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This paper discusses the construction of a fuzzy B-spline surface model. The construction of this model is based on fuzzy set theory
which is based on fuzzy number and fuzzy relation concepts. The proposed theories and concepts define the uncertainty data sets
which represent fuzzy data/control points allowing the uncertainties data points modeling which can be visualized and analyzed.
The fuzzification and defuzzification processes were also defined in detail in order to obtain the fuzzy B-spline surface crisp model.
Final section shows an application of fuzzy B-spline surface modeling for terrain modeling which shows its usability in handling

uncertain data.

1. Introduction

Data points are collected from physical objects to capture
its geometric entity and representation in a digital system,
that is, CAD systems. This data is collected by using specific
devices such as scanning tools. However, the recorded data do
not necessarily represent error-free data. It is due to the fact
that the errors are produced by the limitations of the tools,
environmental factors, human errors, and so forth. Usually,
these kinds of data which have uncertainty characteristics
cannot be used directly to produce digitized models. Hence,
designers use certain type of digital filter to remove and
amend the errors involved which is a painstaking process [1].
One may not truly capture the digital model of a scanned
model due to the reasons stated above regardless of executing
the time consuming digital filter.

In order to make the uncertain data useable for analysis
and model building, these data have to be defined in a
different approach which will incorporate uncertainties of the
measurements. In this paper, we propose fuzzy set theory
which was introduced by Zadeh in 1965 [2]. It has been widely
used in dealing with uncertain matters for wise decision
making processes. Readers are referred to [3-5] for detailed
explanation regarding the subject matter.

Natural spline, Bezier, and B-spline functions are example
of functions which can be used to create CAD models with

data points [6-8]. These curves and surfaces created with
the stated functions are the standard approach to represent
a set of collected data points. These curves and surfaces
are used to visualize and analyze the CAD models. B-spline
functions can be used to design curves and surface using
either approximation or interpolation methods to model the
real data points [9-15]. The reason why B-spline functions
with its weight known as nonuniform rational B-spline
(NURBS) being used in many applications is that the designer
can easily tweak the control points to obtain a desired shape
easily.

This paper discusses modeling of interpolating B-spline
surface using fuzzy set theory and it is organized as follows.
Section 2 reviews the previous work on modeling uncertain
data via B-spline function in the form of curves and surface.
Section 3 discusses the representation of data points using
fuzzy set theory, fuzzy number, and fuzzy relation concepts.
Section 4 discusses blending of fuzzy data/control point with
B-spline curve and surface function where the end results
in fuzzy B-spline curve and surface model. This section also
defines fuzzification and defuzzification processes. To show
the application of fuzzy B-spline surface model, we apply the
proposed method to model lakebed from a set of uncertain
data in Section 5. This section also compares the result of
statistical analysis to show the effectiveness of proposed fuzzy
B-spline model.
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2. Previous Works

The requirement of fuzzy set theory is essential in handling
ambiguous data in order to create a model using B-spline
curve and surface function. The designers are unable to
choose the appropriate control points which are exposed to
errors and uncertainties due to the reasons stated above.
Therefore, this is the reason why we define the uncertain data
by using fuzzy set theory and model them through B-spline
curve and surface function.

There are a number of methods that have been developed
in dealing with uncertain data. Examples include modeling
surface of Mount Etna which was proposed by Gallo et al.
[16, 17]. In this paper, they developed a fuzzy B-spline model
which was conceptualized from fuzzy numbers in the form
of intervals. They also proposed alpha level within (0, 1]. The
data of Mount Etna was represented in the form of interval
fuzzy surface based on alpha value. Anile et al. [18] further
enhanced this method for modeling uncertain and sparse
data.

Both of the methods discussed above do not have defuzzi-
fication process to obtain a crisp fuzzy surface (defuzzified
surface). Although both methods employed fuzzification
phase, it is still in interval surface form which is not in single
surface form. Furthermore, the fuzzification and defuzzifica-
tion process of B-spline fuzzy system [19] were not elaborated
in detail. Therefore, this paper elucidates defuzzification
process upon the application of fuzzification process.

3. The Process of Defining Fuzzy Data

This section defines uncertain data based on the concept of
fuzzy number [3-5, 20] based on the interval of fuzzy number.

Definition 1. Let R be a universal set in which R is a real num-

ber and A is subset of R. A Fuzzy set A in Ris called a tuzzy
number and expressed using the a-level with various «a-cut;
that is, if for every a € (0, 1], there exist set ?a in R where
(Z)a ={xeR: ‘uAa(x) > o} and(z)a ={xeR: ‘uAa(x) > o}
[21].

Definition 1 provides the basis to define uncertain data
in which these data are in the form of real numbers. We use
triangular fuzzy number for defining the uncertain data in the

form of interval. Therefore, the triangular fuzzy number can
be defined in Definition 2 as follows [21].

