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DT-MRI (diffusion tensor magnetic resonance imaging) tractography is a method to determine the architecture of axonal fibers
in the central nervous system by computing the direction of the principal eigenvectors obtained from tensor matrix, which is
different from the conventional isotropic MRI. Tractography based on DT-MRI is known to needmany computations and is highly
sensitive to noise. Hence, adequate regularization methods, such as image processing techniques, are in demand. Among many
regularizationmethods we are interested in themedian filteringmethod. In this paper, we extended two-dimensional median filters
already developed to three-dimensional median filters. We compared four median filtering methods which are two-dimensional
simple median method (SM2D), two-dimensional successive Fermat method (SF2D), three-dimensional simple median method
(SM3D), and three-dimensional successive Fermat method (SF3D). Three kinds of synthetic data with different altitude angles
from axial slices and one kind of human data from MR scanner are considered for numerical implementation by the four filtering
methods.

1. Introduction

DT-MRI tractography is a method of noninvasively tracing
neuronal fiber bundles. DT-MRI measures anisotropy per
pixel and provides the directional information of eigenvectors
relevant for fiber tractography. Since DT-MRI data which
eigenvectors are computed from usually contain noise, the
calculated principal eigenvector direction assumed to be the
fiber direction may be different from the real direction in the
voxel. As the propagation becomes longer, these differences
in the voxels, how small it is, make the whole computed fiber
direction deviate far away from the real fiber direction [1].
Since in vivo field maps are usually corrupted by noise, the
tractography problem turns out to be a mathematically “ill-
posed” problem which means that the tracking results are
very sensitive to perturbations by noise. The mathematical
attempt to stabilize the solution is known as regularization
[2].

Many approaches have been attempted to stabilize the
noise problem. The approaches are to stabilize six or more
diffusion weighted tensors. Since a diffusion-weighted image

is a scalar image, there are many conventional image process-
ing techniques [3–5]. The diffusion weighted images make
one diffusion tensor for each voxel using Stejskal-Tanner
formula. There are conflicting opinions for using more than
six diffusion-weighed images to make a diffusion tensor for
each voxel [6–9]. Diffusion tensor regularization shows dif-
ferent aspects than conventional scalar image regularization
[10, 11]. In fiber tractography, the information about PEV
(principal eigenvector) and FA (fractional anisotropy) from
the diffusion tensor for each voxel is required. PEV and
FA are stabilized using many assumptions or facts including
low curvature, small total variation, and orthogonality of
eigenpairs [12–15].

Among many regularization techniques we are interested
in the median filtering of diffusion tensor data [16–18]. It
is known that the median filtering for anisotropic tensor
data preserves the good property of denoising and structure-
preserving, which is well known for median filtering of
isotropic data [18]. In addition, Kwon et al. devised a suc-
cessive Fermat filtering for tensor data [19]. Tensor-valued
median filter is computed using minimization problem such
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as gradient descent method or Newton type method in
general. Unlike the conventional minimization algorithm,
more simple methods, simple median (SM) and successive
Fermat (SF) methods, are suggested in [18, 19], respectively.
In the papers, only one slice filtering method, that is to
say, two-dimensional method for three-dimensional tensor,
is considered. In this regard, we call these two-dimensional
methods SM2D and SF2D, respectively. But the real DT-
MR tensor data are composed of numerous axial, coronal,
or sagittal slices. In this paper, we extend SM2D and SF2D
to three-dimensional methods SM3D and SF3D, respectively,
finding median tensor from 3 × 3 × 3 neighbor tensors. That
is to say, the SF3D/SM3Dmedian tensor is the Fermat/simple
median of the three SF2D/SM2D medians from the three
consecutive slices.

This paper is organized as follows. Section 2 describes
the three-dimensional extension (SM3D and SF3D) of the
two-dimensional median algorithms (SM2D and SF2D). In
Section 3, we generate the synthetic data and describe MR
data for numerical simulations of DT-MR tractography. And
we also explained the error measures to test the numerical
experiment. In Section 4, a performance characterization of
the four-median filtering is presented. Section 5 is devoted to
concluding remarks.

