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We show that some definitions of multidimensional coincidence points are not compatible with the mixed monotone property.
Thus, some theorems reported in the recent publications (Dalal et al., 2014 and Imdad et al., 2013) have gaps. We clarify these gaps
and we present a new theorem to correct the mentioned results. Furthermore, we show how multidimensional results can be seen
as simple consequences of our unidimensional coincidence point theorem.

1. Introduction and Preliminaries

In the sequel, 𝑋 will be a nonempty set and ⪯ will represent
a partial order on 𝑋. Given 𝑛 ∈ N with 𝑛 ≥ 2, let denote by
𝑋
𝑛 the product space 𝑋 × 𝑋× (𝑛)⋅ ⋅ ⋅ ×𝑋 of 𝑛 identical copies of

𝑋.
In [1], Guo and Lakshmikantham introduced the notion

of coupled fixed point and, thus, they initiated the investiga-
tion of multidimensional fixed point theory.

Definition 1 (Guo andLakshmikantham [1]). Let𝐹 : 𝑋×𝑋 →

𝑋 be a given mapping.We say that (𝑥, 𝑦) ∈ 𝑋×𝑋 is a coupled
fixed point of 𝐹 if

𝐹 (𝑥, 𝑦) = 𝑥, 𝐹 (𝑦, 𝑥) = 𝑦. (1)

Following this initial paper [1], in 2006, Bhaskar and Lak-
shmikantham [2] obtained some coupled fixed point theo-
rems for mapping 𝐹 : 𝑋 × 𝑋 → 𝑋 (where 𝑋 is a par-
tially ordered metric space) by defining the notion of mixed
monotone mapping.

Definition 2 (see [2]). Let (𝑋, ⪯) be a partially ordered set.
A mapping 𝐹 : 𝑋 × 𝑋 → 𝑋. 𝐹 is said to have the mixed

monotone property if 𝐹(𝑥, 𝑦) is monotone nondecreasing in 𝑥
and is monotone nonincreasing in 𝑦; that is, for any 𝑥, 𝑦 ∈ 𝑋,
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1
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2
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2
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1
) .

(2)

After that, Lakshmikanthamand Ćirić [3] proved coupled
fixed/coincidence point theorems for mappings 𝐹 : 𝑋×𝑋 →

𝑋 and 𝑔 : 𝑋 → 𝑋 by introducing the concept of the mixed
𝑔-monotone property. Inspired by these papers [2, 3], Berinde
and Borcut defined tripled fixed points and established some
tripled fixed point theorems.

Definition 3 (Berinde and Borcut [4]). Let 𝐹 : 𝑋3 → 𝑋 be a
given mapping. We say that (𝑥, 𝑦, 𝑥) ∈ 𝑋3 is a tripled fixed
point of 𝐹 if

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(3)

Definition 4 (see [4]). Let (𝑋, ⪯) be a partially ordered set and
𝐹 : 𝑋
3

→ 𝑋. We say that 𝐹 has themixed monotone property
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if 𝐹(𝑥, 𝑦, 𝑧) is monotone nondecreasing in 𝑥 and 𝑧 and it is
monotone nonincreasing in 𝑦; that is, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋
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2
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(4)

As a natural extension, Karapınar [5] studied the quadru-
ple case (see also [6, 7]).

Definition 5 (see [5]). An element (𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑋4 is called a
quadruple fixed point of 𝐹 : 𝑋4 → 𝑋 if

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥, 𝐹 (𝑦, 𝑧, 𝑤, 𝑥) = 𝑦,

𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑧, 𝐹 (𝑤, 𝑥, 𝑦, 𝑧) = 𝑤.
(5)

Definition 6 (see [5]). Let (𝑋, ⪯) be a partially ordered set
and 𝐹 : 𝑋4 → 𝑋. We say that 𝐹 has the mixed monotone
property if 𝐹(𝑥, 𝑦, 𝑧, 𝑤) is monotone nondecreasing in 𝑥 and
𝑧 and it is monotone nonincreasing in 𝑦 and𝑤; that is, for any
𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋
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(6)

When a mapping 𝑔 : 𝑋 → 𝑋 is involved, we have the
notion of coincidence point. We will only recall the corre-
sponding definitions in the quadruple case since they are
similar in other dimensions.

Definition 7 (see [6]). An element (𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑋4 is called
a quadrupled coincident point of the mappings 𝐹 : 𝑋4 → 𝑋

and 𝑔 : 𝑋 → 𝑋 if

𝑔𝑥 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑤) , 𝑔𝑦 = 𝐹 (𝑦, 𝑧, 𝑤, 𝑥) ,

𝑔𝑧 = 𝐹 (𝑧, 𝑤, 𝑥, 𝑦) , 𝑔𝑤 = 𝐹 (𝑤, 𝑥, 𝑦, 𝑧) .

(7)

Definition 8 (see [6]). Let (𝑋, ⪯) be a partially ordered set and
let 𝐹 : 𝑋4 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings. We
say 𝐹 has themixed 𝑔-monotone property if 𝐹(𝑥, 𝑦, 𝑧, 𝑤) is 𝑔-
nondecreasing in 𝑥 and 𝑧 and is 𝑔-nonincreasing in 𝑦 and𝑤;
that is, for any 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋,
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(8)

It is very natural to extend the definition of 2-dimensional
fixed point (coupled fixed point), 3-dimensional fixed point
(tripled fixed point), and so on to multidimensional fixed
point (𝑛-tuple fixed point) (see, e.g., [8–19]). In this paper, we
give some remarks on the notion of 𝑛-tuple fixed point given
in several papers, such as Imdad et al. [9], Dalal et al. [8],
and Ertürk and Karakaya [20, 21]. Notice that this paper can
be considered as a continuation of Karapınar and Roldán
[10, 22]. We note also that authors preferred to say “𝑛-tuplet
fixed point” [20, 21] or “𝑛-tuplet fixed point” [8, 9] instead of
“𝑛-tuple fixed point”.

Definition 9 (see [8, 9, 20]). An element (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) ∈
𝑋
𝑛 is called an 𝑛-tuple fixed point of the mapping 𝐹 : 𝑋𝑛 →

𝑋 if
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Definition 10 (see [8, 9, 20]). Let (𝑋, ⪯) be a partially ordered
set and let𝐹 : 𝑋𝑛 → 𝑋 be amapping.We say𝐹 has themixed
monotone property if 𝐹(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) is nondecreasing in
odd arguments and is nonincreasing in its even arguments;
that is, for any 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 ∈ 𝑋,
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Definition 11 (see [8, 9, 20]). An element (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) ∈
𝑋
𝑛 is called an 𝑛-tuple coincidence point of the mappings 𝐹 :
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Definition 12 (see [8, 9, 20]). Let (𝑋, ⪯) be a partially ordered
set and let 𝐹 : 𝑋
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Using these preliminaries, the following result was an-
nounced in [9]. Notice that in that paper, the authors used
the notation∏𝑟

𝑖=1
𝑋
𝑖 to refer to the product space𝑋𝑟.

Theorem 13 (Imdad et al. [9], Theorem 13). Let (𝑋, ⪯) be a
partially ordered set equipped with a metric 𝑑 such that (𝑋, 𝑑)
is a complete metric space. Assume that there is a function 𝜙 :
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exists 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑟 ∈ 𝑋 such that

𝑔𝑥
1

= 𝐹 (𝑥
1

, 𝑥
2

, 𝑥
3

, . . . , 𝑥
𝑟

) ,

𝑔𝑥
2

= 𝐹 (𝑥
2

, 𝑥
3

, . . . , 𝑥
𝑟

, 𝑥
1

) ,

𝑔𝑥
3

= 𝐹 (𝑥
3

, . . . , 𝑥
𝑟

, 𝑥
1

, 𝑥
2

) ,

...

𝑔𝑥
𝑟

= 𝐹 (𝑥
𝑟

, 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑟−1

) .

(15)

Based on this theorem, Dalal et al. [8] extended the
previous result to compatible mappings in the following
sense.

Definition 14 (Dalal et al. [8]). Let (𝑋, 𝑑) be a metric space
provided with a partial order ⪯ and let 𝐹 : 𝑋𝑛 → 𝑋 and
𝑔 : 𝑋 → 𝑋 be two mappings. We will say that (𝐹, 𝑔) is a
compatible pair if

lim
𝑛→∞

𝑑 (𝑔𝐹 (𝑥
1

𝑛
, 𝑥
2

𝑛
, 𝑥
3

𝑛
, . . . , 𝑥

𝑟

𝑛
) ,

𝐹 (𝑔𝑥
1

𝑛
, 𝑔𝑥
2

𝑛
, 𝑔𝑥
3

𝑛
, . . . , 𝑔𝑥

𝑟

𝑛
)) = 0,

lim
𝑛→∞

𝑑 (𝑔𝐹 (𝑥
2

𝑛
, 𝑥
3

𝑛
, . . . , 𝑥

𝑟

𝑛
, 𝑥
1

𝑛
) ,

𝐹 (𝑔𝑥
2

𝑛
, 𝑔𝑥
3

𝑛
, . . . , 𝑔𝑥

𝑟

𝑛
, 𝑔𝑥
1

𝑛
)) = 0,
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lim
𝑛→∞

𝑑 (𝑔𝐹 (𝑥
3

𝑛
, . . . , 𝑥

𝑟

𝑛
, 𝑥
1

𝑛
, 𝑥
2

𝑛
) ,

𝐹 (𝑔𝑥
3

𝑛
, , . . . , 𝑔𝑥

𝑟

𝑛
, 𝑔𝑥
1

𝑛
, 𝑔𝑥
2

𝑛
)) = 0,

...

