼
+ 𝑉
𝐼
[

𝜇
1

𝑘 (1 − 𝑛rt)
(1 − 𝑅

2
) −

𝑟

(1 − 𝑛rt) 𝑘

+

𝐶

1 − 𝑛rt
−

𝑅
2
𝑠

𝜇
3

]

+

𝜇
1
𝐶

(1 − 𝑛rt) 𝑘
−

𝑠𝐶 [(1 − 𝑛
𝑝
)𝑁𝑘
󸀠
− 𝑘]

𝑘𝜇
3

= 0.

(31)

By the next generation matrix method [11], we obtain the
basic reproduction number of model (30)

𝑅
2
=

(1 − 𝑛
𝑝
) (1 − 𝑛rt)𝑁𝑘

󸀠
𝑠

𝜇
1
𝜇
3
+ 𝑘 (1 − 𝑛rt) 𝑠

. (32)

7. Conclusion

In this paper, we modified the ODE model proposed by Shu
and Wang [12] and the fractional model proposed by Yan
and Kou [2] into a system of fractional order. We study a
fractional differential model of HIV infection of CD4+ T
cell. We will consider this model where the CD4+ T-cell
proliferation does play an important role in HIV infection
under antiretroviral therapy. The more appropriate method
is given to ensure that both the equilibria are asymptotically
stable for 𝜏 ≥ 0 under some conditions.We calculate the basic
reproduction number𝑅

0
, the IFE𝐸

0
, two IPEs𝐸∗

1
and𝐸∗

2
, and

so on, under certain conditions and judge the stability of the
equilibrium. According to Tables 1 and 4, we get that, if 𝑛rt =
{0.7253, 0.8, 0.85} and 𝑁 = {10, 30, 40, 47}, there is only the
IFE 𝐸

0
for 𝜏 ≥ 0. In addition, if 𝛼 = {0.9, 0.93, 0.96, 0.99, 1}

under some conditions, there is only the IFE 𝐸
0
for 𝜏 ≥ 0.

We describe the dynamic behaviors of the fractional HIV
model by using the Adams-type predictor-corrector method
algorithm. At last, we extend the model to incorporate the
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Table 4: We take 𝐶 = 10, 𝑛rt = 0.5, 𝑛
𝑝
= 0.25, 𝑁 = 100, 𝐸

0
= (500, 0, 0), and 𝑎 = (√𝑟 − √𝑘(1 − 𝑛rt)𝐶)

2

/𝜇
1
, we give the following.

(a)

Line 𝑟 𝑘(1 − 𝑛rt)𝐶 1 − 𝑎 𝑅
0

𝐸
∗

1
𝐸
∗

2

21 0 0.0001 0.9940 1.0607 (444.4444, 4.2735, 208.3333) Not exist
22 0.004 0.0001 0.8632 1.0607 (444.4444, 10.9858, 535.5567) Not exist
23 0.008 0.0001 0.6920 1.0607 (444.4444, 17.7929, 867.4018) Not exist
24 0.015 0.0001 0.3782 1.0607 (444.4444, 29.7389, 1449.7703) Not exist
25 0.019 0.0001 0.1950 1.0607 (444.4444, 36.5710, 1782.8352) Not exist

(b)

Line 𝐷(𝜆) 𝐴 + 𝐵 𝐶 + 𝐷 𝐸 + 𝐹 (𝐴 + 𝐵)(𝐶 + 𝐷) Stability
21 −0.0952 2.6825 0.0550 0.0016 0.1477 (ii)
22 −0.2749 2.6825 0.0551 0.0040 0.1477 (ii)
23 −0.4600 2.6825 0.0550 0.0064 0.1477 (ii)
24 −0.7866 2.6825 0.0550 0.0108 0.1477 (ii)
25 −0.9740 2.6825 0.0550 0.0550 0.1477 (ii)

Table 5: We take 𝐶 = 10, 𝑛rt = 0.5, 𝑛
𝑝
= 0.25, 𝑟 = 0.01, 𝐸

0
= (500, 0, 0), and 𝑎 = (√𝑟 − √𝑘(1 − 𝑛rt)𝐶)

2

/𝜇
1
, and we get the following.

(a)

Line 𝑁 𝑘(1 − 𝑛rt)𝐶 1 − 𝑎 𝑅
0

𝐸
∗

1
𝐸
∗

2

26 10 0.00001 0.5340 0.3354 Not exist Not exist
27 30 0.00001 0.5340 0.5809 Not exist Not exist
28 40 0.00001 0.5340 0.6708 Not exist Not exist
29 47 0.00001 0.5340 0.7271 Not exist Not exist
30 48 0.00001 0.5340 0.7348 (925.9259, 0.6491, 15.1879) (925.9259, 2.1572, 50.4788)
31 60 0.00001 0.5340 0.8216 (740.7407, 0.0641, 1.8756) (740.7407, 9.8732, 288.7910)
32 88 0.00001 0.5340 0.9950 (505.0505, 0.0005, 0.0204) (505.0505, 19.0127, 815.6462)
33 89 0.00001 0.5340 1.0006 (499.3758, 19.2318, 834.4192) Not exist
34 100 0.00001 0.5340 1.0607 (444.4444, 21.3511, 1040.8668) Not exist
35 200 0.00001 0.5340 1.5000 (222.2222, 29.9116, 2916.3810) Not exist
36 600 0.00001 0.5340 2.5981 (74.0741, 35.6123, 10416.5867) Not exist
37 1000 0.00001 0.5340 3.3541 (44.4444, 36.7520, 17916.6202) Not exist
38 10000 0.00001 0.5340 10.6066 (4.4444, 38.2906, 186666.6622) Not exist
39 20000 0.00001 0.5340 15.0000 (2.2222, 38.3761, 374166.6644) Not exist

(b)

Line 𝐷(𝜆) 𝐴 + 𝐵 𝐶 + 𝐷 𝐸 + 𝐹 (𝐴 + 𝐵)(𝐶 + 𝐷) Stability
30 0.1109, 0.0417 2.6742, 2.6723 0.0328, 0.0278 −0.0014, −0.0005 0.0878, 0.0743 Unsuited, unsuited
31 0.0747, −0.1399 2.6784, 2.6738 0.0443, 0.0319 −0.0008, 0.0020 0.1185, 0.0853 Unsuited (i)
32 0.0173, −0.4352 2.6800, 2.6799 0.0483, 0.0482 −0.00001, 0.0060 0.1296, 0.1291 Unsuited (i)
33 −0.4454 2.6801 0.0487 0.0062 0.1307 (ii)
34 −0.5570 2.6826 0.0553 0.0077 0.1483 (ii)
35 −1.5273 2.7050 0.1150 0.0218 0.3110 (ii)
36 −4.7830 2.7950 0.3543 0.0780 0.9903 (ii)
37 −7.1387 2.8850 0.5937 0.1342 1.7129 (ii)
38 30.8901 4.9100 5.9802 1.3978 29.3628 (i)
39 482.3545 7.1600 11.9652 11.9652 85.6708 (i)
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term which we consider the loss of virion and a bilinear term
during attacking the target cells.
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