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This paper introduces and analyzes a viscosity iterative algorithm for an infinite family of nonexpansive mappings {𝑇
𝑖
}
∞

𝑖=1
in the

framework of a strictly convex and uniformly smooth Banach space. It is shown that the proposed iterative method converges
strongly to a common fixed point of {𝑇

𝑖
}
∞

𝑖=1
, which solves specific variational inequalities. Necessary and sufficient convergence

conditions of the iterative algorithm for an infinite family of nonexpansivemappings are given. Results shown in this paper represent
an extension and refinement of the previously known results in this area.

1. Introduction

The variational inequality problem was first introduced by
Hartman and Stampacchia [1]. This problem has achieved
increasing attention in many research fields, such as mathe-
matical programming, constrained linear and nonlinear opti-
mization, automatic control, manufacturing system design,
signal and image processing, and complementarity problem
in economics and pattern recognition (see [2–4] and the
references therein). Nowadays, the theory of variational
inequalities and fixed point theory are two important and
dynamic areas in nonlinear analysis and optimization.

One promising approach to handle these problems is
to develop iterative schemes to compute the approximate
solutions of variational inequalities and to find a common
fixed point of a given family of operators. There is a vari-
ety of techniques to suggest and analyze various iterative
algorithms for solving variational inequalities and the related
optimization problems. The fixed point theory has played an
important role in the development of various algorithms for
solving variational inequalities.

In this paper, the purpose is to develop a new iterative
method for solving a specific variational inequality.

Let 𝐸 be a real Banach space and 𝐾 a nonempty closed
convex subset of 𝐸. Recall that a mapping 𝑓 : 𝐾 → 𝐾 is said
to be a contraction on 𝐾 if there is a constant 𝛼 ∈ (0, 1) such
that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝛼‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐾. We use Π

𝐾
to

denote the collection of all contractions on 𝐾. That is, Π
𝐾

=

{𝑓 | 𝑓 : 𝐾 → 𝐾 is acontraction with constant 𝛼}. A mapping
𝑇 : 𝐾 → 𝐾 is said to be nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖

for all 𝑥, 𝑦 ∈ 𝐾. We denote by 𝐹(𝑇) the set of fixed points of
mapping 𝑇; that is, 𝐹(𝑇) = {𝑥 ∈ 𝐾 : 𝑇𝑥 = 𝑥}.

Iterative methods for nonexpansive mappings have
recently been applied to solve convexminimization problems
(see [5–8] and the references therein). A typical problem is to
minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space 𝐻:

min
𝑥∈𝐹(𝑇)

⟨𝐵𝑥, 𝑥⟩ − ℎ (𝑥) , (1)

where 𝐵 is a linear bounded operator defined on 𝐻, 𝐹(𝑇) is
the fixed point set of the nonexpansive mapping 𝑇, and ℎ is a
potential function for 𝛾𝑓 (i.e., ℎ󸀠(𝑥) = 𝛾𝑓(𝑥) for all 𝑥 ∈ 𝐻).

Let 𝑇 : 𝐾 → 𝐾 be a nonexpansive mapping. For given
𝑓 ∈ Π

𝐾
and 𝑡 ∈ (0, 1) define a contraction mapping 𝑇

𝑓

𝑡
:

𝐾 → 𝐾 by

𝑇
𝑓

𝑡
𝑥 = 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑇𝑥, 𝑥 ∈ 𝐾. (2)

It follows from Banach’s contraction principle that it yields
a unique fixed point 𝑧

𝑡
∈ 𝐾 of 𝑇

𝑓

𝑡
; that is, 𝑧

𝑡
is the unique

solution of the following equation:

𝑧
𝑡

= 𝑡𝑓 (𝑧
𝑡
) + (1 − 𝑡) 𝑇𝑧

𝑡
. (3)
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Moudafi [9] first proposed the viscosity approximation
method and proved that if 𝐸 is a real Hilbert space, then the
sequence {𝑧

𝑡
} converges strongly to a fixed point 𝑥

∗ of 𝑇 in
𝐾 which is the unique solution to the following variational
inequality:

⟨(𝐼 − 𝑓) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, 𝑥 ∈ 𝐹 (𝑇) . (4)

In 2004, Xu [10] extended Moudafi’s results [9] to the
framework of uniformly smooth Banach spaces and proved
the strong convergence of both the continuous scheme and
iterative scheme. Very recently, Yao et al. [11] introduced the
following iteration scheme:

𝑥
0

= 𝑥 ∈ 𝐾 chosen arbitrarily,

𝑦
𝑛

= 𝛽
𝑛
𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑓 ∈ Π

𝐾
, 𝑛 ≥ 0,

(5)

where the sequences {𝛼
𝑛
} and {𝛽

𝑛
} ⊂ [0, 1]. By using the vis-

cosity approximation method, they proved that the approxi-
mate solutions converge strongly to a solution of a variational
inequality under some mild conditions.

Let {𝑇
𝑛
}
∞

𝑛=1
: 𝐾 → 𝐾 be an infinite family of nonex-

pansive mappings and let 𝛾
1
, 𝛾
2
, . . . be real numbers such that

0 ≤ 𝛾
𝑛

≤ 1 for every 𝑖 ∈ N (the set of positive integers). Let
𝐼 be the identity operator on a real Banach space 𝐸. For any
𝑛 ∈ N, the mapping 𝑊

𝑛
is defined by

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛

= 𝛾
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝛾
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝛾
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛

+ (1 − 𝛾
𝑛−1

) 𝐼,

...

𝑈
𝑛,𝑘

= 𝛾
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝛾
𝑘
) 𝐼,

𝑈
𝑛,𝑘−1

= 𝛾
𝑘−1

𝑇
𝑘−1

𝑈
𝑛,𝑘

+ (1 − 𝛾
𝑘−1

) 𝐼,

...

𝑈
𝑛,2

= 𝛾
2
𝑇
2
𝑈
𝑛,3

+ (1 − 𝛾
2
) 𝐼,

𝑊
𝑛

= 𝑈
𝑛,1

= 𝛾
1
𝑇
1
𝑈
𝑛,2

+ (1 − 𝛾
1
) 𝐼.

(6)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝛾
𝑛
, 𝛾
𝑛−1

, . . . , 𝛾
1
(see [12]). Nonexpansivity

of each 𝑇
𝑖
ensures the nonexpansivity of 𝑊

𝑛
.

