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A method of solving optimal manoeuvre control of linear underactuated mechanical systems is presented. The nonintegrable
constraints present in such systems are handled by adding dummy actuators and then by applying Lagrange multipliers to reduce
their action to zero.The open- and closed-loop control schemes can be analyzed.Themethod, referred to as the constrained modal
space optimal control (CMSOC), is illustrated in the examples of gantry crane operations.

1. Introduction

Underactuated mechanical systems have fewer independent
actuators than degrees of freedom (DOFs) to be controlled
[1]. Typical nonlinear examples of such systems, usually with
only several DOFs, are rigid multilink robotic manipulators
with passive joints or any manipulator with flexible links
(described by at least onemode of vibration). Linear examples
include vibrating structures with continuously distributed
mass (i.e., with theoretically infinite number of DOFs to
describe them) such as masts, antennas, buildings, brides,
and car suspension, controlled by discrete actuators. This
paper presents a method of analyzing and simulating opti-
mal manoeuvres between two given configurations (often
referred to as point-to-pointmanoeuvres) for linear underac-
tuated systems.Themethod combines optimal control theory
with computational mechanics and the finite element (FE)
technique, in particular.

The number of DOFs equal to the number of actuators
will be referred to as actuated (after [1]), while all remain-
ing DOFs will be referred to as underactuated (however,
all DOFs are in fact controlled). The actuated and unac-
tuated DOFs must satisfy a number of constraints equal
to the number of unactuated DOFs and resulting from
the equations governing the motion of such systems. For
mechanical systems we assume that these constraints may be

nonintegrable (nonholonomic), meaning unactuated DOFs
cannot be explicitly eliminated. Many of the techniques
presented in the literature deal with underactuated problems
by applying the constraints to eliminate the unactuatedDOFs
and then by solving the reduced fully actuated problems [2–
4].These approaches are limited to particular problemswhere
the constraints can be simplified to a form making such
mathematical manipulations possible.Themethod presented
here is capable of dealing with any linear system, as it does
not require the elimination of unactuated DOFs. Instead,
the underactuated system is formulated as if it were fully
actuated by adding “dummy” (zero-valued) actuators to all
unactuated DOFs. The modal space is used in modelling
the system motions. The method can be considered as an
extension of the independent modal space control (IMSC;
e.g., see [5]) into the underactuated problems, therefore it
will be referred to as the constrained modal space optimal
control (CMSOC) method. The system constraints resulting
from underactuation are then determined by eliminating
these dummy actuators. The constraints are algebraic in
terms of controls but differential (nonintegrable) in terms of
the DOFs. The algebraic form of the constraints is used to
generate the so-called matrix of constraints, which is utilized
to handle the nonintegrable constraints with the help of time-
varying Lagrangemultipliers. Pontryagin’s principle is used to
optimize the trajectory and actuation forces.
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This paper presents the CMSOC method in a general
form and then explains some details of the corresponding
numerical procedure in the examples of standard two or
three-DOF gantry crane operations. The method is verified
by recreating the closed-loop control of the two-DOF gantry
crane problem obtained in [1] via applying the classical
technique and the open-loop optimal control considered in
[3].

2. Problem Formulation

2.1. Dynamics of a General Underactuated System. The com-
putational model for the motion of a linear mechanical
system is represented by a standard form used in FE analysis:

Mq̈ + Cq̇ + Kq = BF
𝑎
, (1)

where q and F
𝑎
are vectors of DOFs and activation forces,

respectively, and M, C, and K are constant mass, damp-
ing, and stiffness matrices, respectively. In particular, (1)
is suitable to model the dynamics of a range of actively
controlled structural members undergoing small amplitude
oscillations and finite translations. In underactuated systems
𝑛

𝑎
independent actuation forces are to control 𝑛 > 𝑛

𝑎
number

of DOFs. Matrix B of dimensions 𝑛 × 𝑛

𝑎
assigns components

of vectorFa to particularDOFs and obviously is not invertible
if 𝑛 ̸= 𝑛

𝑎
. Clearly, the actuators via (1) control all DOFs of the

system. For the purpose of analysis the DOFs can be divided
into actuated (q

𝑎
) and unactuated (q

𝑟
) ones by rearranging

these equations as follows:

[

M
𝑎𝑎

M
𝑎𝑟

M
𝑟𝑎

M
𝑟𝑟

] [

q̈
𝑎

q̈
𝑟

] + [

C
𝑎𝑎

C
𝑎𝑟

C
𝑟𝑎

C
𝑟𝑟

] [

q̇
𝑎

q̇
𝑟

] + [

K
𝑎𝑎

K
𝑎𝑟

K
𝑟𝑎

K
𝑟𝑟

] [

q
𝑎

q
𝑟

]

= [

F
𝑎

0 ] .