lim
𝑛→∞

𝑑 (𝑔𝐹 (𝑥
𝑟

𝑛
, 𝑥
1

𝑛
, 𝑥
2

𝑛
, . . . , 𝑥

𝑟−1

𝑛
) ,

𝐹 (𝑔𝑥
𝑟

𝑛
, 𝑔𝑥
1

𝑛
, 𝑔𝑥
2

𝑛
, . . . , 𝑔𝑥

𝑟−1

𝑛
)) = 0

(16)

whenever {𝑥1
𝑛
}, {𝑥
2

𝑛
}, {𝑥
3

𝑛
}, . . . , {𝑥

𝑟

𝑛
} are sequences in 𝑋 such

that

lim
𝑛→∞

𝐹 (𝑥
1

𝑛
, 𝑥
2

𝑛
, 𝑥
3

𝑛
, . . . , 𝑥

𝑟

𝑛
) = lim
𝑛→∞

𝑔𝑥
1

𝑛
= 𝑥
1

,

lim
𝑛→∞

𝐹 (𝑥
2

𝑛
, 𝑥
3

𝑛
, . . . , 𝑥

𝑟

𝑛
, 𝑥
1

𝑛
) = lim
𝑛→∞

𝑔𝑥
2

𝑛
= 𝑥
2

,

lim
𝑛→∞

𝐹 (𝑥
3

𝑛
, . . . , 𝑥

𝑟

𝑛
, 𝑥
1

𝑛
, 𝑥
2

𝑛
) = lim
𝑛→∞

𝑔𝑥
3

𝑛
= 𝑥
3

,

...

lim
𝑛→∞

𝐹 (𝑥
𝑟

𝑛
, 𝑥
1

𝑛
, 𝑥
2

𝑛
, . . . , 𝑥

𝑟−1

𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑟

𝑛
= 𝑥
𝑟

,

(17)

for some 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑟 ∈ 𝑋.

Theorem 15 (Dalal et al. [8], Theorem 3.2). Let (𝑋, ⪯) be a
partially ordered set equipped with a metric 𝑑 such that (𝑋, 𝑑)
is a complete metric space. Assume that there is a function 𝜑 :
[0,∞) → [0,∞) with 𝜑(𝑡) < 𝑡 and lim

𝑟→ 𝑡
+𝜑(𝑡) < 𝑡 for all

𝑡 > 0. Further, let 𝐹 : 𝑋𝑟 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two maps
such that 𝐹 has the mixed 𝑔-monotone property satisfying the
following conditions:

(i) 𝐹(𝑋𝑟) ⊆ 𝑔(𝑋),
(ii) 𝑔 is continuous and monotonically increasing,
(iii) the pair (𝑔, 𝐹) is compatible,
(iv)

𝑑 (𝐹 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑟

) , 𝐹 (𝑦
1

, 𝑦
2

, . . . , 𝑦
𝑟

))

≤ 𝜑(
1

𝑟

𝑟

∑

𝑖=1

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
))

(18)

for all 𝑥1, 𝑥2, . . . , 𝑥𝑟, 𝑦1, 𝑦2, . . . , 𝑦𝑟 ∈ 𝑋 with 𝑔𝑥1 ⪯
𝑔𝑦
1, 𝑔𝑥2 ⪰ 𝑔𝑦2, 𝑔𝑥3 ⪯ 𝑔𝑦3,. . ., 𝑔𝑥𝑟 ⪰ 𝑔𝑦𝑟.

Also, suppose that either

(a) 𝐹 is continuous or
(b) 𝑋 has the following properties:

(b.1) if a nondecreasing sequence {𝑥
𝑛
} → 𝑥, then 𝑥

𝑛
⪯

𝑥 for all 𝑛 ≥ 0;
(b.2) if a nonincreasing sequence {𝑥

𝑛
} → 𝑥, then 𝑥

𝑛
⪰

𝑥 for all 𝑛 ≥ 0.

If there exists 𝑥1
0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑟

0
∈ 𝑋 such that

𝑔𝑥
1

0
⪯ 𝐹 (𝑥

1

0
, 𝑥
2

0
, 𝑥
3

0
, . . . , 𝑥

𝑟

0
) ,

𝑔𝑥
2

0
⪰ 𝐹 (𝑥

2

0
, 𝑥
3

0
, . . . , 𝑥

𝑟

0
, 𝑥
1

0
) ,

𝑔𝑥
3

0
⪯ 𝐹 (𝑥

3

0
, . . . , 𝑥

𝑟

0
, 𝑥
1

0
, 𝑥
2

0
) ,

...

𝑔𝑥
𝑟

0
⪰ 𝐹 (𝑥

𝑟

0
, 𝑥
1

0
, 𝑥
2

0
, . . . , 𝑥

𝑟−1

0
) ,

(19)

then 𝐹 and 𝑔 have a 𝑟-tupled coincidence point; that is, there
exists 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑟 ∈ 𝑋 such that

𝑔𝑥
1

= 𝐹 (𝑥
1

, 𝑥
2

, 𝑥
3

, . . . , 𝑥
𝑟

) ,

𝑔𝑥
2

= 𝐹 (𝑥
2

, 𝑥
3

, . . . , 𝑥
𝑟

, 𝑥
1

) ,

𝑔𝑥
3

= 𝐹 (𝑥
3

, . . . , 𝑥
𝑟

, 𝑥
1

, 𝑥
2

) ,

...

𝑔𝑥
𝑟

= 𝐹 (𝑥
𝑟

, 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑟−1

) .

(20)

2. Some Remarks

Firstly we notice that, in the case 𝑛 = 3, Definitions 9 and 11,

𝑔𝑥
1

= 𝐹 (𝑥
1

, 𝑥
2

, 𝑥
3

) ,

𝑔𝑥
2

= 𝐹 (𝑥
2

, 𝑥
3

, 𝑥
1

) ,

𝑔𝑥
3

= 𝐹 (𝑥
3

, 𝑥
1

, 𝑥
2

)

(21)

do not extend the notion of tripled coincidence point in the
sense of Berinde and Borcut [4]. Therefore, their results are
not extensions of well-known results in the tripled case. This
fact shows that the odd case is not well-posed by Definitions
9 and 11 or, more precisely, the mixed monotone property is
not useful to ensure the existence of coincidence points. In
this sense, we have the following result.

Theorem 16. Theorem 13 in [9] is not valid if 𝑛 is odd.

Proof. It is sufficient to examine the case 𝑛 = 3 to indicate the
mentioned invalidity. It is evident that the illustrative proof
for the case 𝑛 = 3 can be analogously extended to the case in
which 𝑛 is odd.We follow the lines of the proof ofTheorem 3.1
in [8]. Let 𝑥1

0
, 𝑥
2

0
, 𝑥
3

0
∈ 𝑋 be the initial points. We construct

three recursive sequences {𝑥1
𝑘
}, {𝑥2
𝑘
}, and {𝑥3

𝑘
} in the following

way:

𝑔𝑥
1

𝑘
= 𝐹 (𝑥

1

𝑘−1
, 𝑥
2

𝑘−1
, 𝑥
3

𝑘−1
) ,

𝑔𝑥
2

𝑘
= 𝐹 (𝑥

2

𝑘−1
, 𝑥
3

𝑘−1
, 𝑥
1

𝑘−1
) ,

𝑔𝑥
3

𝑘
= 𝐹 (𝑥

3

𝑘−1
, 𝑥
1

𝑘−1
, 𝑥
2

𝑘−1
) ∀𝑘 ∈ N, 𝑘 ≥ 1.

(22)
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Due to the assumption, we derive that

𝑔𝑥
1

0
⪯ 𝐹 (𝑥

1

0
, 𝑥
2

0
, 𝑥
3

0
) = 𝑔𝑥

1

1
,

𝑔𝑥
2

0
⪰ 𝐹 (𝑥

2

0
, 𝑥
3

0
, 𝑥
1

0
) = 𝑔𝑥

2

1
,

𝑔𝑥
3

0
⪯ 𝐹 (𝑥

3

0
, 𝑥
1

0
, 𝑥
2

0
) = 𝑔𝑥

3

1
.

(23)

Then, the authors concluded that these sequences verify, for
all 𝑘 ≥ 1,

𝑔𝑥
1

𝑘−1
⪯ 𝑔𝑥
1

𝑘
,

𝑔𝑥
2

𝑘−1
⪰ 𝑔𝑥
2

𝑘
,

𝑔𝑥
3

𝑘−1
⪯ 𝑔𝑥
3

𝑘
.