2. 3D Median Filtering Methods

In this section, we describe general median filtering and
explain briefly SM2D and SF2D. We also extend the two-
dimensional methods to the three-dimensional methods:
SM3D and SF3D. In this paper, we use the following Frobe-
nius norm as a matrix norm of a matrix 𝐴 = {𝑎𝑗𝑘}𝑗,𝑘=1,...,3

:

‖𝐴‖ = √

3

∑

𝑗,𝑘=1

𝑎
2
𝑗𝑘

. (1)

Let𝐵 be an admissible set ofmatrices and let 𝑆 = {𝐴1, . . . , 𝐴𝑛}

be any set of 𝑛 matrices. Then the median 𝐴Median of the set 𝑆

is defined as

𝐴Median = argmin
𝑋∈𝐵

𝐸𝑆 (𝑋) , 𝐸𝑆 (𝑋) =

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑋 − 𝐴 𝑖
󵄩󵄩󵄩󵄩 . (2)

In general median filtering method, 𝐵 is chosen as the set of
symmetric positive-definite 3 × 3 matrices. The neighboring
set 𝑆 can be chosen arbitrarily in general, but we specify
just two neighboring sets 𝑆2 and 𝑆3 for two-dimensional and
three-dimensional cases. That is to say, in two-dimensional
methods, 𝑆2 has chosen nine neighboring matrices in each
axial (or sagital or coronal) slice as in Figure 1(a) and, in three-
dimensional cases, 𝑆3 has chosen 27 neighboring matrices
which is 9 matrices for every consecutive three axial slices as
in Figure 1(b). After themedian filtering,𝐴Median, replaces𝐴5

in two-dimensional methods and 𝐴14 in three-dimensional
methods as in Figure 1, the Frobenius norm matrix median
filter𝐴Median defined in (2) preserves the following properties
[16–18].

(1) If all matrices in 𝑆 are symmetric, scalar-valued,
and positive-definite, then 𝐴Median is also symmetric,
scalar-valued, and positive-definite, respectively.

(2) If 𝐴Median is Frobenius matrix median of 𝑆, 𝑘𝐴Median
and 𝐵𝜃𝐴Median are Frobenius matrix median of 𝑘𝑆

and 𝐵𝜃𝑆, respectively, where 𝑘 is a given positive
constant and𝐵𝜃 is amatrix rotating all vectors in three
dimensions by angle 𝜃 for some given orientation.

2.1. SimpleMedian FilteringMethods (SM2Dand SM3D). The
SM2Dmethod is to find a simple approximation𝐴SM2D of the
median 𝐴Median as in the following equation:

𝐴SM2D = argmin
𝑋∈𝑆
2

𝐸𝑆
2

. (3)

It is well known that 𝐴Median is contained in the convex hull
of the set neighboring set 𝑆2, whereas 𝐴SM2D is a member of
𝑆2, which is one of the nine vertices 𝐴 𝑖, 𝑖 = 1, 2, . . . , 9, of
the convex hull. We extend the SM filter to three dimensions.
While the two-dimensional SM filter uses a 3 × 3 mask for
filtering, we propose three-dimensional SM (SM3D) filtering
using a 3 × 3 × 3 sized mask that covers above (𝑛 − 1)th slice
and below (𝑛 + 1)th slice in addition to the current 𝑛th slice,
9 tensors for each. Consequently, the neighboring matrix
set 𝑆3 is defined as {𝐴1, 𝐴2, 𝐴3, . . . , 𝐴27} as in Figure 1(b).
More explicitly, SM3D is to find the solution of the following
minimization problem:

𝐴SM3D = argmin
𝑋∈𝑆
3

𝐸𝑆
3
(𝑋) , (4)

and SM3Dfiltering returns better results than SM2Dfiltering,
because it uses all the three-dimensional neighboring tensor
matrices; however, it is more computationally intensive. The
SM3D method is explained in Figure 1.