(2a)

The bottom row represents the equations constraining the
actuated and unactuated DOFs in the following form:

M
𝑟𝑎
q̈
𝑎
+ C
𝑟𝑎
q̇
𝑎
+ K
𝑟𝑎
q
𝑎
+M
𝑟𝑟
q̈
𝑟
+ C
𝑟𝑟
q̇
𝑟
+ K
𝑟𝑟
q
𝑟
= 0. (3)

The system can formally be converted to a fully actuated one
by using (3) to explicitly determine vector q

𝑟
in terms of q

𝑎

(i.e, q
𝑟

= 𝑔(q
𝑎
)), and then by substituting this vector to

the top row of (2a) to obtain F
𝑎

= F
𝑎
(q
𝑎
, 𝑔(q
𝑎
)). Unless

some matrices in (3) vanish, it is not generally possible, and
therefore these constraints are considered as nonholonomic.

The control task for vector F
𝑎
in (1) is to manoeuvre the

system from an initial state to a final state described by the
following boundary conditions (point-to-point manoeuvre):

q (0) = q0, q̇ (0) = q̇0,

q (𝑡

𝑓
) = qf , q̇ (𝑡

𝑓
) = q̇f .

(4)

It should be emphasised that no trajectory is specified in this
task. A particular trajectory satisfying (1) and (4) may be
determined if extra conditions are imposed on the system.We

will identify such a trajectory by optimizing the performance
index as discussed in the next section. Note that this problem
is different from a typical trajectory tracking problem in
which instead of (4) the task is specified as the system output
in the form

y = h (q) . (5a)

Several methods have been proposed to solve the inverse
problems of finding the inputF

𝑎
for the output y as defined by

(1) and (5a), notably the servo-constraint approach [6–9] and
the flatness method [10, 11]. In particular, differentiating (5a)
with 𝑛

𝑎
outputs twice one obtains ÿ = Hq̈ + h, where the size

of matrixH is 𝑛
𝑎
× 𝑛; then square matrixHM−1B is required

to be nonsingular to solve the problem. This condition does
not apply in the method presented here since our output is
given only in terms of (4), that is, the system’s initial and final
configurations.

The set of (1) or (2a) is uncoupled when mapped into
modal space, where vector of DOFs q (size 𝑛) is transformed
to the equally sized vector of modal variables 𝜂 = [𝜂

1
⋅ ⋅ ⋅ 𝜂

𝑛
]

𝑇.
Similarly, vector F is related to an equally sized vector of
modal controls U = [𝑢

1
⋅ ⋅ ⋅ 𝑢

𝑛
]

𝑇. These transformations are

q = Φ𝜂, (6a)

U = (Φ
𝑇B) F

𝑎
=

̂BF
𝑎
, (6b)

where ̂B = Φ
𝑇B is the transfer matrix of size 𝑛 × 𝑛

𝑎
between

vectors F
𝑎
and U and mode shape matrix Φ = [𝜑

1
⋅ ⋅ ⋅𝜑
𝑛
]

relates vectors q and 𝜂.The𝑀-normalizedmatrixΦ, consist-
ing of 𝑛 modal shape vectors 𝜑

𝑖
(each with 𝑛 components),

satisfies the following orthogonality conditions:

Φ
𝑇MΦ = I, (7a)

Φ
𝑇KΦ = Ω, (7b)

where I is the unitary matrix and Ω is the diagonal matrix
of ordered frequencies with the terms Ω

𝑖𝑖
= 𝜔

2

𝑖
. Each

mode shape vector 𝜑
𝑖
and frequency 𝜔

𝑖
are solutions to the

eigenvalues problem (K − 𝜔

2

𝑖
M)𝜑
𝑖
= 0 (𝑖 = 1, . . . , 𝑛). The

above modal analysis (or operations defined by (6a)–(7b)) is
carried out routinely in the FE approach, even for problems
with a very large number of DOFs (large 𝑛).

The equations of motion (1) become uncoupled when
applying transformations (6a) and (6b) subject to orthogo-
nality conditions (7a) and (7b) and take the following form:

I𝜂̈ + Δ𝜂̇ +Ω𝜂 = U, (8)

where for the Rayleigh damping (i.e., C = 𝛼M + 𝛽K) the
diagonal terms of Δ are Δ

𝑖𝑖
= 2𝜍

𝑖
𝜔

𝑖
= 𝜑
𝑇

𝑖
C𝜑
𝑖
and where

𝜍

𝑖
= 𝛼/2𝜔

𝑖
+ 𝛽𝜔

𝑖
/2 are the modal damping ratios. Note that

a rigid body translation, for which 𝜔

𝑖
= 0, is also included in

the above equation.
A continuous system, or an FE model (1) of the system

described by 𝑛 DOFs (where 𝑛 may be a large number),
can be approximated by (8) with only 𝑛

𝑚
significant modes
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considered, where usually 𝑛
𝑚
≪ 𝑛. The number of significant

modes that should be sufficient to represent such a system is
generally problem related and depends mainly on its physical
characteristics, the spatial distribution, and frequency con-
tent of the loading [12].