(24)

Now, we will show that it is impossible to prove that
𝑔𝑥
2

1
⪰ 𝑔𝑥

2

2
because the mixed 𝑔-monotone property leads

to contrary inequalities. Indeed, we derive the following
inequalities:

𝑔𝑥
2

1
⪯ 𝑔𝑥
2

0
⇒ 𝐹(𝑥

2

1
, 𝑥
3

0
, 𝑥
1

0
) ⪯ 𝐹 (𝑥

2

0
, 𝑥
3

0
, 𝑥
1

0
) = 𝑔𝑥

2

1
. (25)

Furthermore,

𝑔𝑥
3

0
⪯ 𝑔𝑥
3

1
⇒ 𝐹(𝑥

2

1
, 𝑥
3

0
, 𝑥
1

0
) ⪰ 𝐹 (𝑥

2

1
, 𝑥
3

1
, 𝑥
1

0
) . (26)

By combining the inequalities above, we conclude that

𝐹 (𝑥
2

1
, 𝑥
3

1
, 𝑥
1

0
) ⪯ 𝐹 (𝑥

2

1
, 𝑥
3

0
, 𝑥
1

0
) ⪯ 𝐹 (𝑥

2

0
, 𝑥
3

0
, 𝑥
1

0
) = 𝑔𝑥

2

1
. (27)

Notice that in the third component the inequality is on the
contrary

𝑔𝑥
1

0
⪯ 𝑔𝑥
1

1
⇒ 𝐹(𝑥

2

1
, 𝑥
3

1
, 𝑥
1

0
) ⪯ 𝐹 (𝑥

2

1
, 𝑥
3

1
, 𝑥
1

1
) = 𝑔𝑥

2

2
. (28)

Then, we find that

𝐹 (𝑥
2

1
, 𝑥
3

1
, 𝑥
1

0
) ⪯ 𝑔𝑥

2

1
, 𝐹 (𝑥

2

1
, 𝑥
3

1
, 𝑥
1

0
) ⪯ 𝑔𝑥

2

2
. (29)

Consequently, we cannot get the inequality 𝑔𝑥2
1
⪰ 𝑔𝑥
2

2
, since

other possibilities yield to another cases in which points are
not comparable.

By using the same argument above, we also conclude that
Corollaries 14 and 15 in [9] are not valid. Similarly, we may
prove the following result.

Corollary 17. Theorem 3.1 in [8] is not valid if 𝑛 is odd.

In Theorem 16, we investigate the case in which 𝑛 is odd.
But we must emphasize that, when 𝑛 is even, the main results
of Dalal et al. [8] are also very weak. To prove it, we show the
following example inspired by [23].

Example 18. Let 𝑋 = R be the set of all real numbers
provided with its usual order ≤ and the Euclidean metric

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋. Let 𝐹 : 𝑋4 → 𝑋 and
𝑔 : 𝑋 → 𝑋 be the mappings given by

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) =
𝑥 − 6𝑦 + 𝑧 − 𝑤

11
∀𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋;

𝑔𝑥 =
10𝑥

11
∀𝑥 ∈ 𝑋.

(30)

It is easy to check that the contractivity condition of
Theorem 16 is not satisfied. Indeed, consider 𝑥 = 𝑎, 𝑦 ≤ 𝑏,
𝑧 = 𝑐, and 𝑤 = 𝑡. Then, we have that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧, 𝑤) , 𝐹 (𝑎, 𝑏, 𝑐, 𝑡))

=



𝑥 − 6𝑦 + 𝑧 − 𝑤

11
−
𝑎 − 6𝑏 + 𝑐 − 𝑡

11



=
6
𝑦 − 𝑏



11
,

𝑑 (𝑔𝑎, 𝑔𝑥) + 𝑑 (𝑔𝑦, 𝑔𝑏) + 𝑑 (𝑔𝑧, 𝑔𝑐) + 𝑑 (𝑔𝑤, 𝑔𝑡)

4

=
10
𝑦 − 𝑏



44
.

(31)

Thus, it is impossible to find 𝜑 (as it was defined in [8]) such
that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧, 𝑤) , 𝐹 (𝑎, 𝑏, 𝑐, 𝑑))

≤ 𝜑(
𝑑 (𝑔𝑎, 𝑔𝑥) + 𝑑 (𝑔𝑦, 𝑔𝑏) + 𝑑 (𝑔𝑧, 𝑔𝑐) + 𝑑 (𝑔𝑤, 𝑔𝑑)

4
) .

(32)

However, it is clear that (0, 0, 0, 0) is the only common 𝑛-tuple
fixed point of 𝐹 and 𝑔.

3. Corrected Versions of the
Mentioned Theorems

For the sake of completeness and to conclude this paper,
in this section, we state a corrected version of Theorem 3.1
in [8], which immediately leads to a corrected version of
Theorem 13 in [9]. For this purpose, we recollect here some
notations, definitions, and results from the literature (that can
also be found in [10, 14–16]).

First at all, instead of Definitions 9 and 11, we recall
here the concept of multidimensional fixed/coincidence point
introduced by Roldán et al. in [13] (see also [14–16]), which is
an extension of Berzig and Samet’s notion given in [12].

Throughout this section, fix 𝑛 ∈ N such that 𝑛 ≥ 2 and
let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings. Fix
a nontrivial partition {A,B} of Λ

𝑛
= {1, 2, . . . , 𝑛}; that is, A

and B are nonempty subsets of Λ
𝑛
such that A ∪ B = Λ

𝑛

and A ∩ B = 0. We will denote

ΩA,B = {𝜎 : Λ 𝑛 → Λ
𝑛
: 𝜎 (A) ⊆ A, 𝜎 (B) ⊆ B} ,

Ω


A,B = {𝜎 : Λ 𝑛 → Λ
𝑛
: 𝜎 (A) ⊆ B, 𝜎 (B) ⊆ A} .

(33)

Henceforth, let 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
: Λ
𝑛
→ Λ

𝑛
be 𝑛 mappings

from Λ
𝑛
into itself and let Υ be the 𝑛-tuple (𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
).
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Definition 19 (Roldán et al. [13, 16] ). A point (𝑥
1
, 𝑥
2
, . . . ,

𝑥
𝑛
) ∈ 𝑋

𝑛 is called a Υ-coincidence point of the mappings
𝐹 : 𝑋
𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝐹 (𝑥
𝜎
𝑖
(1)
, 𝑥
𝜎
𝑖
(2)
, . . . , 𝑥

𝜎
𝑖
(𝑛)
) = 𝑔𝑥

𝑖
∀𝑖 ∈ {1, 2, . . . , 𝑛} . (34)

If 𝑔 is the identity mapping on 𝑋, then (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛

is called a Υ-fixed point of the mapping 𝐹.

It is clear that the previous definition extends the notions
of coupled, tripled, and quadruple fixed/coincidence points.
In fact, if we represent a mapping 𝜎 : Λ

𝑛
→ Λ

𝑛
throughout

its ordered image, that is, 𝜎 = (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)), then

(i) Gnana-Bhaskar and Lakshmikantham’s coupled fixed
points occur when 𝑛 = 2, 𝜎

1
= (1, 2), and 𝜎

2
= (2, 1);

(ii) Berinde and Borcut’s tripled fixed points are associ-
ated with 𝑛 = 3, 𝜎

1
= (1, 2, 3), 𝜎

2
= (2, 1, 2), and 𝜎

3
=

(3, 2, 1);
(iii) Karapınar’s quadruple fixed points are considered

when 𝑛 = 4, 𝜎
1
= (1, 2, 3, 4), 𝜎

2
= (2, 3, 4, 1), 𝜎

3
=

(3, 4, 1, 2), and 𝜎
4
= (4, 1, 2, 3);

(iv) Berzig and Samet’s multidimensional fixed points
are given when A = {1, 2, . . . , 𝑚} and B = {𝑚 + 1,

𝑚 + 2, . . . , 𝑛}.

For more details see [13].
A partial order ⪯ on𝑋 can be extended to a partial order

⊑ on 𝑋𝑛 in the following way. If (𝑋, ⪯) is a partially ordered
space,𝑥, 𝑦 ∈ 𝑋 and 𝑖 ∈ Λ

𝑛
, wewill use the following notation:

𝑥⪯
𝑖
𝑦 ⇐⇒ {

𝑥 ⪯ 𝑦, if 𝑖 ∈ A,
𝑥 ⪰ 𝑦, if 𝑖 ∈ B.

(35)

Consider on the product space𝑋𝑛 the following partial order:
for X = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
),Y = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋
𝑛,

X ⊑ Y⇐⇒ 𝑥
𝑖
⪯
𝑖
𝑦
𝑖
, ∀𝑖. (36)

We say that two points X and Y are comparable if X ⊑ Y

or X ⊒ Y.
Using this partial order, the mixed 𝑔-monotone property

is as follows.

Definition 20 (see [13]). Let (𝑋, ⪯) be a partially ordered
space. We say that 𝐹 has the mixed (𝑔, ⪯)-monotone property
(with respect to {A,B}) if 𝐹 is 𝑔-monotone nondecreasing
in arguments of A and 𝑔-monotone nonincreasing in argu-
ments of B; that is, for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦, 𝑧 ∈ 𝑋 and all 𝑖,

𝑔𝑦 ⪯ 𝑔𝑧

⇒

{{{{

{{{{

{

𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑦, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
)

⪯ 𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑧, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
) , if 𝑖 ∈ A,

𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑦, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
)

⪰ 𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑧, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
) , if 𝑖 ∈ B.

(37)

Remark 21 (see [10]). In order to ensure the existence of
Υ-coincidence/fixed points, it is very important to assume

that the mixed 𝑔-monotone property is compatible with the
permutation of the variables; that is, the mappings of Υ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
) should verify

𝜎
𝑖
∈ ΩA,B if 𝑖 ∈ A, 𝜎

𝑖
∈ Ω


A,B if 𝑖 ∈ B. (38)

Remark 22 (see [10]). Notice that, in fact, when 𝑛 is even,
Definitions 11 and 12 can be seen as particular cases of the
previous definitions when A is the set of all odd numbers
and B is the family of all even numbers in {1, 2, . . . , 𝑛} and
the mappings 𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
are appropriate permutations of

the variables.

The following definitions are usual in the field of fixed
point theory.

Definition 23. An ordered metric space (𝑋, 𝑑, ⪯) is a metric
space (𝑋, 𝑑) provided with a partial order ⪯.