2.2. Successive Fermat Median Filtering Methods (SF2D
and SF3D). Fermat median filtering algorithm proposed by
Kwon et al. [19] is extended to three dimensions. Fermat
median filtering method is based on the Fermat-Torricelli
problem, which is raised by Pierre de Fermat in 1643 to
Evangelista Torricelli:

“Given three points in the two-dimensional plane,
find the point having theminimal sum of distances
to these three points.”

The above problem is the same as the minimizing solu-
tion of (2) for three two-dimensional vectors, since any
three points in Euclidean space form a two-dimensional
hyperplane in the Euclidean space. Several solutions and
generalizations are given in [20–22]. The algorithm to find
Fermat point is obtained by the following properties (see
Figure 2).

(1) If one of the three angles in the triangle is greater than
or equal to 120∘, the Fermat point is the vertex at that
angle (Figure 2(a)).
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Figure 1: Computations of (a) SM2D and (b) SM3D medians.

(2) If all the three angles in the triangle are less than
120∘, the Fermat point is the intersection of the two
straight lines joining any vertex of the triangle and
its symmetrical point. The symmetrical point of 𝐴1,
for example, is computed as follows: the symmetrical
point (𝐴

󸀠
1) of a point (𝐴1) of the triangle (Δ𝐴1𝐴2𝐴3)

is chosen by making equilateral triangle (Δ𝐴
󸀠
1𝐴2𝐴3)

at the outside of the triangle but contacting the
opposite side (𝐴2𝐴3) of the point (𝐴1) (Figure 2(b)).

We call the algorithm to find Fermat point for three
tensors using the above properties, Fermat algorithm. Then,
SF2D is a method to find the approximation of 𝐴Median for
neighboring set 𝑆2 by using Fermat algorithms successively
as follows:

𝐴SF2D = argmin
𝑋∈𝐵

𝐸SF (𝑋) , SF = {SF1, SF2, SF3} ,

SF𝑖 = argmin
𝑋∈𝐵

𝐸𝐹
𝑖
(𝑋) ,

𝐹𝑖 = {𝐴3(𝑖−1)+1, 𝐴3(𝑖−1)+2, 𝐴3(𝑖−1)+2} , 𝑖 = 1, 2, 3.

(5)

For the illustration of (5), see Figure 3(a). The error between
𝐴Median and 𝐴SF2D is analyzed in [19].

To define a three-dimensional SF3D, we divided 27 points
in 𝑆3 into three groups with nine tensors in three consecutive
slices. A tensor computed by SF3D is the Fermat point of the
three tensors which are SF2D solutions for each slice. Let us
assume that𝐴14 in 𝑆3 is contained in 𝑛th axial slice.The SF3D
method is depicted in Figure 2(b) and mathematically it is
formulated as follows:

𝐴SF3D = argmin
𝑋∈𝐵

𝐸SF (𝑋) ,

SF = {SF𝑛−1, SF𝑛, SF𝑛+1} ,

SF𝑚 = argmin
𝑋∈𝐵

𝐸𝐹𝑚 (𝑋) , 𝑚 = 𝑛 − 1, 𝑛, 𝑛 + 1,

𝐹
𝑚

= {𝐴9(𝑚−𝑛+1)+𝑖}𝑖=1,2,...,9
.

(6)

See Figure 3(b) for the illustration of SF3D.

3. Numerical Experiments

To evaluate the four filtering methods, we prepared three
kinds of synthetic data depending on the angle deviating from
each axial slice and human data from the MR scanner. These
data are three-dimensional.

The flowchart of our numerical experiment is given in
Figure 4. Given synthetic or human data, diffusion tensor is
computed. In order to compare the filtering methods with
respect to noise level, we added Gaussian noise with mean 0
and standard deviation 𝜎 = 0.001, 0.01, and 0.1 to the original
data. The noisy images were reconstructed using the four
methods: SM2D, SM3D, SF2D, and SF3D. The eigenvalues
(𝜆1, 𝜆2, 𝜆3) and eigenvectors were calculated by using the
power method [23]. Fractional anisotropy (FA) of the tensor
𝐴 for each voxel is given in relation to the three eigenvalues
by

FA (𝐴) =

√3(𝜆1 − 𝑚)
2

+ (𝜆2 − 𝑚)
2

+ (𝜆3 − 𝑚)
2

√2 (𝜆1
2

+ 𝜆2
2

+ 𝜆3
2
)

,

𝑚 =
𝜆1 + 𝜆2 + 𝜆3

3
.