Shimoji and Takahashi [12] first introduced an iterative
algorithm given by an infinite family of nonexpansive map-
pings. Furthermore, they considered the feasibility problem
of finding a solution of infinite convex inequalities and
the problem of finding a common fixed point of infinite
nonexpansive mappings. Bauschke and Borwein [13] pointed
out that the well-known convex feasibility problem reduces
to finding a point in the intersection of the fixed point sets of
a family of nonexpansive mappings. The problem of finding
an optimal point that minimizes a given cost function over

the common set of fixed points of a family of nonexpansive
mappings is of wide interdisciplinary interest and practical
importance (see [14]). A simple algorithmic solution to
the problem of minimizing a quadratic function over the
common set of fixed points of a family of nonexpansive
mappings is of extreme value in many applications including
set theoretic signal estimation (see [14, 15]). It is now one of
the main tools in studying convergence of iterative methods
for approaching a common fixed point of an infinite family of
nonlinear mappings.

Cho et al. [16] proposed the following iterative scheme:

𝑥
0

= 𝑥 ∈ 𝐾 chosen arbitrarily,

𝑦
𝑛

= 𝛽
𝑛
𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝑊
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑓 ∈ Π

𝐾
, 𝑛 ≥ 0,

(7)

where {𝑊
𝑛
} is defined by (6) and the sequences {𝛼

𝑛
} and {𝛽

𝑛
}

are in [0, 1]. Under some conditions, they proved the strong
convergence of the sequence {𝑥

𝑛
} defined by (7) and extended

the results of [11].
Motivated and inspired by the earlier methods proposed

in the literature and their convergence, we consider the fol-
lowing two-step viscosity approximation method for finding
common fixed point of an infinite family of nonexpansive
mappings {𝑇

𝑖
}
∞

𝑖=1
:

𝑥
0

= 𝑥 ∈ 𝐾,

𝑦
𝑛

= 𝑏
𝑛
𝑥
𝑛

+ (1 − 𝑏
𝑛
) 𝑊
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑦
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) 𝑊
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0,

(8)

where {𝛼
𝑛
}, {𝑏
𝑛
}, {𝛽
𝑛
}, and {𝛼

𝑛
+ 𝛽
𝑛
} ⊂ (0, 1) and 𝑓 ∈ Π

𝐾
. By

using viscosity approximation methods, the purpose of this
paper is to study necessary and sufficient conditions for the
convergence of the iterative algorithm (8) for finding approx-
imate common fixed points of an infinite countable family of
nonexpansive mappings {𝑇

𝑖
}
∞

𝑖=1
. The results presented in this

paper extend and improve some recent results.

2. Preliminaries

Let 𝐸 be a Banach space with dimension 𝐸 ≥ 2 and let 𝐸
∗ be

its dual. The modulus of convexity of 𝐸 is the function 𝛿
𝐸

:

(0, 2] → [0, 1] defined by

𝛿
𝐸 (𝜀) = inf {1 −

1

2

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩 : ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = 𝜀} .

(9)

A Banach space 𝐸 is uniformly convex if and only if 𝛿
𝐸
(𝜀) > 0

for all 𝜀 ∈ (0, 2]. A Banach space 𝐸 is said to be strictly convex
if

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 = 1 for 𝑥 ̸= 𝑦 implies
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩

2
< 1. (10)

Suppose that {𝑥
𝑛
} is a sequence in 𝐸; then 𝑥

𝑛
→ 𝑥 (resp.,

𝑥
𝑛

⇀ 𝑥) will denote strong (resp., weak) convergence of the
sequence {𝑥

𝑛
} to 𝑥.
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Let the value of𝑓 ∈ 𝐸
∗ at 𝑥 ∈ 𝐸 be denoted by ⟨𝑥, 𝑓⟩.The

normalized duality mapping 𝐽 from 𝐸 into 2
𝐸
∗

is defined by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2
} , ∀𝑥 ∈ 𝐸, (11)

where 𝐸
∗ denotes the dual space of a real Banach space 𝐸.

Let 𝑆(𝐸) = {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}. The norm ‖ ⋅ ‖ of 𝐸 is said
to be Gâteaux differentiable (and 𝐸 is said to be smooth) if the
limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡
(12)

exists for all 𝑥, 𝑦 ∈ 𝑆(𝐸). The norm is said to be uniformly
Gâteaux differentiable if, for all 𝑦 ∈ 𝑆(𝐸), the limit is attained
uniformly for each 𝑥 ∈ 𝑆(𝐸). The norm ‖ ⋅ ‖ of 𝐸 is said to
be Fréchet differentiable if, for all 𝑥 ∈ 𝑆(𝐸), the limit exists
uniformly for each 𝑦 ∈ 𝑆(𝐸). The norm ‖ ⋅ ‖ of 𝐸 is said to be
uniformly Fréchet differentiable (or 𝐸 is said to be uniformly
smooth) if the limit is attained uniform for all 𝑥, 𝑦 ∈ 𝑆(𝐸).
It is well known that (uniform) Fréchet differentiability of
the norm 𝐸 implies (uniform) Gâteaux differentiability of
norm 𝐸. It is known (see [17]) that if 𝐸 is smooth, then
the normalized duality mapping 𝐽 is single-valued and norm
to weak star continuous. And we know that if the norm of
𝐸 is uniformly Gâteaux differentiable, then the normalized
duality mapping is norm to weak star uniformly continuous
on each bounded subset of 𝐸.

Let 𝐶 and 𝐷 be nonempty subsets of a Banach space 𝐸

such that 𝐶 is nonempty closed convex and 𝐷 ⊂ 𝐶; then a
mapping 𝑃 : 𝐶 → 𝐷 is said to be a retraction if 𝑃𝑥 = 𝑥

for all 𝑥 ∈ 𝐶. A retraction 𝑃 : 𝐶 → 𝐷 is said to be sunny
[18] if 𝑃(𝑃𝑥 + 𝑡(𝑥 − 𝑃𝑥)) = 𝑃𝑥 for all 𝑥 ∈ 𝐶 and 𝑡 ≥ 0 with
𝑃𝑥 + 𝑡(𝑥 − 𝑃𝑥) ∈ 𝐶. A sunny nonexpansive retraction is a
sunny retraction, which is also a nonexpansive mapping. In
a smooth Banach space 𝐸, it is well known [18] that 𝑃 is a
sunny nonexpansive retraction from 𝐶 to 𝐷 if and only if the
following inequality holds:

⟨𝑥 − 𝑃𝑥, 𝐽 (𝑧 − 𝑃𝑥)⟩ ≤ 0, ∀𝑥 ∈ 𝐶, 𝑧 ∈ 𝐷. (13)

Concerning 𝑊
𝑛
, the next lemmas play a crucial role for

proving our main results.