Definition 24 (see [2]). An ordered metric space (𝑋, 𝑑, ⪯)
is said to be nondecreasing-regular (resp., nonincreasing-
regular) if we have that 𝑥

𝑚
⪯ 𝑥 (resp., 𝑥

𝑚
⪰ 𝑥) for all 𝑚 ∈ N

when {𝑥
𝑚
} ⊆ 𝑋 is any sequence verifying {𝑥

𝑚
} → 𝑥 and

𝑥
𝑚
⪯ 𝑥
𝑚+1

(resp., 𝑥
𝑚
⪰ 𝑥
𝑚+1

) for all 𝑚 ∈ N. And (𝑋, 𝑑, ⪯)
is said to be regular if it is both nondecreasing-regular and
nonincreasing-regular.

Definition 25. Let (𝑋, ⪯) be a partially ordered set and let
𝑇, 𝑔 : 𝑋 → 𝑋 be two mappings. We will say that 𝑇 is
monotone (𝑔, ⪯)-nondecreasing if 𝑇𝑥 ⪯ 𝑇𝑦 for all 𝑥, 𝑦 ∈ 𝑋
such that 𝑔𝑥 ⪯ 𝑔𝑦.

Remark 26. If 𝑇 is (𝑔, ⪯)-nondecreasing and 𝑔𝑥 = 𝑔𝑦, then
𝑇𝑥 = 𝑇𝑦. It follows from

𝑔𝑥 = 𝑔𝑦 ⇒ {
𝑔𝑥 ⪯ 𝑔𝑦

𝑔𝑦 ⪯ 𝑔𝑥
}

⇒ {
𝑇𝑥 ⪯ 𝑇𝑦

𝑇𝑦 ⪯ 𝑇𝑥
} ⇒ 𝑇𝑥 = 𝑇𝑦.

(39)

Lemma 27 (see [16]). Let (𝑋, 𝑑) be a metric space and define
Δ
𝑛
: 𝑋
𝑛

× 𝑋
𝑛

→ [0,∞), for all 𝐴 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), 𝐵 =

(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) ∈ 𝑋
𝑛, by

Δ
𝑛
(𝐴, 𝐵) =

1

𝑛

𝑛

∑

𝑖=1

𝑑 (𝑎
𝑖
, 𝑏
𝑖
) . (40)

Then Δ
𝑛
is metric on 𝑋𝑛. And 𝑑 is complete if, and only if, Δ

𝑛

is complete.

Lemma 28 (see [16]). Let (𝑋, 𝑑, ⪯) be an ordered metric space
and let 𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two map-
pings. Let Υ = (𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
) be an 𝑛-tuple of mappings

from {1, 2, . . . , 𝑛} into itself verifying 𝜎
𝑖
∈ ΩA,B if 𝑖 ∈ A and
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𝜎
𝑖
∈ Ω


A,B if 𝑖 ∈ B. Define 𝐹Υ, 𝐺 : 𝑋
𝑛

→ 𝑋
𝑛, for all 𝑥

1
, 𝑥
2
, . . . ,

𝑥
𝑛
∈ 𝑋, by

𝐹
Υ
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝐹 (𝑥

𝜎
1
(1)
, 𝑥
𝜎
1
(2)
, . . . , 𝑥

𝜎
1
(𝑛)
) ,

𝐹 (𝑥
𝜎
2
(1)
, 𝑥
𝜎
2
(2)
, . . . , 𝑥

𝜎
2
(𝑛)
) , . . . ,

𝐹 (𝑥
𝜎
𝑛
(1)
, 𝑥
𝜎
𝑛
(2)
, . . . , 𝑥

𝜎
𝑛
(𝑛)
)) ;

𝐺 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑔𝑥

1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) .

(41)

(1) If 𝐹 has the mixed (𝑔, ⪯)-monotone property, then 𝐹
Υ

is monotone (𝐺, ⊑)-nondecreasing.
(2) If 𝐹 is Δ

𝑛
-continuous, then 𝐹

Υ
is also Δ

𝑛
-continuous.

(3) If 𝑔 is 𝑑-continuous, then 𝐺 is Δ
𝑛
-continuous.

(4) A point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛 is a Υ-fixed point of 𝐹 if,

and only if, (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a fixed point of 𝐹

Υ
.

(5) A point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 is a Υ-coincidence
point of 𝐹 and 𝑔 if, and only if, (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a

coincidence point of 𝐹
Υ
and 𝐺.

(6) If (𝑋, 𝑑, ⪯) is regular, then (𝑋𝑛, Δ𝑛, ⊑) is also regular.

The commutativity and compatibility of themappings are
defined as follows.

Definition 29. We will say that two mappings 𝑇, 𝑔 : 𝑋 → 𝑋

are commuting if 𝑔𝑇𝑥 = 𝑇𝑔𝑥 for all 𝑥 ∈ 𝑋. We will say that
𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 are commuting if 𝑔𝐹(𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑛
) = 𝐹(𝑔𝑥

1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) for all 𝑥

1
, . . . , 𝑥

𝑛
∈ 𝑋.

The following notionwas introduced in order to avoid the
necessity of commutativity.

Definition 30 (see [24–26]). Let (𝑋, 𝑑, ⪯) be an ordered
metric space. Two mappings 𝑇, 𝑔 : 𝑋 → 𝑋 are said to be
O-compatible if

lim
𝑚→∞

𝑑 (𝑔𝑇𝑥
𝑚
, 𝑇𝑔𝑥
𝑚
) = 0 (42)

provided that {𝑥
𝑚
} is a sequence in 𝑋 such that {𝑔𝑥

𝑚
} is ⪯-

monotone and

lim
𝑚→∞

𝑇𝑥
𝑚
= lim
𝑚→∞

𝑔𝑥
𝑚
∈ 𝑋. (43)

The natural extension to an arbitrary number of variables
is the following one.

Definition 31. Let (𝑋, 𝑑, ⪯) be an orderedmetric space and let
𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings. Let Υ =
(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
) be an 𝑛-tuple of mappings from {1, 2, . . . , 𝑛}

into itself verifying 𝜎
𝑖
∈ ΩA,B if 𝑖 ∈ A and 𝜎

𝑖
∈ Ω


A,B if 𝑖 ∈ B.
We will say that (𝐹, 𝑔) is a (𝑂, Υ)-compatible pair if

lim
𝑚→∞

𝑑 (𝑔𝐹 (𝑥
𝜎
𝑖
(1)

𝑚
, 𝑥
𝜎
𝑖
(2)

𝑚
, 𝑥
𝜎
𝑖
(3)

𝑚
, . . . , 𝑥

𝜎
𝑖
(𝑛)

𝑚
) ,

𝐹 (𝑔𝑥
𝜎
𝑖
(1)

𝑚
, 𝑔𝑥
𝜎
𝑖
(2)

𝑚
, 𝑔𝑥
𝜎
𝑖
(3)

𝑚
, . . . , 𝑔𝑥

𝜎
𝑖
(𝑛)

𝑚
)) = 0

∀𝑖 ∈ {1, 2, . . . , 𝑛}

(44)

whenever {𝑥1
𝑚
}, {𝑥
2

𝑚
}, . . . , {𝑥

𝑛

𝑚
} are sequences in 𝑋 such that

{𝑔𝑥
1

𝑚
}, {𝑔𝑥
2

𝑚
}, . . . , {𝑔𝑥

𝑛

𝑚
} are ⪯-monotone and

lim
𝑚→∞

𝐹 (𝑥
𝜎
𝑖
(1)

𝑚
, 𝑥
𝜎
𝑖
(2)

𝑚
, 𝑥
𝜎
𝑖
(3)

𝑚
, . . . , 𝑥

𝜎
𝑖
(𝑛)

𝑚
) = lim
𝑚→∞

𝑔𝑥
𝑖

𝑚
∈ 𝑋

∀𝑖 ∈ {1, 2, . . . , 𝑛} .

(45)

Notice that the previous definition is different from Def-
inition 14 because we impose that the sequences {𝑔𝑥1

𝑚
},

{𝑔𝑥
2

𝑚
}, . . . , {𝑔𝑥

𝑛

𝑚
} are ⪯-monotone.

Lemma 32. If 𝐹 and 𝑔 are (𝑂, Υ)-compatible, then 𝐹
Υ
and 𝐺

are 𝑂-compatible.

Inspired by Boyd and Wong’s theorem [27], Mukherjea
[28] introduced the following kind of control functions:

Ψ = {𝜑 : [0,∞) → [0,∞) : 𝜑 (𝑡) < 𝑡,

lim
𝑟→ 𝑡
+

𝜑 (𝑟) < 𝑡 for each 𝑡 > 0} .
(46)

The following property is well-known.

Lemma 33. Let 𝜑 ∈ Ψ and let {𝑎
𝑚
} ⊂ [0,∞) be a sequence. If

𝑎
𝑚+1

≤ 𝜑(𝑎
𝑚
) and 𝑎

𝑚
̸= 0 for all𝑚, then {𝑎

𝑚
} → 0.

Using this kind of control functions, we present the fol-
lowing theorem.