(7)

The fiber tracking was based on the fiber assignment
continuous tracking (FACT) algorithm and a brute-force
reconstruction approach [24]. Following the analysis in [1,
24], the fiber tracking was started at the center of an every
voxel with FA value greater than 0.3, and terminated at the
voxel with an FA less than 0.3 and a tract turning-angle less
than 70∘ in our numerical implementation. Computing FA
value, FACT algorithm, and brute-force approach are done
using DTI-Studio (CMRM, Johns Hopkins Medical Institute,
USA).

3.1. Error Measures. Error measures used in the analysis of
numerical examples are also given in this section. Let us
define the followings:

𝑁 : The number of voxels
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Figure 2: Computing Fermat point 𝐹 (a) when one of the three angles is greater than 120
∘ and (b) when all the three angles are less than 120

∘.
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Figure 3: Computations of (a) SF2D and (b) SF3D medians.

𝐴 = {𝐴𝑛}𝑛=1,...,𝑁: The set of original neighboring
tensors
𝐴
𝜎: The set of tensors disturbed by Gaussian noise

with mean 0 and variance 𝜎
2

𝑋:The set of tensors whose error from original tensor
set 𝐴 should be computed.

In this paper, 𝑋 can be reconstructed tensor sets using one
of the four filtering method or 𝐴

𝜎. The error measures used
in this paper are the average angular error (AAE) and the
average fractional anisotropy (AFA) defined as follows:

AAE (𝑋 : 𝐴) =
1

𝑁

𝑁

∑

𝑛=1

cos−1 (PEV (𝑋𝑛) ⋅ PEV (𝐴𝑛)) ,

FA (𝑋 : 𝐴) =
1

𝑁

𝑁

∑

𝑛=1

󵄨󵄨󵄨󵄨FA (𝑋𝑛) − FA (𝐴𝑛)
󵄨󵄨󵄨󵄨 .

(8)

3.2. Synthetic DataGeneration. The tensor data for each voxel
was constructed using the following diagonalization with a
diagonal matrix having three eigenvalues (1, 0.2, 0.2) and an
orthogonal matrix parameterized by azimuth angle 𝜃 and
altitude angle 𝜑 as follows:

𝐴𝜃,𝜑 = 𝑇
𝑡
𝜃,𝜑(

1 0 0

0 0.2 0

0 0 0.2

) 𝑇𝜃,𝜑,

𝑇𝜃,𝜑 = (

cos𝜙 cos 𝜃 cos𝜙 sin 𝜃 sin𝜙

sin𝜙 cos 𝜃 sin𝜙 sin 𝜃 − cos𝜙

sin 𝜃 − cos 𝜃 0

) .

(9)

We designed PEV, the first eigenvector, of 𝐴𝜃,𝜙 to have
azimuth angle 𝜃 and altitude angle 𝜙, since the first, second,
and third row of 𝑇𝜃,𝜙 corresponds to the corresponding
eigenvector for the first, second, and third diagonal elements,
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Figure 4: Flowchart of the fiber tractography loaded from synthetic data (Section 3.2) or DTI data (Section 3.3).

respectively. The second and third row of 𝑇𝜃,𝜙 is chosen to
make 𝑇𝜃,𝜙 orthogonal matrix.

The number of voxels for the synthesized data was chosen
128 × 128 × 3 just to verify the efficiency of the filtering in the
middle slice for three consecutive slices.The generalization to
more slices is not so difficult. Let (𝑖𝑥, 𝑖𝑦) be the position of the
voxel in the xy-plane.