Lemma 1 (cf. [12]). Let 𝐾 be a nonempty, closed, and convex
subset of a strictly convex Banach space 𝐸. Let 𝑇

1
, 𝑇
2
, . . . be

nonexpansive mappings of 𝐾 into itself such that ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
)

is nonempty and let 𝛾
1
, 𝛾
2
, . . . be real numbers such that 0 <

𝛾
𝑛

≤ 𝑏 < 1 for any 𝑛 ≥ 1. Then, for any 𝑥 ∈ 𝐾 and 𝑘 ∈ N, the
limit lim

𝑛→∞
𝑈
𝑛,𝑘

𝑥 exists.

Using Lemma 1, we can define the mapping 𝑊 of 𝐾 into
itself as follows:

𝑊𝑥 = lim
𝑛→∞

𝑊
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,1

𝑥, ∀𝑥 ∈ 𝐾. (14)

Such a mapping 𝑊 is said to be the 𝑊-mapping generated
by 𝑇
1
, 𝑇
2
, . . . and 𝛾

1
, 𝛾
2
, . . .. Throughout this paper, we will

assume that 0 < 𝛾
𝑛

≤ 𝑏 < 1 for all 𝑛 ≥ N.

Lemma 2 (cf. [12]). Let 𝐾 be a nonempty, closed, and convex
subset of a strictly convex Banach space 𝐸. Let 𝑇

1
, 𝑇
2
, . . . be

nonexpansive mappings of 𝐾 into itself such that ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
)

is nonempty and let 𝛾
1
, 𝛾
2
, . . . be real numbers such that 0 <

𝛾
𝑛

≤ 𝑏 < 1 for any 𝑛 ≥ 1. Then 𝐹(𝑊) = ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
).

We also need the following lemmas for the proof of our
main results.

Lemma 3. Let 𝐸 be a real Banach space and let 𝐽 : 𝐸 → 2
𝐸
∗

be the normalized duality mapping; then for any 𝑥, 𝑦 ∈ 𝐸 the
following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩
2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ , 𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(15)

Lemma 4 (cf. [19], Lemma 2.5). Let {𝑎
𝑛
} be a sequence of

nonnegative real numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝜆
𝑛
) 𝑎
𝑛

+ 𝜆
𝑛
𝜎
𝑛

+ 𝜇
𝑛
, 𝑛 ≥ 0, (16)

where (i) {𝜆
𝑛
} ⊂ [0, 1], ∑

∞

𝑛=1
𝜆
𝑛

= ∞; (ii) lim sup
𝑛→∞

𝜎
𝑛

≤ 0;
(iii) 𝜇
𝑛

≥ 0, ∑∞
𝑛=1

𝜇
𝑛

< ∞. Then {𝑎
𝑛
} converges to zero as 𝑛 →

∞.

Lemma 5 (cf. [20]). Let {𝑥
𝑛
}, {𝑦
𝑛
} be two bounded sequences

in a Banach space 𝐸 and 𝛽
𝑛

∈ [0, 1] with 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛

< 1. Suppose that 𝑥
𝑛+1

= 𝛽
𝑛
𝑦
𝑛

+ (1 − 𝛽
𝑛
)𝑥
𝑛
for

all integers 𝑛 ≥ 0 and lim sup
𝑛→∞

(‖𝑦
𝑛+1

−𝑦
𝑛
‖−‖𝑥
𝑛+1

−𝑥
𝑛
‖) ≤

0. Then lim
𝑛→∞

‖𝑥
𝑛

− 𝑦
𝑛
‖ = 0.

It follows from [10, Theorem 4.1] that we have the
following results.

Lemma 6 (cf. [10]). Let 𝐸 be a uniformly smooth Banach
space. Let 𝐾 be a nonempty, closed, and convex subset of 𝐸,
and let 𝑇 : 𝐾 → 𝐾 be a nonexpansive mapping with 𝐹(𝑇) ̸= 0

and 𝑓 ∈ Π
𝐾
. Then the sequence {𝑥

𝑡
} defined by

𝑥
𝑡

= 𝑡𝑓 (𝑥
𝑡
) + (1 − 𝑡) 𝑇𝑥

𝑡 (17)

converges strongly to a fixed point of 𝑇 as 𝑡 → 0. If we define
𝑃 : Π
𝐾

→ 𝐹(𝑇) by

𝑃 (𝑓) := lim
𝑡→0

𝑥
𝑡
, ∀𝑓 ∈ Π

𝐾
, (18)

then 𝑃(𝑓) solves the following variational inequality:

⟨(𝐼 − 𝑓) 𝑃 (𝑓) , 𝐽 (𝑃 (𝑓) − 𝑝)⟩ ≤ 0,

∀𝑓 ∈ Π
𝐾

, 𝑝 ∈ 𝐹 (𝑇) .
(19)

In particular, if 𝑓 = 𝑢 ∈ 𝐾 is a constant, then (19) is reduced
to the sunny nonexpansive retraction from 𝐾 onto 𝐹(𝑇):

⟨𝑃 (𝑢) − 𝑢, 𝐽 (𝑃 (𝑢) − 𝑝)⟩ ≤ 0, 𝑢 ∈ 𝐾, 𝑝 ∈ 𝐹 (𝑇) . (20)

3. Main Results

In the sequel,𝐹 = ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) denotes the set of common fixed

points for a family of nonexpansive mappings {𝑇
𝑖
}
∞

𝑖=1
.
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Lemma7. Let𝐸 be a real strictly convex and uniformly smooth
Banach space. Let 𝐾 be a nonempty, closed, and convex subset
of𝐸 and let𝑇

𝑖
be a nonexpansive mapping from𝐾 into itself for

𝑖 ∈ N. Assume that 𝐹 = ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and 𝑓 ∈ Π

𝐾
. Suppose

that the sequences {𝛼
𝑛
}, {𝛽
𝑛
}, {𝑏
𝑛
}, and {𝛼

𝑛
+𝛽
𝑛
} in (0, 1) satisfy

the following conditions:

(1) lim
𝑛→∞

𝛼
𝑛

= 0, ∑
∞

𝑛=1
𝛼
𝑛

= ∞ and 0 <

lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1;

(2) lim
𝑛→∞

|𝑏
𝑛+1

− 𝑏
𝑛
| = 0 and lim inf

𝑛→∞
𝑏
𝑛

> 0.