Theorem 34. Let (𝑋, 𝑑, ⪯) be an ordered metric space and let
𝑇, 𝑔 : 𝑋 → 𝑋 be two mappings such that the following prop-
erties are fulfilled;

(i) 𝑇(𝑋) ⊆ 𝑔(𝑋);
(ii) 𝑇 is monotone (𝑔, ⪯)-nondecreasing;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝑔𝑥

0
⪯ 𝑇𝑥
0
;

(iv) there exists 𝜑 ∈ Ψ verifying

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑔𝑥, 𝑔𝑦)) ∀𝑥, 𝑦 ∈ 𝑋

such that 𝑔𝑥 ⪯ 𝑔𝑦.
(47)

Also assume that, at least, one of the following conditions holds:

(a) (𝑋, 𝑑) is complete,𝑇 and 𝑔 are continuous, and the pair
(𝑇, 𝑔) is 𝑂-compatible;

(b) (𝑋, 𝑑) is complete and 𝑇 and 𝑔 are continuous and
commuting;

(c) (𝑔(𝑋), 𝑑) is complete and (𝑋, 𝑑, ⪯) is nondecreasing-
regular;

(d) (𝑋, 𝑑) is complete, 𝑔(𝑋) is closed, and (𝑋, 𝑑, ⪯) is
nondecreasing-regular;

(e) (𝑋, 𝑑) is complete, 𝑔 is continuous and monotone ⪯
-nondecreasing, the pair (𝑇, 𝑔) is 𝑂-compatible, and
(𝑋, 𝑑, ⪯) is nondecreasing-regular.

Then 𝑇 and 𝑔 have, at least, a coincidence point.
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Proof. We divide the proof into four steps.

Step 1. We claim that there exists a sequence {𝑥
𝑚
} ⊆ 𝑋 such

that {𝑔𝑥
𝑚
} is⪯-nondecreasing and 𝑔𝑥

𝑚+1
= 𝑇𝑥
𝑚
for all𝑚 ≥ 0.

Starting from 𝑥
0
∈ 𝑋 given in (iii) and taking into account

that 𝑇𝑥
0
∈ 𝑇(𝑋) ⊆ 𝑔(𝑋), there exists 𝑥

1
∈ 𝑋 such that 𝑇𝑥

0
=

𝑔𝑥
1
.Then 𝑔𝑥

0
⪯ 𝑇𝑥
0
= 𝑔𝑥
1
. Since 𝑇 is (𝑔, ⪯)-nondecreasing,

𝑇𝑥
0
⪯ 𝑇𝑥
1
. Now 𝑇𝑥

1
∈ 𝑇(𝑋) ⊆ 𝑔(𝑋), so there exists 𝑥

2
∈ 𝑋

such that𝑇𝑥
1
= 𝑔𝑥
2
.Then𝑔𝑥

1
= 𝑇𝑥
0
⪯ 𝑇𝑥
1
= 𝑔𝑥
2
. Since𝑇 is

(𝑔, ⪯)-nondecreasing, 𝑇𝑥
1
⪯ 𝑇𝑥
2
. Repeating this argument,

there exists a sequence {𝑥
𝑚
}
𝑚≥0

such that

{𝑔𝑥
𝑚
} is ⪯ -nondecreasing,

𝑔𝑥
𝑚+1

= 𝑇𝑥
𝑚
⪯ 𝑇𝑥
𝑚+1

= 𝑔𝑥
𝑚+2

∀𝑚 ≥ 0.

(48)

Now, let us define 𝑎
𝑚
= 𝑑(𝑔𝑥

𝑚+1
, 𝑔𝑥
𝑚+2
) for all𝑚 ≥ 0.

Step 2. We claim that 𝑎
𝑚+1

≤ 𝜙(𝑎
𝑚
) for all 𝑚 ≥ 0. Since

𝑔𝑥
𝑚+1

⪯ 𝑔𝑥
𝑚+2

for all𝑚 ≥ 0, it follows from (iv) that

𝑎
𝑚+1

= 𝑑 (𝑔𝑥
𝑚+2
, 𝑦
𝑚+3
) = 𝑑 (𝑇𝑥

𝑚+1
, 𝑇𝑥
𝑚+2
)

≤ 𝜙 (𝑑 (𝑔𝑥
𝑚+1
, 𝑔𝑥
𝑚+2
)) = 𝜙 (𝑎

𝑚
) .

(49)

Step 3.Weclaim that {𝑑(𝑔𝑥
𝑚
, 𝑔𝑥
𝑚+1
)} → 0.We consider two

possibilities.

(i) Suppose that there is𝑚
0
∈ N such that 𝑎

𝑚
0

= 0. Then
𝑑(𝑔𝑥
𝑚
0
+1
, 𝑔𝑥
𝑚
0
+2
) = 𝑎

𝑚
0

= 0. Remark 26 guaran-
tees that 𝑎

𝑚
0
+1

= 𝑑(𝑔𝑥
𝑚
0
+2
, 𝑔𝑥
𝑚
0
+3
) = 𝑑(𝑇𝑥

𝑚
0
+1
,

𝑇𝑥
𝑚
0
+2
) = 0. By induction, the same reasoning proves

that if there is 𝑚
0
∈ N such that 𝑎

𝑚
0

= 0, then 𝑎
𝑚
=

0 for all 𝑚 ≥ 𝑚
0
and, in this case, it is clear that

{𝑎
𝑚
} → 0.

(ii) Suppose that 𝑎
𝑚
̸= 0 for all 𝑚. In this case, {𝑎

𝑚
} → 0

by Lemma 33.

Step 4.We claim that {𝑔𝑥
𝑚
} is a Cauchy sequence. Let us show

that {𝑔𝑥
𝑚
} is Cauchy reasoning by contradiction. Suppose

that {𝑔𝑥
𝑚
} is not Cauchy. Then there exist 𝜀

0
> 0 and partial

subsequences {𝑔𝑥
𝑛(𝑘)
} and {𝑔𝑥

𝑚(𝑘)
} verifying 𝑘 < 𝑛(𝑘) <

𝑚(𝑘) < 𝑛(𝑘 + 1), 𝑑(𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

) > 𝜀
0
, and 𝑑(𝑔𝑥

𝑛(𝑘)
,

𝑔𝑥
𝑚(𝑘)−1

) ≤ 𝜀
0
for all 𝑘 ≥ 1 (𝑚(𝑘) is the least integer number,

greater that 𝑛(𝑘), such that 𝑑(𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

) > 𝜀
0
). Since

𝑛(𝑘) ≤ 𝑚(𝑘) − 1 < 𝑚(𝑘), we have 𝑔𝑥
𝑛(𝑘)

⪯ 𝑔𝑥
𝑚(𝑘)−1

⪯ 𝑔𝑥
𝑚(𝑘)

.
By (e),

𝜀
0
< 𝑑 (𝑔𝑥

𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

)

≤ 𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)−1

) + 𝑑 (𝑔𝑥
𝑚(𝑘)−1

, 𝑔𝑥
𝑚(𝑘)

)

≤ 𝜀
0
+ 𝑑 (𝑔𝑥

𝑚(𝑘)−1
, 𝑔𝑥
𝑚(𝑘)

) ,

(50)

and using Step 3,

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

) = 𝜀
0
,

𝜀
0
< 𝑑 (𝑔𝑥

𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

) ∀𝑘.

(51)

Using the contractivity condition (iv),

𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑔𝑥
𝑚(𝑘)+1

)

= 𝑑 (𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)

) ≤ 𝜙 (𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

)) ∀𝑘.

(52)

Moreover

𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

)

≤ 𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑔𝑥
𝑚(𝑘)

)

≤ 𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑔𝑥
𝑛(𝑘)+1

, 𝑔𝑥
𝑚(𝑘)+1

)

+ 𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑚(𝑘)+1

)

≤ 𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1

) + 𝜙 (𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

))

+ 𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑚(𝑘)+1

) .

(53)

Taking limit as 𝑘 → ∞ in (53) and using 𝜙 ∈ Ψ, Step 3, and
(51), we get the contradiction

𝜀
0
= lim
𝑘→∞

𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

)

≤ lim
𝑘→∞

(𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1

) + 𝜙 (𝑑 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)

))

+𝑑 (𝑔𝑥
𝑚(𝑘)

, 𝑔𝑥
𝑚(𝑘)+1

))

= 0 + lim
𝑡→ 𝜀
+

0

𝜙 (𝑡) + 0 < 𝜀
0
.

(54)

This contradiction proves that, in any case, {𝑔𝑥
𝑚
} is a Cauchy

sequence. Now, we prove that 𝑇 and 𝑔 have a coincidence
point distinguishing between cases (a)–(e).

Case (𝑎). (𝑋, 𝑑) is complete, 𝑇 and 𝑔 are continuous, and the
pair (𝑇, 𝑔) is𝑂-compatible. As (𝑋, 𝑑) is complete, there exists
𝑧 ∈ 𝑋 such that {𝑔𝑥

𝑚
} → 𝑧. Since 𝑇𝑥

𝑚
= 𝑔𝑥
𝑚+1

for all 𝑚,
we also have that {𝑇𝑥

𝑚
} → 𝑧. As 𝑇 and 𝑔 are continuous,

then {𝑇𝑔𝑥
𝑚
} → 𝑇𝑧 and {𝑔𝑔𝑥

𝑚
} → 𝑔𝑧. Taking into ac-

count that the pair (𝑇, 𝑔) is 𝑂-compatible, we deduce that
lim
𝑚→∞

𝑑(𝑔𝑇𝑥
𝑚
, 𝑇𝑔𝑥
𝑚
) = 0. In such a case, we conclude that

𝑑 (𝑔𝑧, 𝑇𝑧) = lim
𝑚→∞

𝑑 (𝑔𝑔𝑥
𝑚+1
, 𝑇𝑔𝑥
𝑚
) = 0

= lim
𝑚→∞

𝑑 (𝑔𝑇𝑥
𝑚
, 𝑇𝑔𝑥
𝑚
) = 0;

(55)

that is, 𝑧 is a coincidence point of 𝑇 and 𝑔.