We have considered three kinds of synthetic data, with
different altitude angles 𝜙 = 30

∘
, 45
∘
, 60
∘. We set azimuth

angle 𝜃 = 45
∘ and make synthetic data zero matrices except

19 continuous diagonal lines as follows:

𝐴𝐼 =

{{{{{{{

{{{{{{{

{

𝐴𝜋/4, 𝜋/6 = (

0.500 0.300 0.245

0.300 0.500 0.245

0.245 0.245 0.400

) ,

𝑖𝑦 − 10 < 𝑖𝑥 < 𝑖𝑦 + 10,

𝑂, otherwise,

(10)

𝐴𝐼𝐼 =

{{{{{{{

{{{{{{{

{

𝐴𝜋/4, 𝜋/4 = (

0.400 0.200 0.283

0.200 0.400 0.283

0.283 0.283 0.600

) ,

𝑖𝑦 − 10 < 𝑖𝑥 < 𝑖𝑦 + 10,

𝑂, otherwise,

(11)

𝐴𝐼𝐼𝐼 =

{{{{{{{

{{{{{{{

{

𝐴𝜋/4, 𝜋/3 = (

0.500 0.300 0.245

0.300 0.500 0.245

0.245 0.400 0.400

) ,

𝑖𝑦 − 10 < 𝑖𝑥 < 𝑖𝑦 + 10,

𝑂, otherwise,

(12)

where O is the zero matrix.
The synthesized data and their projection to xy- and yz-

plane are depicted in Figure 5.

3.3. Human Data from MR Scanner. The whole procedure
obtaining fiber tracts for DT-MR images from the MR
scanner data is as follows. The single-shot spin echo is used
in the image acquisition and data preprocessing from MR
scanner. Echo planar imaging (SE-EPI) pulse sequence with
two diffusion sensitizing gradients placed on both sides of
the 180∘ refocusing pulse. Fifty contiguous DT-MR images

were obtained at 1.5 T Philips Gyroscan MR scanner with
the following imaging parameters: field of view = 224 ×

224mm2, slice thickness = 3mm, acquisition matrix = 96,
reconstruction matrix = 128, TR = 10,000ms, TE = 76ms,
𝑏 factor = 1000 s/mm2, the number of diffusion sensitizing
gradients = 6.

To correct subject head motion and the image distortion
due to eddy current, every DTI 3D volume image was
realigned to 𝑏0 image in FSL (Analysis Group, FMRIB,
Oxford, UK). The diffusion tensor was calculated from the
7- volume images (six diffusion weighted images and one
image with 𝑏 = 0). To assess the effects of median filtering
on the regularization of the noise in DT-MRI tractography, a
noisy data was generated by adding the Gaussian noise with
0 mean and 0.0001 standard deviation to the original human
DTI data. Fiber tracking for the original data and noisy
data with no filtering, SM3D, SF3D, SM2D and SF2D was
performed using the DTI-Studio (CMRM, Johns Hopkins
Medical Institute, USA). To select the corticospinal tract
(CST), a ROI (Region Of Interest) was drawn on the known
anatomical CST area in the pons as shown in Figure 6 and the
fibers passing through the ROI were considered as the CST.

4. Numerical Results and Discussion

The numerical results about the three synthetic data in
Section 3.2, are given in Figures 7, 8, and 9. Gaussian
noise with 0 mean and various standard deviations 𝜎 =
0.1, 0.01, 0.001 are added to the synthesized data 𝐴𝐼𝐼 in
(11). And we compared the performance of the four median
filtering regularization algorithms (SM2D, SF2D, SM3D, and
SF3D) with respect to AAE and AFA errors in Figure 7. As
shown in the figure, three-dimensional filters are superior
to two-dimensional filters and SF3D/SF2D is superior to
SM3D/SM2D. It is remarkable that SF2D is superior to SM3D
in the figure. This shows that the simple median is not so
close the median point, whereas the successive median point
is much close to the median point even in two-dimension.
The xy-plane projection as in Figure 5(a) of the original data
𝐴𝐼𝐼, the disturbed image with Gaussian noise having 0 mean
and standard deviation 0.01, and reconstructed images by the
four methods are pictured in Figure 8. The reconstructed
image in Figure 8(c) from SM2D is slightly improved from
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Figure 5: Synthesized data 𝐴𝐼, 𝐴𝐼𝐼, and 𝐴𝐼𝐼𝐼 given in (10), (11), and (12): (a) three-dimensional representation of 𝐴𝐼 and its projection to
xy-plane, (b) another three-dimensional representation of 𝐴𝐼 and its projection to yz-plane, and resulting two-dimensional representation
of the synthetic data (c) 𝐴𝐼, (d) 𝐴𝐼𝐼, and (e) 𝐴𝐼𝐼𝐼.