Definition 2. If triangular fuzzy number is represented as
Z) = (a,d,c) and 7“ is a a-cut operation of triangular fuzzy
number, then crisp interval by a-cut operation is obtained as
A, =1a"¢"] = [([d - a)a +a,~(c ~ d)a+c] with a € (0,1]
where the membership function, y<; (x), is given by

(0 for x,< a
r-a fora<x<d,
d—a
py () =9 .-« @)
ford<x<c,
c—d
[0 for x > ¢,
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FIGURE 1: Triangular fuzzy number, (X = (a,b,c).

where a and ¢ are left and right fuzzy number which form
the interval fuzzy number and d is the crisp point in the
interval. The « symbol means the a-level values of triangular
fuzzy a-cut (see Figure 1).

In Figure 1, the b value is the crisp fuzzy number which
has full membership function; that is, it is equal to 1.

Before we define the uncertain data points, we must
define the fuzzy relation which is used as a converter from
the definition of fuzzy number to the definition of fuzzy data
points in real numbers. Then, the definition of fuzzy relation
and also the definition of the relation between two fuzzy
points can be given in Definition 3 till Definition 5.

Definition 3. Let X,Y C R be universal sets; then

«—
R ={((x9), 4z (%) (xy)cXxY}
is called a fuzzy relation on X x Y [4, 21].

Definition 4. Let X,Y € R and A = {x,‘u?(x) | x € X}
and B = {y,uz(») | y € Y} are two fuzzy sets. Then R =

{I(x, y),‘u«?(x, )], (x,y) € X x Y} is a fuzzy relation on A
and (E) ifpui»(x, y) < ‘wX(x), V(x,y) € XxY and ‘u?(x, y) <
ug(y), V(x, y) € X XY [4].

Definition 5. Let X,Y < R with (]\_/I) = {x, pt«A—/I»(x) | x € X}
and N = {y,u3(») | y € Y} represent two fuzzy data. Then,

the fuzzy relation between both fuzzy data is given by P =
{[(x’ )’)’.W?(X) }’)]) (.X, )’) € X x Y}

The uncertain data points can be defined after fuzzy
number and fuzzy relation had been defined. This uncertain
data point becomes fuzzy data point (FDP) as shown in
Definition 6.
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FIGURE 2: The process of defining FDPs.

Definition 6. Let D = {(x,y),x € X,y € Y | xand y are

fuzzy data} and D= {P; | P is data point} is the set of FDPs
whichis D; € D ¢ X xY < R with R is the universal set
and pp(D;) : D — [0, 1] is membership function defined as

up(D,) = 1inwhich D = {(D;, up(D;)) | D; € R}. Therefore,

0, if D, ¢ R,
up(D;) = 4ce(0,1), if D,€R, 3)
1, if D, € R,

with up(D;) = (up(D;"), up(D;), up(D;”)) where pup(D;")
and pp(D;”) are left-grade and right-grade membership
values, respectively. This can be written as

>

D:{(Bi:(xi,yi)Ii:O,l,...,n} (4)

— — — > >
foralli, D; =(D,; ,D;, D, )with D, ,D;,and D, being
left FDP, crisp data point, and right FDP, respectively [20].
The procedure in defining FDP is illustrated in Figure 2.

Figure 2 shows the approach to transform ordinary data
point to Fuzzy data point (FDP). The membership grades of
FDPs in the form of (x, y) are illustrated in Figure 3.

Figure 3 shows the formation of FDP by using the defini-
tions of fuzzy relation and fuzzy number. The construction of
FDPs is in x- and y-axis.

0.8

= 0.6
<
X 04

0.2

FIGURE 3: FDP form after being defined by fuzzy relation.

Definition 6 gives us the definition of FDP in 2D form and
for FDP in 3D form similar concept is applicable given by (5)
(based on (4)). Consider

B={(Bi=(xi,yi,zi)|i=0,1,...,n}. (5)
4. The Proposed Method

This section discusses blending of FDPs into B-spline func-
tion to produce fuzzy B-spline curves and surfaces. The
fuzzification and defuzzification process towards fuzzy B-
spline model in the form of either curves or surface are also
discussed.
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(b)

FIGURE 4: The fuzzy B-spline models in the form of (a) curves and (b) surface.

Based on B-spline function [6-8], we can define the fuzzy
B-spline model [22, 23] as follows.

Definition 7. A fuzzy B-spline curve is a function (}_?s)(t) which

represents a curve to the set of real fuzzy numbers and it is
defined as

k+h-1
—

Bs(t)= Y P By (t), (6)
i=1

where (E) are fuzzy control points which are also known as
fuzzy data point and B, ;,(t) are B-spline basic function with
crisp knot sequences t,,t,,...,t,,_4.,1 Where d represents
the degree of B-spline function and » represents the numbers
of control points.