Case (𝑏). (𝑋, 𝑑) is complete and 𝑇 and 𝑔 are continuous and
commuting. It is obvious because (𝑏) implies (𝑎).

Case (𝑐). (𝑔(𝑋), 𝑑) is complete and (𝑋, 𝑑, ⪯) is nondecreasing-
regular. As {𝑔𝑥

𝑚
} is a Cauchy sequence in the complete space

(𝑔(𝑋), 𝑑), there is 𝑦 ∈ 𝑔(𝑋) such that {𝑔𝑥
𝑚
} → 𝑦. Let 𝑧 ∈ 𝑋

be any point such that 𝑦 = 𝑔𝑧. In this case, {𝑔𝑥
𝑚
} → 𝑔𝑧. We

are also going to show that {𝑔𝑥
𝑚
} → 𝑇𝑧, so we will conclude

that 𝑔𝑧 = 𝑇𝑧 (and 𝑧 is a coincidence point of 𝑇 and 𝑔).
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Indeed, as (𝑋, 𝑑, ⪯) is regular and {𝑔𝑥
𝑚
} is ⪯-nonde-

creasing and converging to 𝑔𝑧, we deduce that 𝑔𝑥
𝑚
⪯ 𝑔𝑧 for

all𝑚 ≥ 0. Applying the contractivity condition (iv),

𝑑 (𝑔𝑥
𝑚+1
, 𝑇𝑧) = 𝑑 (𝑇𝑥

𝑚
, 𝑇𝑧) ≤ 𝜑 (𝑑 (𝑔𝑥

𝑚
, 𝑔𝑧))

∀𝑚 ≥ 0.

(56)

We are going to show that

𝑑 (𝑔𝑥
𝑚+1
, 𝑇𝑧) ≤ 𝑑 (𝑔𝑥

𝑚
, 𝑔𝑧) ∀𝑚 ≥ 1. (57)

(i) If 𝑑(𝑔𝑥
𝑚
, 𝑔𝑧) ̸= 0, then 𝑑(𝑔𝑥

𝑚+1
, 𝑇𝑧) ≤ 𝜙(𝑑(𝑔𝑥

𝑚
,

𝑔𝑧)) < 𝑑(𝑔𝑥
𝑚
, 𝑔𝑧) because 𝜙 ∈ Ψ.

(ii) Suppose that there is some𝑚
0
∈ N such that 𝑑(𝑔𝑥

𝑚
0

,

𝑔𝑧) = 0. Remark 26 guarantees that 𝑑(𝑇𝑥
𝑚
0

, 𝑇𝑧) = 0.
This proves that if there is some 𝑚

0
∈ N such that

𝑑(𝑔𝑥
𝑚
0

, 𝑔𝑧) = 0, then 𝑑(𝑇𝑥
𝑚
0

, 𝑇𝑧) = 0, so (57) also
holds.

In any case, (57) holds and this implies that {𝑔𝑥
𝑚
}

converges to 𝑇𝑧. This completes this case.

Case (𝑑). (𝑋, 𝑑) is complete, 𝑔(𝑋) is closed, and (𝑋, 𝑑, ⪯) is
nondecreasing-regular. It follows from the fact that a closed
subset of a complete metric space is also complete. Then,
(𝑔(𝑋), 𝑑) is complete and Case (𝑐) is applicable.

Case (𝑒). (𝑋, 𝑑) is complete, 𝑔 is continuous and monotone ⪯-
nondecreasing, the pair (𝑇, 𝑔) is𝑂-compatible, and (𝑋, 𝑑, ⪯) is
nondecreasing-regular. As (𝑋, 𝑑) is complete, there exists 𝑧 ∈
𝑋 such that {𝑔𝑥

𝑚
} → 𝑧. As 𝑇𝑥

𝑚
= 𝑔𝑥
𝑚+1

for all 𝑚, we also
have that {𝑇𝑥

𝑚
} → 𝑧. As 𝑔 is continuous, {𝑔𝑔𝑥

𝑚
} → 𝑔𝑧.

Furthermore, as the pair (T, 𝑔) is 𝑂-compatible, then

lim
𝑚→∞

𝑑 (𝑔𝑔𝑥
𝑚+1
, 𝑇𝑔𝑥
𝑚
) = lim
𝑚→∞

𝑑 (𝑔𝑇𝑥
𝑚
, 𝑇𝑔𝑥
𝑚
) = 0. (58)

As {𝑔𝑔𝑥
𝑚
} → 𝑔𝑧, the previous property means that

{𝑇𝑔𝑥
𝑚
} → 𝑔𝑧.We are going to show that {𝑇𝑔𝑥

𝑚
} → 𝑇𝑧 and

this finishes the proof.
Indeed, since {𝑔𝑥

𝑚
} is ⪯-nondecreasing, converges to 𝑧,

and (𝑋, 𝑑, ⪯) is nondecreasing-regular, we have that 𝑔𝑥
𝑚
⪯ 𝑧

for all 𝑚 ≥ 0. Moreover, as 𝑔 is monotone ⪯-nondecreasing,
we deduce that 𝑔𝑔𝑥

𝑚
⪯ 𝑔𝑧 for all 𝑚 ≥ 0. Applying the

contractivity condition (iv),

𝑑 (𝑇𝑔𝑥
𝑚
, 𝑇𝑧) ≤ 𝜑 (𝑑 (𝑔𝑔𝑥

𝑚
, 𝑔𝑧)) ∀𝑚 ≥ 0. (59)

We claim that

𝑑 (𝑇𝑔𝑥
𝑚
, 𝑇𝑧) ≤ 𝑑 (𝑔𝑔𝑥

𝑚
, 𝑔𝑧) ∀𝑚 ≥ 1. (60)

(i) If 𝑑(𝑔𝑔𝑥
𝑚
, 𝑔𝑧) ̸= 0, then 𝑑(𝑇𝑔𝑥

𝑚
, 𝑇𝑧) ≤ 𝜙(𝑑(𝑔𝑔𝑥

𝑚
,

𝑔𝑧)) < 𝑑(𝑔𝑔𝑥
𝑚
, 𝑔𝑧) because 𝜙 ∈ Ψ.

(ii) Suppose that there is some𝑚
0
∈ N such that𝑑(𝑔𝑔𝑥

𝑚
0

,

𝑔𝑧) = 0. Remark 26 guarantees that 𝑑(𝑇𝑔𝑥
𝑚
0

, 𝑇𝑧) =

0. This proves that if there is some 𝑚
0
∈ N such that

𝑑(𝑔𝑔𝑥
𝑚
0

, 𝑔𝑧) = 0, then𝑑(𝑇𝑔𝑥
𝑚
0

, 𝑇𝑧) = 0, so (60) also
holds.

In any case, (60) holds and this implies that {𝑇𝑔𝑥
𝑚
} con-

verges to 𝑇𝑧. This completes the proof.

Inspired by Berinde’s approach [23], we deduce the fol-
lowing result which removes the weakness ofTheorem 3.1 in
[8].

Corollary 35. Let (𝑋, 𝑑, ⪯) be an ordered metric space, let
𝐹 : 𝑋
𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings, and let Υ =
(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
) be an 𝑛-tuple of mappings from {1, 2, . . . , 𝑛}

into itself verifying 𝜎
𝑖
∈ ΩA,B if 𝑖 ∈ A and 𝜎

𝑖
∈ Ω


A,B if 𝑖 ∈ B.
Suppose that the following properties are fulfilled:

(i) 𝐹(𝑋𝑛) ⊆ 𝑔(𝑋);
(ii) 𝐹 has the mixed 𝑔-monotone property;

(iii) there exists 𝑥1
0
, 𝑥
2

0
, . . . , 𝑥

𝑛

0
∈ 𝑋 such that 𝑔𝑥

0
⪯
𝑖
𝐹(𝑥
𝜎
𝑖
(1)

0
,

𝑥
𝜎
𝑖
(2)

0
, . . . , 𝑥

𝜎
𝑖
(𝑛)

0
) for all 𝑖 ∈ {1, 2, . . . , 𝑛};

(iv) there exists 𝜑 ∈ Ψ verifying

1

𝑛

𝑛

∑

𝑖=1

𝑑 (𝐹 (𝑥
𝜎
𝑖
(1)
, 𝑥
𝜎
𝑖
(2)
, . . . , 𝑥

𝜎
𝑖
(𝑛)
) ,

𝐹 (𝑦
𝜎
𝑖
(1)
, 𝑦
𝜎
𝑖
(2)
, . . . , 𝑦

𝜎
𝑖
(𝑛)
))

≤ 𝜑(
1

𝑛

𝑛

∑

𝑖=1

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
))

(61)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋 such that 𝑔𝑥

𝑖
⪯i𝑔𝑦𝑖 for

all 𝑖 ∈ {1, 2, . . . , 𝑛}.
Also assume that at least one of the following conditions

holds;

(a) (𝑋, 𝑑) is complete,𝐹 and 𝑔 are continuous, and the pair
(𝐹, 𝑔) is (𝑂, Υ)-compatible;

(b) (𝑋, 𝑑) is complete and 𝐹 and 𝑔 are continuous and
commuting;

(c) (𝑔(𝑋), 𝑑) is complete and (𝑋, 𝑑, ⪯) is regular;
(d) (𝑋, 𝑑) is complete, 𝑔(𝑋) is closed, and (𝑋, 𝑑, ⪯) is

regular;
(e) (𝑋, 𝑑) is complete, 𝑔 is continuous and monotone ⪯-

nondecreasing, the pair (𝐹, 𝑔) is (O, Υ)-compatible, and
(𝑋, 𝑑, ⪯) is regular.