the disturbed image in Figure 8(b), but still many distorted
and broken lines are observed. The distortion and breakage
of lines from the original image Figure 8(a) is more improved
in Figure 8(d) (SF2D) or Figure 8(e) (SM3D) than the image
from Figure 8(b) (SM2D). However, most improved image is
found in Figure 8(f), the reconstructed image using SF3D.

In Section 3.2, we considered three kinds of synthetic data
𝐴𝐼, 𝐴𝐼𝐼, 𝐴𝐼𝐼𝐼 with different altitude angles 𝜙 = 30

∘
, 45
∘
, 60
∘.

In Figure 9, the reconstructed image using the four methods
are compared for the three kinds of synthetic data. In the 𝑥-
axis label, the altitude angle in degree of the three synthetic
data is considered. Added Gaussin noise in the disturbed
image has zero mean and 𝜎 = 0.01. The two-dimensional
filters show no change of errors with respect to altitude
angle. However, three-dimensional filters decreased when
altitude angle increases: this phenomenon is observed not



Journal of Applied Mathematics 7

(a) (b)

Figure 6: MRI data for the pons in the (a) sagittal and (b) axial planes.The rectangle in (b) was chosen as ROI to select the corticospinal tract
(CST).
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Figure 7: Errors with respect to 𝜎 = 0.1, 0.01, and 0.001 when we recover the synthetic data 𝐴𝐼𝐼 using the four median filtering methods: (a)
Log (AAE) error and (b) Log (AFA) error.

so outstandingly for SM3D, but very remarkably for SF3D.
The increase of altitude angle means that fiber tract strays
out of xy-plane and propagates in the direction close to the
𝑧-axis. Due to this fact, three dimensional filters shows more
sensitive to the altitude angle whereas two-dimensional filters
shows no change of the errors with respect to the altitude
angle.

In Figures 10, 11, and 12, the reconstruction for human
data is considered. Gaussian noise with 0 mean and 0.0001
standard deviation are added. As shown in Figure 10, SF
methods show better results than SM methods and three-
dimensionalmethods are better than two-dimensionalmeth-
ods. It is remarkable that SF2D make smaller error than
SM3D as in Figure 7. In Figures 11(a)–11(c) show the CSTs
from the original DTI data and Figures 11(d)–11(f), 11(h) and
11(i) from noisy ones (𝜎 = 0.0001) with no median filtering,
SM3D and SF3D, SM2D and SF2D, respectively. And the
green rectangular regions in Figures 11(b) and 11(h) were

magnified and arranged on the left and the right in Fig-
ure 11(g), respectively. The images in the bottom left corners
in Figure 11 show the CSTs in the axial planes represented
by the horizontal line in Figure 11(a). Not knowing the true
CST, we couldn’t tell which one among Figures 11(a)–11(c)
was closest to the true CSTs. Therefore, Figures 11(a)–11(c)
were used as the standards to assess the effect of the median
filtering in the CST fiber tracking from noisy data: the CSTs
in Figures 11(d)–11(f) were comparedwith Figures 11(a)–11(c),
respectively. In case of no filtering, the number of fibers in the
CST in Figure 11(d) is considerably decreased, while the CST
in Figure 11(d) shows a similar shape to the one in Figure 11(a).
For the SM3D filtering, the CST in Figure 11(e) shows distinct
differences in the region enclosed by the blue circles: In the
axial image, the fiber tracts indicated by two yellow arrows in
Figure 11(b) disappear in Figure 11(e). For the SF3D filtering,
although the CSTs in Figures 11(c) and 11(f) show a few
differences, they are similar in shape and the fiber tracts in
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(a) (b) (c)