Let the two-step viscosity approximation iterative scheme {𝑥
𝑛
}

be defined by (8). Then

(i) the sequence {𝑥
𝑛
} is bounded;

(ii) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(iii) lim
𝑛→∞

‖𝑊𝑥
𝑛

− 𝑥
𝑛
‖ = 0.

Proof. (i) We should prove that ‖𝑥
𝑛

− 𝑝‖ ≤ max{‖𝑥
0

−

𝑝‖, (1/(1−𝛼))‖𝑓(𝑝)−𝑝‖} for all 𝑛 ≥ 0 and given 𝑝 ∈ 𝐹 and so
{𝑦
𝑛
}, {𝑧
𝑛
}, {𝑓(𝑥

𝑛
)}, {𝑊

𝑛
𝑥
𝑛
}, {𝑊
𝑛
𝑦
𝑛
}, and {𝑊

𝑛
𝑧
𝑛
} are bounded.

Indeed, take a given 𝑝 ∈ 𝐹. It follows from (8) that

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑏
𝑛

(𝑥
𝑛

− 𝑝) + (1 − 𝑏
𝑛
) (𝑊
𝑛
𝑥
𝑛

− 𝑝)
󵄩󵄩󵄩󵄩

≤ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝑏

𝑛
)

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 .

(21)

It follows from (8) and (21) that

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛼
𝑛

(𝑓 (𝑦
𝑛
) − 𝑝) + 𝛽

𝑛
(𝑥
𝑛

− 𝑝)

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) (𝑊
𝑛
𝑦
𝑛

− 𝑝)
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛼

𝑛
− 𝛽
𝑛
)

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛
𝛼

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 − (1 − 𝛼) 𝛼

𝑛
)

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

≤ max {
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 ,

1

1 − 𝛼

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩} .

(22)

By mathematical induction, we obtain that

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 ≤ max {

󵄩󵄩󵄩󵄩𝑥
0

− 𝑝
󵄩󵄩󵄩󵄩 ,

1

1 − 𝛼

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩} (23)

for all 𝑛 ≥ 0. Hence, {𝑥
𝑛
} is bounded and so are {𝑦

𝑛
}, {𝑧
𝑛
},

{𝑓(𝑥
𝑛
)}, {𝑊

𝑛
𝑥
𝑛
}, {𝑊
𝑛
𝑦
𝑛
}, and {𝑊

𝑛
𝑧
𝑛
}.

(ii) Putting 𝑙
𝑛

= (𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛
)/(1 − 𝛽

𝑛
), we have

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝑙
𝑛
, ∀𝑛 ≥ 0. (24)

Then we have

𝑙
𝑛+1

− 𝑙
𝑛

=
𝑥
𝑛+2

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

= (𝛼
𝑛+1

(𝑓 (𝑦
𝑛+1

) − 𝑊
𝑛+1

𝑦
𝑛+1

)

+ (1 − 𝛽
𝑛+1

) 𝑊
𝑛+1

𝑦
𝑛+1

) × (1 − 𝛽
𝑛+1

)
−1

−
𝛼
𝑛

(𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑦
𝑛
) + (1 − 𝛽

𝑛
) 𝑊
𝑛
𝑦
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(𝑓 (𝑦
𝑛+1

) − 𝑊
𝑛+1

𝑦
𝑛+1

)

−
𝛼
𝑛

1 − 𝛽
𝑛

(𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑦
𝑛
)

+ (𝑊
𝑛+1

𝑦
𝑛+1

− 𝑊
𝑛+1

𝑦
𝑛
) + (𝑊

𝑛+1
𝑦
𝑛

− 𝑊
𝑛
𝑦
𝑛
) ,

󵄩󵄩󵄩󵄩𝑦
𝑛+1

− 𝑦
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑏
𝑛+1

𝑥
𝑛+1

+ (1 − 𝑏
𝑛+1

) 𝑊
𝑛+1

𝑥
𝑛+1

− 𝑏
𝑛
𝑥
𝑛

− (1 − 𝑏
𝑛
) 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝑏
𝑛+1

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝑏
𝑛+1

)

×
󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑥
𝑛+1

− 𝑊
𝑛+1

𝑥
𝑛

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝑏𝑛+1 − 𝑏

𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩) + (1 − 𝑏
𝑛+1

)

×
󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝑏𝑛+1 − 𝑏

𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩)

+
󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(25)

Since 𝑇
𝑖
and 𝑈

𝑛,𝑖
are nonexpansive, from (6), we obtain

󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 𝛾
1

󵄩󵄩󵄩󵄩𝑇
1
𝑈
𝑛+1,2

𝑥
𝑛

− 𝑇
1
𝑈
𝑛,2

𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛾
1

󵄩󵄩󵄩󵄩𝑈
𝑛+1,2

𝑥
𝑛

− 𝑈
𝑛,2

𝑥
𝑛

󵄩󵄩󵄩󵄩

= 𝛾
1

󵄩󵄩󵄩󵄩𝛾
2
𝑇
2
𝑈
𝑛+1,3

𝑥
𝑛

− 𝛾
2
𝑇
2
𝑈
𝑛,3

𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛾
1
𝛾
2

󵄩󵄩󵄩󵄩𝑈
𝑛+1,3

𝑥
𝑛

− 𝑈
𝑛,3

𝑥
𝑛

󵄩󵄩󵄩󵄩

= 𝛾
1
𝛾
2

󵄩󵄩󵄩󵄩𝛾
3
𝑇
3
𝑈
𝑛+1,4

𝑥
𝑛

− 𝛾
3
𝑇
3
𝑈
𝑛,4

𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛾
1
𝛾
2
𝛾
3

󵄩󵄩󵄩󵄩𝑈
𝑛+1,4

𝑥
𝑛

− 𝑈
𝑛,4

𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅

≤ 𝛾
1
𝛾
2
𝛾
3

⋅ ⋅ ⋅ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑈
𝑛+1,𝑛+1

𝑥
𝑛

− 𝑈
𝑛,𝑛+1

𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝑀

𝑛

∏
𝑖=1

𝛾
𝑖
,

(26)