Then 𝐹 and 𝑔 have, at least, a Υ-coincidence point.

Proof. Notice that the contractivity condition (61) means that

Δ
𝑛
(𝐹
Υ
X, 𝐹
Υ
Y) ≤ 𝜑 (Δ

𝑛
(X,Y)) (62)

for all X = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
),Y = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋

𝑛 such
that 𝐺X ⊑ 𝐺Y. Therefore, it is only necessary to apply
Theorem 34 to the mappings 𝐹

Υ
, 𝐺 : 𝑋

𝑛

→ 𝑋
𝑛 defined in

Lemma 28.

We now reconsider Example 18.
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Example 36. Let 𝑋 = R be the set of all real numbers pro-
vided with its usual order ≤ and the Euclidean metric 𝑑(𝑥,
𝑦) = |𝑥−𝑦| for all 𝑥, 𝑦 ∈ 𝑋. Let𝐹 : 𝑋4 → 𝑋 and 𝑔 : 𝑋 → 𝑋

be given by

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) =
𝑥 − 6𝑦 + 𝑧 − 𝑤

11
∀𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋;

𝑔𝑥 =
10𝑥

11
∀𝑥 ∈ 𝑋.

(63)

It is easy to check that the contractivity condition of
Corollary 35 is satisfied successfully. Indeed, we have that

=
1

4

4

∑

𝑖=1

𝑑 (𝐹 (𝑥
𝜎
𝑖
(1)
, 𝑥
𝜎
𝑖
(2)
, 𝑥
𝜎
𝑖
(3)
, 𝑥
𝜎
𝑖
(4)
) ,

𝐹 (𝑦
𝜎
𝑖
(1)
, 𝑦
𝜎
𝑖
(2)
, 𝑦
𝜎
𝑖
(3)
) , 𝑦
𝜎
𝑖
(4)
)

≤
1

4
[
9

11
|𝑥 − 𝑎| +

9

11

𝑦 − 𝑏


+
9

11
|𝑧 − 𝑐| +

9

11
|𝑤 − 𝑑|]

=
9

44
(|𝑥 − 𝑎| +

𝑦 − 𝑏
 + |𝑧 − 𝑐| + |𝑤 − 𝑑|) ,

𝑑 (𝑔𝑎, 𝑔𝑥) + 𝑑 (𝑔𝑦, 𝑔𝑏) + 𝑑 (𝑔𝑧, 𝑔𝑐) + 𝑑 (𝑔𝑤, 𝑔𝑡)

4

=
10

44
(|𝑥 − 𝑎| +

𝑦 − 𝑏
 + |𝑧 − 𝑐| + |𝑤 − 𝑑|) .

(64)

Thus, it is sufficient to take 𝜑(𝑡) = 19/20 (as it was defined
in [8]) such that the contractive condition in Corollary 35 is
satisfied.

Notice that (0, 0, 0, 0) is the only common 𝑛-tuple fixed
point of 𝐹 and 𝑔 and

𝑑 (𝑎, 𝑥) + 𝑑 (𝑦, 𝑏) + 𝑑 (𝑧, 𝑐) + 𝑑 (𝑤, 𝑡)

4
=

𝑦 − 𝑏


4
. (65)

Thus, it is impossible to find 𝜑 (as it was defined in [8]) such
that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧, 𝑤) , 𝐹 (𝑎, 𝑏, 𝑐, 𝑑))

≤ 𝜑(
𝑑 (𝑎, 𝑥) + 𝑑 (𝑦, 𝑏) + 𝑑 (𝑧, 𝑐) + 𝑑 (𝑤, 𝑑)

4
) .

(66)

However, it is clear that (0, 0, 0, 0) is the only common 𝑛-tuple
fixed point of 𝐹 and 𝑔.

4. Consequences

In this section, we can list some of the consequences of our
main result (Theorem 34).

Corollary 37 (Ran and Reurings [29]). Let (𝑋, ≼) be an
ordered set endowed with a metric 𝑑 and 𝑇 : 𝑋 → 𝑋 be a
given mapping. Suppose that the following conditions hold:

(a) (𝑋, 𝑑) is complete,
(b) 𝑇 is nondecreasing (with respect to ≼),
(c) 𝑇 is continuous,
(d) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
,

(e) there exists a constant 𝑘 ∈ (0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤
𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦.

Then 𝑇 has a fixed point. Moreover, if for all (𝑥, 𝑦) ∈ 𝑋2
there exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one obtains
uniqueness of the fixed point.

Nieto and Rodŕıguez-López [30] slightly modified the
hypothesis of the previous result obtaining the following
theorem.

Corollary 38 (Nieto and Rodŕıguez-López [30]). Let (𝑋, ≼)
be an ordered set endowed with a metric 𝑑 and 𝑇 : 𝑋 → 𝑋 be
a given mapping. Suppose that the following conditions hold:

(a) (𝑋, 𝑑) is complete,
(b) 𝑇 is nondecreasing (with respect to ≼),
(c) if a nondecreasing sequence {𝑥

𝑚
} in 𝑋 converges to

some point 𝑥 ∈ 𝑋, then 𝑥
𝑚
≼ 𝑥 for all𝑚,

(d) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
,

(e) there exists a constant 𝑘 ∈ (0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤
𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≽ 𝑦.

Then 𝑇 has a fixed point. Moreover, if for all (𝑥, 𝑦) ∈ 𝑋2
there exists 𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧, one obtains
uniqueness of the fixed point.

Corollary 39 (Bhaskar and Lakshmikantham [2]). Let (𝑋, ≼)
be a partially ordered set endowed with a metric 𝑑. Let 𝐹 : 𝑋×
𝑋 → 𝑋 be a given mapping. Suppose that the following
conditions hold:

(i) (𝑋, 𝑑) is complete;
(ii) 𝐹 has the mixed monotone property;
(iii) 𝐹 is continuous or𝑋 has the following properties:

(X
1
) if a nondecreasing sequence {𝑥

𝑛
} in 𝑋 converges

to some point 𝑥 ∈ 𝑋, then 𝑥
𝑛
≼ 𝑥 for all 𝑛,

(X
2
) if a decreasing sequence {𝑦

𝑛
} in 𝑋 converges to

some point 𝑦 ∈ 𝑋, then 𝑦
𝑛
≽ 𝑦 for all 𝑛;

(iv) there exists 𝑥
0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
≼ 𝐹(𝑥

0
, 𝑦
0
) and

𝑦
0
≽ 𝐹(𝑦

0
, 𝑥
0
);

(v) there exists a constant 𝑘 ∈ (0, 1) such that for all (𝑥, 𝑦),
(𝑢, V) ∈ 𝑋 × 𝑋 with 𝑥 ≽ 𝑢 and 𝑦 ≼ V,

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤
𝑘

2
[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)] . (67)

Then 𝐹 has a coupled fixed point (𝑥∗, 𝑦∗) ∈ 𝑋 × 𝑋.
Moreover, if for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋 there exists (𝑧

1
, 𝑧
2
) ∈

𝑋 × 𝑋 such that (𝑥, 𝑦)≼
2
(𝑧
1
, 𝑧
2
) and (𝑢, V)≼

2
(𝑧
1
, 𝑧
2
), one has

uniqueness of the coupled fixed point and 𝑥∗ = 𝑦∗.
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In [31] a version of the following result using a mapping
𝑔 can be found.

Corollary 40 (Berinde and Borcut [32]). Let (𝑋, ≼) be a
partially ordered set and suppose there is a metric 𝑑 on𝑋 such
that (𝑋, 𝑑) is a complete metric space. Let 𝐹 : 𝑋×𝑋×𝑋 → 𝑋

be a mapping having the mixed 𝑔-monotone property. Assume
that there exist constants 𝑗, 𝑘, ℓ ∈ [0, 1) with 𝑗 + 𝑘 + ℓ < 1 such
that

𝑑 (F (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤)) ≤ 𝑗𝑑 (𝑥, 𝑢) + 𝑘𝑑 (𝑦, V) + ℓ𝑑 (𝑧, 𝑤)
(68)

for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋 with 𝑥 ≼ 𝑢, 𝑦 ≽ V, 𝑧 ≼ 𝑤. Suppose
either 𝐹 is continuous or (𝑋, 𝑑, ≼) has the following properties:

(a) if a nondecreasing sequence {𝑥
𝑚
} → 𝑥, then 𝑥

𝑚
≼ 𝑥

for all𝑚;
(b) if a nondecreasing sequence {𝑦

𝑚
} → 𝑦, then 𝑦

𝑚
≼ 𝑦

for all𝑚.

If there exists 𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(69)

then there exists 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that

𝑥 = 𝐹 (𝑥, 𝑦, 𝑧) , 𝑦 = 𝐹 (𝑦, 𝑥, 𝑦) , 𝑧 = 𝐹 (𝑧, 𝑦, 𝑥) .

(70)

A quadruple version was obtained by Karapınar and
Luong in [33].

Corollary 41 (Karapınar and Luong [33]). Let (𝑋, ≼) be a
partially ordered set and (𝑋, 𝑑) be a complete metric space. Let
𝐹 : 𝑋 × 𝑋 × 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed
monotone property. Assume that there exist constants 𝑘 ∈ [0, 1)
such that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧, 𝑤) , 𝐹 (𝑢, V, 𝑟, 𝑡))

≤
𝑘

4
[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑟) + 𝑑 (𝑤, 𝑡)]

(71)

for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋 with 𝑥 ≽ 𝑢, 𝑦 ≼ V, 𝑧 ≽ 𝑟 and 𝑤 ≼ 𝑡.
Suppose that there exists 𝑥

0
, 𝑦
0
, 𝑧
0
, 𝑤
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
, 𝑤
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑧
0
, 𝑤
0
, 𝑥
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑤
0
, 𝑥
0
, 𝑦
0
) , 𝑤

0
≽ 𝐹 (𝑤

0
, 𝑥
0
, 𝑦
0
, 𝑧
0
) .