Definition 8. A fuzzy B-spline surface is defined by the fol-
lowing equation:

< 2 R d
BsS(s,1) = ) ) P 1Ny () Njg (1), %)
i=0j=0

where (i) N; ,(s) and N;(t) are B-spline basic function of
degrees p and g with crisp parameters of s and ¢ in [0, 1]; (ii)
each vector knot must satisfy the conditions r = m + p + 1
and s = n+q + 1; (iii) ?(i’j) = (?(i’j
control point in ith row and jth column.

Therefore, both of Definitions 7 and 8 can be illustrated
in the form of numerical examples with Figure 4.

«—> d
) P(i,j), P (i)j)) are fuzzy

For fuzzy B-spline curve model, the resultant curve inter-
polates the first and last fuzzy control points. This fuzzy curve
was designed based on five fuzzy control/data points (i =
0,1,...,4). The same concept is applied to surface which uses
diagonal fuzzy control/data points having 16 fuzzy control/
data points.

For fuzzy B-spline curve model, the fuzzy control/data
points are defined for x-element and for fuzzy B-spline
surface model, and the fuzzy control/data points are defined

at z-element. Therefore, defining uncertain data can be done
by combining either the tuple axis or one of the axes while
maintaining other axes as crisp values [21].

Upon defining the fuzzy B-spline model, we use the
alpha-cut operation of triangular fuzzy number to do the
fuzzification process based on Definition 2. Therefore, the
fuzzification process of fuzzy control points is given by the
following definition which is intact with the B-spline surface
function.

>
Definition 9. Let P ; ;) be the set of fuzzy control points

>
wherei =0,1,...,mand j =0, 1,...,n Then, P(ij) is the
ey

alpha-cut operation of fuzzy control point which is given as
the following equation where oy, € (0,1] with k = 1,2,...,1

— —— — —
P, = (P (i), F P (f,j>ak>
«—— e
B <[<P(i>f> - F (llf))"‘k+ P (i,j)] Pijy (8)

(Foyr)a o))

Upon fuzzification, the next procedure is the defuzzifi-
cation process. Defuzzification process is applied to obtain a
fuzzy solution in a single value. The result of defuzzification
process is also known as fuzzy crisp solution. Therefore, the
defuzzification process is defined as in Definition 10.

Definition 10. The defuzzification of ?(
be given as

e and P(i’j)zxk can

POCk = {P(i’j)ak}

— 1 ¢ D ®)

where P(i’j)ak =3 L <P(i,j)ak’P(i’j)’P(i’j)ak> '
i=0, j=
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FIGURE 5: Fuzzy B-spline surface after fuzzification and defuzzification processes.

The illustration of fuzzification and defuzzification pro-
cesses based on Definitions 9 and 10, respectively, is illustrated
in Figure 5 with the alpha value being 0.5.

Figure 5 shows the fuzzy B-spline surface after fuzzifi-
cation (Figure 5(a)) and defuzzification of B-spline surface
(Figure 5(b)). From Figure 5(b), the fuzzification process was
applied by means of alpha-cut operation with the value of
alpha as 0.5. Finally, the defuzzification of B-spline surface
is equal to crisp B-spline surface because the left and right
interval of fuzzy control points is equal.

The constructed fuzzy B-spline surface along with defuzz-
ification process has its merits. The advantage includes the
effectiveness model which can be used to model either the
crisp data (exact data) or fuzzy data (with various a-cuts)
compared to the crisp model which can be used to model the
crisp data only but not for fuzzy data.

5. Lakebed Modeling

This section illustrates an application example of fuzzy B-
spline surface model proposed in this paper. The proposed
model is used to generate the lakebed by using collected data
points which is exposed to various kinds of errors.

These errors which occurred during data point retrieval
include the wavy water surface condition which gives the
uncertain data reading. Therefore, every set of data points
in modeling underwater ground surface has the error of
accuracy to a certain extent. Figure 6 shows the scenario.

Figure 6 shows the process of getting uncertain depth
lake data which has been taken by echo sounder. We can
clearly comprehend the reason for modeling the uncertain
data indicating the depth of lake with fuzzy B-spline surface
model. This uncertainty in the data exists for z-elements
(depth).

Fuzzy number concept and fuzzy relation definition are
utilized to define this uncertain data. We represent the fol-
lowing algorithm to illustrate the steps to be modeled with
fuzzy B-spline from fuzzification to defuzzification processes.

Algorithm I1.

Step 1. Define the uncertain data of lakebed by using
Definition 6.

(b)

Ship with echo sounder

Wavy water surface

o
z

FIGURE 6: The illustration of collecting the depth of lake.