where𝑀 ≥ 0 is a constant such that ‖𝑈
𝑛+1,𝑛+1

𝑥
𝑛
−𝑈
𝑛,𝑛+1

𝑥
𝑛
‖ ≤

𝑀 for all 𝑛 ≥ 0. Similarly, we have

󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑦
𝑛

− 𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑀
1

𝑛

∏
𝑖=1

𝛾
𝑖
, (27)
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where𝑀
1

≥ 0 is a constant such that ‖𝑈
𝑛+1,𝑛+1

𝑦
𝑛
−𝑈
𝑛,𝑛+1

𝑦
𝑛
‖ ≤

𝑀
1
for all 𝑛 ≥ 0. Combining (25), (26), and (27), we have

󵄩󵄩󵄩󵄩𝑙
𝑛+1

− 𝑙
𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛+1

)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑦
𝑛+1

󵄩󵄩󵄩󵄩)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩)

+
󵄩󵄩󵄩󵄩𝑦
𝑛+1

− 𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑦
𝑛

− 𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

× (
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛+1

)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊
𝑛+1

𝑦
𝑛+1

󵄩󵄩󵄩󵄩)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨𝑏𝑛+1 − 𝑏

𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩)

+ (𝑀 + 𝑀
1
)

𝑛

∏
𝑖=1

𝛾
𝑖
.

(28)

From conditions (1), (2), and 0 < 𝛾
𝑛

≤ 𝑏 < 1, we get

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑙
𝑛+1

− 𝑙
𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩) ≤ 0. (29)

It follows from Lemma 5 that lim
𝑛→∞

‖𝑙
𝑛

− 𝑥
𝑛
‖ = 0. Noting

(24), we obtain

𝑥
𝑛+1

− 𝑥
𝑛

= (1 − 𝛽
𝑛
) (𝑙
𝑛

− 𝑥
𝑛
) . (30)

Thus, we get that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0 holds.

(iii) Observe that
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼
𝑛

(𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛
) + 𝛽
𝑛

(𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛
)

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) (𝑊
𝑛
𝑦
𝑛

− 𝑊
𝑛
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
)

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑦
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
)

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) (1 − 𝑏

𝑛
)

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛼
𝑛

(1 − 𝑏
𝑛
))

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 − (1 − 𝛽
𝑛
) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 ,

(31)

which implies that

(1 − 𝛽
𝑛
) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩) .
(32)

Since 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and
lim inf

𝑛→∞
𝑏
𝑛

> 0, there exists an integer 𝑛
0

≥ 1 such that

𝑎 ≤ 𝛽
𝑛

≤ 𝑏, 𝑏
𝑛

≥ 𝑎, ∀𝑛 ≥ 𝑛
0 (33)

for some constants 𝑎, 𝑏 ∈ (0, 1). Hence we conclude that, for
all 𝑛 ≥ 𝑛

0
,

𝑎 (1 − 𝑏)
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛽
𝑛
) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑓 (𝑦
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩) .

(34)

Since lim
𝑛→∞

𝛼
𝑛

= 0 and lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0 and {𝑥

𝑛
},

{𝑦
𝑛
}, and {𝑊

𝑛
𝑥
𝑛
} are bounded sequences, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (35)

On the other hand, we have
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 . (36)

Since lim
𝑛→∞

𝑊
𝑛
𝑥 = 𝑊𝑥 for any 𝑥 ∈ 𝐾 and for any 𝜖 > 0,

there exists a positive integer𝑁
0
such that ‖𝑊𝑥−𝑊

𝑛
𝑥‖ ≤ 𝜖 for

all𝑥 ∈ {𝑥
𝑛
} and for all 𝑛 ≥ 𝑁

0
. In particular, ‖𝑊𝑥

𝑛
−𝑊
𝑛
𝑥
𝑛
‖ ≤ 𝜖

for all 𝑛 ≥ 𝑁
0
. Thus we have that
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 (𝑛 󳨀→ ∞) . (37)

This together with (36) implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑊𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (38)

This completes the proof.

Theorem 8. Let 𝐸 be a real strictly convex and uniformly
smooth Banach space. Let𝐾 be a nonempty, closed, and convex
subset of 𝐸 and let 𝑇

𝑖
be a nonexpansive mapping from 𝐾 into

itself for 𝑖 ∈ N. Assume that 𝐹 = ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and 𝑓 ∈ Π

𝐾
.

Suppose that the sequences {𝛼
𝑛
}, {𝛽
𝑛
}, {𝑏
𝑛
}, and {𝛼

𝑛
+ 𝛽
𝑛
} in

(0, 1) satisfy the following conditions:

(1) lim
𝑛→∞

𝛼
𝑛

= 0, ∑
∞

𝑛=1
𝛼
𝑛

= ∞ and 0 <

lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1;
(2) lim

𝑛→∞
|𝑏
𝑛+1

− 𝑏
𝑛
| = 0 and lim inf

𝑛→∞
𝑏
𝑛

> 0.

Then the two-step viscosity approximation iterative scheme
{𝑥
𝑛
} defined by (8) converges strongly to 𝑃(𝑓) ∈ 𝐹, where 𝑃(𝑓)

is the unique solution of the following variational inequality:

⟨(𝐼 − 𝑓) 𝑃 (𝑓) , 𝐽 (𝑃 (𝑓) − 𝑝)⟩ ≤ 0, 𝑓 ∈ Π
𝐾

, 𝑝 ∈ 𝐹. (39)

Proof. It follows from Lemma 6 that there exists a solution
𝑃(𝑓) of a variational inequality:

⟨(𝐼 − 𝑓) 𝑃 (𝑓) , 𝐽 (𝑃 (𝑓) − 𝑝)⟩ ≤ 0, ∀𝑓 ∈ Π
𝐾

, 𝑝 ∈ 𝐹.