(d) (e) (f)

Figure 8: Filtering of synthetic data𝐴𝐼𝐼 corruptedwithGaussian noise having zeromean and𝜎= 0.01: (a) the original image, (b) the disturbed
image, and the reconstructed images using (c) SM2D, (d) SF2D, (e) SM3D, and (f) SF3D.
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Figure 9: Errors with respect to 𝐴𝐼, 𝐴𝐼𝐼, and 𝐴𝐼𝐼𝐼 with 𝜑 = 30
∘
, 45
∘
, 60
∘, respectively, when we recover the synthetic data with Gaussian noise

having mean 0 and 𝜎 = 0.01 using the four median filtering methods: (a) Log (AAE) error and (b) Log (AFA) error.

the axial images show little difference. In comparison with 2-
dimensional filters, SF3D Figure 11(f) is closer to Figure 11(c)
than SF2DFigure 11(i). On the other hand, SM2DFigure 11(h)
appears to be closer to Figure 11(b) than SM3D Figure 11(e),
however, as one can see in Figure 11(g), the fibers in SM2D
(right) show complicate fiber connections by comparison

with the left image, which was not realistic and caused from
the poor regularization of the noise in the region. Therefore,
the SF3D filter shows best regularization of the noise in CST
tracking.

The calculation time average and standard deviation for
the fourmethods are graphed in Figure 12. Intel Pentiumwith
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Figure 10: Errors when we recover human data fromMR scanner corrupted with Gaussian noise having zero mean and 𝜎 = 0.0001 by using
the four median filtering methods: (a) Log (AAE) error and (b) Log (AFA) error.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: CSTs passing through the pons of a human subject: corticospinal tracts obtained from the original data with (a) no filter, (b) SM3D,
and (c) SF3D and the CSTs obtained from the disturbed data (𝜎 = 0.0001) with (d) no filter, (e) SM3D, (f) SF3D, (h) SM2D, and (i) SF2D.The
images in the bottom left corners show the CSTs in the axial planes represented by the horizontal line in (a). And the left figure and the right
one in (g) are magnified images of the green rectangular regions in (b) and (h), respectively.



10 Journal of Applied Mathematics
Ti

m
e (

s)

SM2D SF2D SM3D SF3D

50

45

40

35

30

25

20

15

10

5

0

Figure 12: Computation time for the four methods to reconstruct
the DT-MR data: the blue solid bar and small vertical bar at the
top end of the blue bar represent the average and the standard
deviation of computational times for the four methods, respectively,
after testing the four median filters five times for each.

3 GHz CPU and 2GB RAM was used for the simulation. The
difference of calculation times for SM2D and SF2D is not
so remarkable, as we know how exactly SF2D recover fiber
tracts than SM2D from Figures 7 and 11. And the difference
of computation times between SF2D and SF3D is not so
outstanding, since we also know the efficiency of SF3D from
previous figures. That is to say, even though SF3D needs a
little more computation time than SF2D, SF3D recover DT-
MR image far better than SF2D. However, SM3D needs too
much time than the other threemethods and recovering error
is larger than SF2D and slightly better than SM2D.

5. Conclusion

In this study, we developed three-dimensional median filters
SM3D and SF3D, extending previously developed SM2D
and SF2D in [19]. We implemented three kinds of syn-
thetic data with different altitude angle deviating from the
axial slices and one human data form MR scanner. As
altitude angle increase from the xy-plane we observed that
three dimensional median filters more efficient than two-
dimensional filters. For all four synthetic and human data,
the four median filters (SM2D, SF2D, SM3D, and SF3D) have
same tendency with respect to AAE and AFA errors: three-
dimensional filters show superior results to corresponding
two-dimensional median filters and SF filters show better
reconstruction than SM filters. With respect to computation
time, SF2D or SF3D filters need not so much time compared
to SM2D filter but SM3D filter needs far more computation
time than the other three filters. Therefore, SF3D is proved to
be the most efficient median filters and is supposed to be one
of powerful regularization methods.
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