Step 2. Blend the FDPs of lakebed together with B-spline
surface function which is given as

m n
—> >
BSL(s,t)= ) ) "DpNisONj (O (10)
i=0,...,7j=0,.7

which is in the form of bicubic surface.

Note that the set of FDPs of lakebed of Kenyir Lake has
64 data points where i x jwithi, j=0,1,...,7.

Step 3. Apply alpha-cut operation as fuzzification process

(Definition 9) towards (10) with the alpha value being 0.5.
Consider

m n

< «—

BsSL, (st)= Y Y 'D i)y Nip () NGz (8), - (11)
i=0,...,7 j=0,...,7 :

where * (B(i) g ATE the fuzzified data points of lakebed after
alpha-cut operation was applied with

L2

_ /L1y L L=
D (i’j)aol5 - < b (i’j)aoj ’ D(i’j)’ b (i’j)ao,s >
L L L L
B <[< Doy =P (Lj))O'S D (i,j)]’ D,

[— ( L(B’(T.,J.) - LD(,-’].)> 0.5+ L(B(;.)D .
(12)
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Defuzzification
process

,,,,,,,,,

FIGURE 8: The defuzzification process of fuzzy data of a lakebed for
Kenyir Lake with o = 0.2.

Step 4. Use Definition 10 to defuzzify B-spline surface model
of lakebed which is

m
BsSL (s,t) = Z
0,

i=

n
> "D Ny ONj3 (0, (13)
27§=0,...,7

where LB(L g 3T defuzzified data points of lakebed with

I L9
(i’j)%j - < D(lJ

Dy "D
@) (i’j)“o.s '
(14)
The result of Algorithm 11 can be illustrated in Figure 7.

Figure 7 shows the processes of defining the uncertain
data of lakebed which is then modelled by using fuzzy B-
spline surface. The fuzzy data points of lakebed can be defined
as the fuzzy control points because we used the approxima-
tion method to create the fuzzy B-spline surface which used
fuzzy data points as fuzzy control points. After achieving
fuzzy B-spline surface modeling, we then apply the fuzzi-
fication process which utilized the alpha-cut operation of

FIGURE 9: The defuzzification process of fuzzy data of a lakebed for
Kenyir Lake with & = 0.9.

triangular fuzzy number with the alpha value as 0.5. Then,
we defuzzify the fuzzy lake surface based on the definition of
defuzzification. By setting the new alpha values that are 0.2
and 0.9, we may obtain the result of the defuzzified lakebed
model as illustrated in Figures 8 and 9, respectively.

In order to investigate the effectiveness of the output of
lakebed, we find the errors between the defuzzification data
points and crisp data points of lakebed which can be given
through (15). Therefore, the error between those data can be
illustrated by Figures 10, 11, and 12 for different alpha values
as follows:

n L ~

_ D b, - D
_Zieon Di - K _ \here ‘D = —+ &
Yico,.nn(IDy,) Dy (15)

withk=0,1,2,..., n=64.

Figure 10 until Figure12 shows the errors between
defuzzified and crisp data points of lakebed in order to see
the effectiveness of proposed model in modeling uncertain
data of lakebed. The average percentage of the errors is
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FIGURE 10: The error between defuzzified and crisp data points of
lakebed with « = 0.5.
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FIGURE 1I: The error between defuzzified and crisp data points of
lakebed with ¢ = 0.2.
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FIGURE 12: The error between defuzzified and crisp data points of
lakebed with o = 0.9.

0.0413623 m, 0.0661796 m, and 0.00827245m, respectively.
These errors are acceptable for terrain modeling.

6. Conclusion

In this paper, we proposed a new paradigm in modeling
the uncertain data by using the hybrid method between
fuzzy set theory and B-spline function surface function. This
model has an upper hand in dealing with uncertain problem

compared to the existing model which only can be used in
dealing with and modeling crisp data.

The fuzzification and defuzzification processes were also
elucidated exclusively for fuzzy B-spline surface model. For
fuzzification process, the alpha-cut operation was applied
which is in the form of triangular functions. This fuzzification
process was applied to obtain the fuzzy interval of fuzzy data
points where the crisp fuzzy solution is in this interval. It is
then followed by the defuzzification process to find crisp B-
spline surface which focused on the defuzzification of fuzzy
data points.

Finally, to identify the effectiveness of fuzzy B-spline
surface model, this model was applied to modeling of the
uncertain data of lakebed. The process of defining, fuzzifi-
cation, and defuzzification of uncertain data of lakebed can
be represented by an algorithm which is applicable in dealing
with various fuzzy data. The errors produced in the case of
lakebed modeling indicate that it can be used for terrain
modeling.

This work can expand further to solve G* Hermite data
problems which occur in designing aesthetic splines [24].
One may create a system to optimize and propose a suitable
alpha-cut which satisfies given G*> Hermite data which may
facilitate the designers in creating aesthetic shapes efficiently.
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