(40)

That is, 𝑃(𝑓) = lim
𝑡→0

𝑥
𝑡
, where 𝑥

𝑡
is defined by (17).
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We first show that lim sup
𝑛→∞

⟨𝑃(𝑓)−𝑓(𝑃(𝑓)), 𝐽(𝑃(𝑓)−

𝑥
𝑛
)⟩ ≤ 0, where 𝑃(𝑓) = lim

𝑡→0
+𝑥
𝑡
with 𝑥

𝑡
being the fixed

point of the contraction:

𝑥 󳨃󳨀→ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑊𝑥. (41)

Then, we can write

𝑥
𝑡
− 𝑥
𝑛
𝑗

= 𝑡 (𝑓 (𝑥
𝑡
) − 𝑥
𝑛
𝑗

) + (1 − 𝑡) (𝑊𝑥
𝑡
− 𝑥
𝑛
𝑗

) . (42)

Suppose that a subsequence {𝑥
𝑛
𝑗

} ⊂ {𝑥
𝑛
} is such that

lim sup
𝑛→∞

⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥
𝑛
)⟩

= lim
𝑗→∞

⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥
𝑛
𝑗

)⟩

(43)

and 𝑥
𝑛
𝑗

⇀ 𝑝 for some 𝑝 ∈ 𝐸. It follows from (38) that
lim
𝑗→∞

‖𝑥
𝑛
𝑗

− 𝑊𝑥
𝑛
𝑗

‖ = 0. Putting

𝑓
𝑗 (𝑡) = (1 − 𝑡)

2
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑊𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

× (2
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑊𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
) 󳨀→ 0 (𝑗 󳨀→ ∞) ,

(44)

it follows from (42), Lemma 3, that
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑡)
2
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
𝑗

, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
𝑗

)⟩

≤ (1 − 𝑡)
2
(
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊𝑥
𝑡
− 𝑊𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩
𝑊𝑥
𝑛
𝑗

− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
𝑗

)⟩

+ 2𝑡 ⟨𝑥
𝑡
− 𝑥
𝑛
𝑗

, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
𝑗

)⟩

≤ (1 − 𝑡)
2
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝑓
𝑗 (𝑡)

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
𝑗

)⟩

+ 2𝑡
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(45)

The last inequality implies that

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩ ≤
𝑡

2

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝑡
𝑓
𝑗 (𝑡) .

(46)

Letting 𝑗 → ∞ and noting (44) yield that

lim sup
𝑗→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩ ≤
𝑡

2
𝑀
2
, (47)

where 𝑀
1

> 0 is a constant such that 𝑀
2

≥ ‖𝑥
𝑡
− 𝑥
𝑛
𝑗

‖
2 for all

𝑛 ≥ 0 and 𝑡 ∈ (0, 1). Taking 𝑡 → 0 in (47) and noticing the

fact that the two limits are interchangeable due to the fact that
𝐽 is uniformly continuous on bounded subsets of 𝐸 from the
strong topology of 𝐸 to the weak∗ topology of 𝐸

∗, we have

lim sup
𝑗→∞

⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥
𝑛
𝑗

)⟩ ≤ 0. (48)

Indeed, letting 𝑡 → 0, from (47) we have

lim sup
𝑡→0

lim sup
𝑗→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩ ≤ 0. (49)

Thus, for arbitrary 𝜖 > 0, there exists a positive number 𝛿
1

such that, for any 𝑡 ∈ (0, 𝛿
1
), we have

lim sup
𝑗→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩ ≤
𝜖

2
. (50)

Since 𝑥
𝑡

→ 𝑃(𝑓) as 𝑡 → 0, the set {𝑥
𝑡

− 𝑥
𝑛
𝑗

} is bounded
and the duality mapping 𝐽 is norm-to-norm uniformly
continuous on bounded subset of 𝐸; there exists 𝛿

2
> 0 such

that, for any 𝑡 ∈ (0, 𝛿
2
),

󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥

𝑛
𝑗

)⟩

− ⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩
󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥

𝑛
𝑗

) − 𝐽 (𝑥
𝑡
− 𝑥
𝑛
𝑗

)⟩

+ ⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) − (𝑥
𝑡
− 𝑓 (𝑥

𝑡
)) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩
󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥

𝑛
𝑗

) − 𝐽 (𝑥
𝑡
− 𝑥
𝑛
𝑗

)⟩
󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄩󵄩󵄩󵄩𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) − (𝑥

𝑡
− 𝑓 (𝑥

𝑡
))

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑛
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
<

𝜖

2
.

(51)

Choose 𝛿 = min{𝛿
1
, 𝛿
2
}; we have, for all 𝑡 ∈ (0, 𝛿) and 𝑗 ∈ N,

⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥
𝑛
𝑗

)⟩

< ⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩ +
𝜖

2
,

(52)

which implies that

lim sup
𝑗→∞

⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥
𝑛
𝑗

)⟩

≤ lim sup
𝑗→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
𝑗

)⟩ +
𝜖

2
.

(53)

This together with (50) implies that

lim sup
𝑗→∞

⟨𝑃 (𝑓) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑃 (𝑓) − 𝑥
𝑛
𝑗

)⟩ ≤ 𝜖. (54)

Since 𝜖 is arbitrary, we have that lim sup
𝑗→∞

⟨𝑃(𝑓)−𝑓(𝑃(𝑓)),

𝐽(𝑃(𝑓) − 𝑥
𝑛
𝑗

)⟩ ≤ 0.
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Next, we claim that lim
𝑛→∞

‖𝑥
𝑛

− 𝑃(𝑓)‖ = 0. Indeed,
notice that (35) implies that

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 = (1 − 𝑏
𝑛
)

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0

as 𝑛 󳨀→ ∞.