(72)

Suppose that either 𝐹 is continuous or (𝑋, 𝑑, ≼) has the
following properties:

(a) if a nondecreasing sequence {𝑥
𝑚
} → 𝑥, then 𝑥

𝑚
≼ 𝑥

for all𝑚;
(b) if a nondecreasing sequence {𝑦

𝑚
} → 𝑦, then 𝑦

𝑚
≼ 𝑦

for all𝑚.

Then there exists 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥, 𝐹 (𝑦, 𝑧, 𝑤, 𝑥) = 𝑦,

𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑧, 𝐹 (𝑤, 𝑥, 𝑦, 𝑧) = 𝑤.

(73)

Later, Berzig and Samet extended the previous result to
the multidimensional case in the following way.

Corollary 42 (Berzig and Samet [34]). Let (𝑋, ≼) be a par-
tially ordered set and suppose there is a metric 𝑑 on𝑋 such that
(𝑋, 𝑑) is a complete metric space. For 𝑁,𝑚 positive integers,
𝑁 ≥ 2, 1 ≤ 𝑚 < 𝑁, let 𝐹 : 𝑋

𝑁

→ 𝑋 be a continuous
mapping having the𝑚-mixed monotone property. Assume that
there exist the constants 𝛿

𝑖
∈ [0, 1) with ∑𝑁

𝑖=1
𝛿
𝑖
< 1 for which

𝑑 (𝐹 (𝑈) , 𝐹 (𝑉)) ≤

𝑁

∑

𝑖=1

𝛿
𝑖
𝑑 (𝑥i, 𝑦𝑖) (74)

for all 𝑈 = (𝑥
1
, . . . , 𝑥

𝑁
), 𝑉 = (𝑦

1
, . . . , 𝑦

𝑁
) ∈ 𝑋
𝑁 such that

𝑥
1
≼ 𝑦
1
, . . . , 𝑥

𝑚
≼ 𝑦
𝑚
,

𝑥
𝑚+1

≽ 𝑦
𝑚+1
, . . . , 𝑥

𝑁
≽ 𝑦
𝑁
.

(75)

If there exists 𝑈(0) = (𝑥(0)
1
, . . . , 𝑥

(0)

𝑁
) ∈ 𝑋
𝑁 such that

𝑥
(0)

1
≼ 𝐹 (𝑥

(0)

[𝜑
1
(1 : 𝑚)] , 𝑥

(0)

[𝜓
1
(𝑚 + 1 : 𝑁)]) ,

...

𝑥
(0)

𝑚
≼ 𝐹 (𝑥

(0)

[𝜑
𝑚
(1 : 𝑚)] , 𝑥

(0)

[𝜓
𝑚
(𝑚 + 1 : 𝑁)]) ,

𝑥
(0)

𝑚+1
≽ 𝐹 (𝑥

(0)

[𝜑
𝑚+1

(1 : 𝑚)] , 𝑥
(0)

[𝜓
𝑚+1

(𝑚 + 1 : 𝑁)]) ,

...

𝑥
(0)

𝑁
≽ 𝐹 (𝑥

(0)

[𝜑
𝑁
(1 : 𝑚)] , 𝑥

(0)

[𝜓
𝑁
(𝑚 + 1 : 𝑁)]) ,

(76)

where 𝜑
1
, . . . , 𝜑

𝑚
: {1, . . . , 𝑚} → {1, . . . , 𝑚}, 𝜓

1
, . . . , 𝜓

𝑚
: {𝑚

+ 1, . . . , 𝑁} → {𝑚 + 1, . . . , 𝑁}, 𝜑
𝑚+1
, . . . , 𝜑

𝑁
: {1, . . . , 𝑚} →

{𝑚 + 1, . . . , 𝑁}, and 𝜓
𝑚+1
, . . . , 𝜓

𝑁
: {𝑚 + 1, . . . , 𝑁} →

{1, . . . , 𝑚}, then there exists (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) ∈ 𝑋
𝑁 satisfying

𝑥
1
= 𝐹 (𝑥 [𝜑

1
(1 : 𝑚)] , 𝑥 [𝜓

1
(𝑚 + 1 : 𝑁)]) ,

...

𝑥
𝑚
= 𝐹 (𝑥 [𝜑

𝑚
(1 : 𝑚)] , 𝑥 [𝜓

𝑚
(𝑚 + 1 : 𝑁)]) ,

𝑥
𝑚+1

= 𝐹 (𝑥 [𝜑
𝑚+1

(1 : 𝑚)] , 𝑥 [𝜓
𝑚+1

(𝑚 + 1 : 𝑁)]) ,

...

𝑥
𝑁
= 𝐹 (𝑥 [𝜑

𝑁
(1 : 𝑚)] , 𝑥 [𝜓

𝑁
(𝑚 + 1 : 𝑁)]) .

(77)

Corollary 43 (Choudhury and Kundu [24], Theorem 3.1).
Let (𝑋, ⪯) be a partially ordered set and let there be a metric
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𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete metric space. Let 𝜑 :

[0,∞) → [0,∞) be such that 𝜑(𝑡) < 𝑡 and lim
𝑟→ 𝑡
+𝜑(𝑟) < 𝑡

for each 𝑡 > 0. Let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two
mappings such that 𝐹 has the mixed 𝑔-monotone property and
satisfies

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤ 𝜑(
𝑑 (𝑔𝑥, 𝑔𝑢) + 𝑑 (𝑔𝑦, 𝑔V)

2
) (78)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋, with 𝑔𝑥 ⪯ 𝑔𝑢 and 𝑔𝑦 ⪰ 𝑔V. Let 𝐹(𝑋 ×
𝑋) ⊆ 𝑔(𝑋), 𝑔 be continuous and monotone increasing and 𝐹
and 𝑔 be compatible mappings. Also suppose

(a) 𝐹 is continuous, or
(b) 𝑋 has the following properties:

(b.1) if a nondecreasing sequence {𝑥
𝑛
} → 𝑥, then 𝑥

𝑛
⪯

𝑥 for all 𝑛 ≥ 0;
(b.2) if a nonincreasing sequence {𝑦

𝑛
} → 𝑦, then 𝑦

𝑛
⪰

𝑦 for all 𝑛 ≥ 0.

If there exists 𝑥
0
, 𝑦
0
∈ 𝑋 such that

𝑔𝑥
0
⪯ 𝐹 (𝑥

0
, 𝑦
0
) , 𝑔𝑦

0
⪰ 𝐹 (𝑦

0
, 𝑥
0
) , (79)

then there exists 𝑥, 𝑦 ∈ 𝑋 such that

𝑔𝑥 = 𝐹 (𝑥, 𝑦) , 𝑔𝑦 = 𝐹 (𝑦, 𝑥) ; (80)

that is, 𝐹 and 𝑔 have a coincidence point.

In the multidimensional case, we have the following re-
sult.

Corollary 44 (Wang [35], Theorem 3.4). Let (𝑋, ⪯) be a
partially ordered set and suppose there is a metric 𝑑 on𝑋 such
that (𝑋, 𝑑) is a complete metric space. Let 𝐺 : 𝑋𝑛 → 𝑋

𝑛 and
𝑇 : 𝑋

𝑛

→ 𝑋
𝑛 be a 𝐺-isotone mapping for which there exists

𝜙 ∈ Ψ such that for all 𝑌 ∈ 𝑋𝑛, 𝑉 ∈ 𝑋𝑛 with 𝐺(𝑌) ⊒ 𝐺(𝑉),

𝜌
𝑛
(𝑇 (𝑌) , 𝑇 (𝑉)) ≤ 𝜙 (𝜌

𝑛
(𝐺 (𝑌) , 𝐺 (𝑉))) , (81)

where 𝜌
𝑛
is defined for all 𝑌 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
), 𝑉 = (V

1
, V
2
, . . . ,

V
𝑛
) ∈ 𝑋
𝑛 by

𝜌
𝑛
(𝑌, 𝑉) =

1

𝑛
[𝑑 (𝑦
1
, V
1
) + 𝑑 (𝑦

2
, V
2
) + ⋅ ⋅ ⋅ + 𝑑 (𝑦

𝑛
, V
𝑛
)] .

(82)

Suppose 𝑇(𝑋𝑛) ⊆ 𝐺(𝑋𝑛) and also suppose either

(a) 𝑇 is continuous,𝐺 is continuous and commutes with 𝑇,
or

(b) (𝑋, 𝑑, ⪯) is regular and 𝐺(𝑋𝑛) is closed.

If there exists 𝑌
0
∈ 𝑋
𝑛 such that 𝐺(𝑌

0
) and 𝑇(𝑌

0
) are ⊑-

comparable, then 𝑇 and 𝐺 have a coincidence point.

We, finally, note that most of multidimensional fixed
point theorems can be reduced to one-dimensional fixed
point results. This observation and hence the initial results

in this direction were given in [16, 36]. In particular, in [36],
the authors proved that the first coupled fixed point result
(Theorem 2.1 in [2]) is a consequence ofTheorem 2.1 in [37].
On the other hand, in [16], the authors proved that the initial
multidimensional fixed point result (Theorem 9 in [13]) can
be derived fromTheorem 2.1 in [37] either.
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