(55)

It follows from (8) and Lemma 3 that
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
− 𝛽
𝑛
) (𝑊
𝑛
𝑦
𝑛

− 𝑃 (𝑓))

+𝛽
𝑛

(𝑥
𝑛

− 𝑃 (𝑓)) + 𝛼
𝑛

(𝑓 (𝑦
𝑛
) − 𝑃 (𝑓))

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
− 𝛽
𝑛
) (𝑊
𝑛
𝑦
𝑛

− 𝑃 (𝑓)) + 𝛽
𝑛
(𝑥
𝑛

− 𝑃(𝑓))
󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛

⟨𝑓 (𝑦
𝑛
) − 𝑃 (𝑓) , 𝐽 (𝑥

𝑛+1
− 𝑃 (𝑓))⟩

≤ ((1 − 𝛼
𝑛

− 𝛽
𝑛
)

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑦
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩)
2

+ 2𝛼
𝑛

⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑃 (𝑓)) , 𝐽 (𝑥

𝑛+1
− 𝑃 (𝑓))⟩

+ 2𝛼
𝑛

⟨𝑓 (𝑦
𝑛
) − 𝑓 (𝑥

𝑛
) , 𝐽 (𝑥

𝑛+1
− 𝑃 (𝑓))⟩

+ 2𝛼
𝑛

⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩

≤ (1 − 𝛼
𝑛
)
2󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 2𝛼𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩 + 2𝛼𝛼

𝑛

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩

≤ (1 − 𝛼
𝑛
)
2󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 𝛼𝛼
𝑛

× (
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2
)

+ 2𝛼𝛼
𝑛

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩

= (1 − (2 − 𝛼) 𝛼
𝑛

+ 𝛼
2

𝑛
)

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 𝛼𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 2𝛼𝛼
𝑛

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩 + 2𝛼

𝑛
⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) ,

𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩.

(56)

This implies that
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

≤
1 − (2 − 𝛼) 𝛼

𝑛

1 − 𝛼𝛼
𝑛

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+
𝛼
𝑛

1 − 𝛼𝛼
𝑛

× [𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 2𝛼
󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩

+ 2 ⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩]

= (1 −
2 (1 − 𝛼) 𝛼

𝑛

1 − 𝛼𝛼
𝑛

)
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+
𝛼
𝑛

1 − 𝛼𝛼
𝑛

× [𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 2𝛼
󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩

+ 2 ⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩]

≤ (1 −
2 (1 − 𝛼) 𝛼

𝑛

1 − 𝛼𝛼
𝑛

)
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+
𝛼
𝑛

1 − 𝛼𝛼
𝑛

× [𝛼
𝑛
𝑀
2

3
+ 2𝛼

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 𝑀
3

+2 ⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥
𝑛+1

− 𝑃 (𝑓))⟩] ,

(57)

where 𝑀
3

= sup
𝑛≥0

‖𝑥
𝑛

− 𝑃(𝑓)‖. Set

𝜆
𝑛

=
2 (1 − 𝛼) 𝛼

𝑛

1 − 𝛼𝛼
𝑛

,

𝜎
𝑛

=
𝛼
𝑛

2 (1 − 𝛼)
𝑀
2

3
+

𝛼

1 − 𝛼

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 𝑀
3

+
1

1 − 𝛼
⟨𝑓 (𝑃 (𝑓)) − 𝑃 (𝑓) , 𝐽 (𝑥

𝑛+1
− 𝑃 (𝑓))⟩ .

(58)

It follows from condition (1), (48), and (55) that 𝜆
𝑛

→ 0,
∑
∞

𝑛=1
𝜆
𝑛

= ∞, and lim sup
𝑛→∞

𝜎
𝑛

≤ 0. Then, (57) reduces to
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

≤ (1 − 𝜆
𝑛
)

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑃 (𝑓)
󵄩󵄩󵄩󵄩
2

+ 𝜆
𝑛
𝜎
𝑛
. (59)

FromLemma 4with𝜇
𝑛

= 0, we see that lim
𝑛→∞

‖𝑥
𝑛
−𝑃(𝑓)‖ =

0. This completes the proof.

If 𝑓 = 𝑢 ∈ 𝐾 is a constant inTheorem 8, then we have the
following result.

Corollary 9. Let 𝐸 be a real strictly convex and uniformly
smooth Banach space. Let𝐾 be a nonempty, closed, and convex
subset of 𝐸 and let 𝑇

𝑖
be a nonexpansive mapping from 𝐾 into

itself for 𝑖 ∈ 𝑁. Assume that 𝐹 = ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and 𝑓 ∈ Π

𝐾
.

Suppose that the sequences {𝛼
𝑛
}, {𝛽
𝑛
}, {𝑏
𝑛
}, and {𝛼

𝑛
+ 𝛽
𝑛
} in

(0, 1) satisfy the following conditions:
(1) lim

𝑛→∞
𝛼
𝑛

= 0, ∑
∞

𝑛=1
𝛼
𝑛

= ∞ and 0 <

lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1;
(2) lim

𝑛→∞
|𝑏
𝑛+1

− 𝑏
𝑛
| = 0 and lim inf

𝑛→∞
𝑏
𝑛

> 0.
Let {𝑥

𝑛
} be the sequence of successive approximations for the

iterative method defined by

𝑥
0

= 𝑥 ∈ 𝐾,

𝑦
𝑛

= 𝑏
𝑛
𝑥
𝑛

+ (1 − 𝑏
𝑛
) 𝑊
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) 𝑊
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0,

(60)

where 𝑊
𝑛
is a mapping defined by (6). Then {𝑥

𝑛
} converges

strongly to 𝑥
∗

∈ 𝐹, where 𝑥
∗

= 𝑃
𝐹
(𝑢) and 𝑃

𝐹
: 𝐾 → 𝐹 is

the unique sunny nonexpansive retraction; that is, 𝑃 satisfies
the following property:

⟨𝑢 − 𝑃𝑢, 𝐽 (𝑝 − 𝑃𝑢)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (61)
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Theorem 10. Let 𝐸 be a real strictly convex and uniformly
smooth Banach space. Let𝐾 be a nonempty, closed, and convex
subset of 𝐸 and let 𝑇

𝑖
be a nonexpansive mapping from 𝐾

into itself for 𝑖 ∈ N. Assume that 𝐹 = ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and

𝑓 ∈ Π
𝐾
. For given 𝑥

0
∈ 𝐾, let {𝑥

𝑛
} be the sequence of successive

approximations for the iterative method defined by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) 𝑊
𝑛
𝑥
𝑛
, ∀𝑛 ≥ 0,

(62)

where 𝑊
𝑛
is a mapping defined by (6), {𝛼

𝑛
}, {𝛼
𝑛

+ 𝛽
𝑛
} are

sequences in (0, 1), and {𝛽
𝑛
} is sequence in [0, 1) with 0 <

lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1. Then

(1) {𝑥
𝑛
} converges strongly to some commonfixed point𝑝 ∈

𝐹 if and only if ∑
∞

𝑛=1
𝛼
𝑛

= ∞ and lim
𝑛→∞

𝛼
𝑛

= 0;
(2) if {𝑥

𝑛
} converges strongly to some common fixed point

𝑧 ∈ 𝐹, for given 𝑓 ∈ Π
𝐾
, 𝑃(𝑓) = 𝑧 = lim

𝑛→∞
𝑥
𝑛
, then

𝑃(𝑓) is the unique solution of the following variational
inequality in 𝐹:

⟨(𝐼 − 𝑓) 𝑃 (𝑓) , 𝐽 (𝑃 (𝑓) − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (63)

Proof. (1) The sufficiency is obvious. Indeed, if we set 𝑏
𝑛

=

1 for all 𝑛 ≥ 0 in (8), it follows from Theorem 8 that {𝑥
𝑛
}

converges strongly to some common fixed point 𝑝 ∈ 𝐹.
Now we prove necessity. Assume that {𝑥

𝑛
} converges

strongly to some common fixed point 𝑝 ∈ 𝐹. If we set 𝛽
𝑛

= 0

in (62), we have

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑊
𝑛
𝑥
𝑛
. (64)

Therefore, we obtain that

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑊
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊
𝑛
𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑝
󵄩󵄩󵄩󵄩 󳨀→ 0,

𝑛 󳨀→ ∞.

(65)

This implies that

lim sup
𝑛→∞

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim sup
𝑛→∞

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 = 0.

(66)

Notice that in general𝑓(𝑝) is not equal to𝑝. However, since𝑓

is an arbitrary contraction, we get lim sup
𝑛→∞

𝛼
𝑛

= 0. Thus,
lim
𝑛→∞

𝛼
𝑛

= 0.
On the other hand, let us set 𝑓 = 0, 𝛽

𝑛
= 0, 𝐾 = {𝑥 ∈ 𝐸 :

‖𝑥‖ ≤ 1}, and 𝑇
𝑖
= 𝐼 : 𝐾 → 𝐾 in (62) for all 𝑖 ∈ 𝑁, where 𝐼 is

the identity operator. Clearly, 0 is the unique common fixed
point of {𝑇

𝑖
}
∞

𝑖=1
and 𝑊

𝑛
= 𝐼 for all 𝑛 ∈ 𝑁. Moreover, we have

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛

= (1 − 𝛼
𝑛
) (1 − 𝛼

𝑛−1
) 𝑥
𝑛−1

= ⋅ ⋅ ⋅ =

𝑛

∏
𝑖=1

(1 − 𝛼
𝑖
) 𝑥
0
.

(67)

Because 𝑥
𝑛

→ 0 ∈ 𝐹, we obtain

0 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 0
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

𝑛

∏
𝑖=1

(1 − 𝛼
𝑖
)

󵄩󵄩󵄩󵄩𝑥
0

󵄩󵄩󵄩󵄩 . (68)

Therefore, we get that∏∞
𝑖=1

(1−𝛼
𝑖
) = 0; equivalently,∑∞

𝑛=1
𝛼
𝑛

=

∞.
(2) If lim

𝑛→∞
𝑥
𝑛

= 𝑧 = 𝑃(𝑓), for all 𝑓 ∈ Π
𝐾
, we define a

contraction 𝑊
𝑡

: 𝐾 → 𝐾 by

𝑊
𝑡
𝑥 = 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑊𝑥, ∀𝑥 ∈ 𝐾. (69)

Banach’s contraction principle guarantees that 𝑊
𝑡
has a

unique fixed point 𝑥
𝑡
in 𝐾. It follows from Lemmas 2 and 6

that

lim
𝑛→∞

𝑥
𝑛

= lim
𝑡→0

𝑥
𝑡

= 𝑃 (𝑓) = 𝑧 ∈ 𝐹, ∀𝑓 ∈ Π
𝐾

, (70)

and 𝑃(𝑓) is the unique solution of the following variational
inequality in 𝐹:

⟨(𝐼 − 𝑓) 𝑃 (𝑓) , 𝐽 (𝑃 (𝑓) − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (71)

If we set 𝛽
𝑛

= 0 in (62), we have the following result.

Corollary 11. Let 𝐸 be a real strictly convex and uniformly
smooth Banach space. Let𝐾 be a nonempty, closed, and convex
subset of 𝐸 and let 𝑇

𝑖
be a nonexpansive mapping from 𝐾

into itself for 𝑖 ∈ N. Assume that 𝐹 = ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 and

𝑓 ∈ Π
𝐾
. For given 𝑥

0
∈ 𝐾, let {𝑥

𝑛
} be the sequence of successive

approximations for the iterative method defined by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑊
𝑛
𝑥
𝑛
, ∀𝑛 ≥ 0, (72)

where 𝑊
𝑛
is a mapping defined by (6) and {𝛼

𝑛
} is sequence in

(0, 1). Then

(1) {𝑥
𝑛
} converges strongly to some commonfixed point𝑝 ∈

𝐹 if and only if ∑
∞

𝑛=1
𝛼
𝑛

= ∞ and lim
𝑛→∞

𝛼
𝑛

= 0;
(2) if {𝑥

𝑛
} converges strongly to some common fixed point

𝑧 ∈ 𝐹, for given 𝑓 ∈ Π
𝐾
, 𝑃(𝑓) = 𝑧 = lim

𝑛→∞
𝑥
𝑛
, then

𝑃(𝑓) is the unique solution of the following variational
inequality in 𝐹:

⟨(𝐼 − 𝑓) 𝑃 (𝑓) , 𝐽 (𝑃 (𝑓) − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (73)

Remark 12. Corollary 11 improvesTheorem 4.2 of [10] from a
single nonexpansive mapping to an infinite countable family
of nonexpansivemappings and generalizes the corresponding
results by Xu [19], Halpern [21], Lions [22], and Wittmann
[23] to the viscosity methods. And our iterative method
presented in this paper can be reviewed as a refinement
and modification of the iterative methods in the literature.
Moreover we show necessary and sufficient conditions for the
convergence of the viscosity iterative algorithm for finding
approximate common fixed points of an infinite family of
nonexpansive mappings.
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