In the system approximated by 𝑛
𝑚
modes (similarly as for

the system’s DOFs) one can consider 𝑛

𝑎
modes as actuated

and 𝑛

𝑟
= 𝑛

𝑚
− 𝑛

𝑎
modes as unactuated. Then matrix Φ will

be reduced to only 𝑛
𝑚
columns, and transfer matrix ̂B in (6a)

and (6b) will be of dimensions 𝑛
𝑚
× 𝑛

𝑎
.

In order to control all 𝑛

𝑚
modes this system can be

made artificially fully actuated by adding 𝑛

𝑟
= 𝑛

𝑚
− 𝑛

𝑎

dummy actuation forces (zero valued) forming subvector Fd.
For the purpose of analysis vector Fa in (1) is replaced by
the augmented force vector F

󸀠

a = [F𝑇a F𝑇d]
𝑇

containing 𝑛

𝑎

real actuation forces forming subvector Fa and 𝑛

𝑟
dummy

actuators forming subvector Fd. Then, in (1) and (6a) and
(6b), matrix B of dimensions 𝑛 × 𝑛

𝑎
is replaced by matrix

B󸀠 of dimensions 𝑛 × 𝑛

𝑚
(this matrix assigns the component

of F󸀠a to particular nodes). Consequently in (6b) matrix ̂B
of dimensions 𝑛 × 𝑛

𝑎
is replaced by a square matrix ̂B󸀠 of

dimensions 𝑛
𝑚
× 𝑛

𝑚
(𝑛
𝑚
modes controlled by 𝑛

𝑚
actuators).

The dummy actuators Fd should be placed in such a way that
̂B󸀠 is nonsingular.

In the inverse dynamics based control analysis, each
control U

𝑖
can be obtained from (8) by substituting the

corresponding prescribed mode 𝜂
𝑖
. Then, for known vector

U, the actuation forces F
󸀠

a should be determined by inverting
transformation (6b) in which matrix ̂B󸀠 (instead of ̂B) is
now square and nonsingular (the dummy actuators were
added to the system only to ensure that this inversion is
possible). In the next step, after computing the inverse of
operation (6b), the dummy actuators will be eliminated by
giving them zero values. For that purpose the inverse matrix
(

̂B󸀠)−1, representing the mapping from modal controls U =

[ U𝑇a | U𝑇r ]
𝑇

to actuation forcesF󸀠
𝑎
for any augmented system

of size 𝑛
𝑚
× 𝑛

𝑚
, is partitioned as follows:

(

̂B󸀠)
−1

U = F󸀠
𝑎
󳨐⇒ [

̃Ba ̃Br
Aa Ar

] [

Ua
Ur

] = [

Fa
Fd

] = [

Fa
0 ] . (9)

Square submatrix ̃Ba is of size 𝑛𝑎×𝑛𝑎 and square submatrixAr
is of size 𝑛

𝑟
× 𝑛

𝑟
. To be consistent with modes classifications

(actuated and unactuated), vectors Ua = [𝑢

1
⋅ ⋅ ⋅ 𝑢

𝑛
𝑎

]

𝑇 and
Ur = [𝑢

𝑛
𝑎
+1

⋅ ⋅ ⋅ 𝑢

𝑛
𝑚

]

𝑇 are referred to as actuated and unac-
tuated modal controls, respectively. Given the null-valued
dummy force vector Fd = [0 ⋅ ⋅ ⋅ 0]

𝑇 (size 𝑛

𝑟
× 1) the bottom

𝑛

𝑟
rows of operation (9) (lower partition) define constraints

on the system in terms of all modal controls, in the following
form:

AU = A
𝑎
U
𝑎
+ A
𝑟
U
𝑟
= 0. (10)

Matrix A = [Aa | Ar] (size 𝑛

𝑟
× 𝑛

𝑚
) defines the system

constraints written algebraically in terms of modal controls.
Since (10) is homogeneous matrix A can be normalized such
that the diagonal terms corresponding to controls U

𝑎
are set

to unity (i.e., 𝐴
𝑖𝑖
= 1). In this form A becomes independent

of the choice of dummy actuators, which reflects the fact that
these zero-force actuators were added somewhat arbitrarily
only to facilitate the elimination process, that is, to satisfy the
constraints in (9). Matrix A is discussed with more details in
[13, 14].

Real actuation force(s) may be obtained from the top
partition of operation (9) in terms of all modal controls in
vectorU. They can also be obtained in terms of only actuated
modal controls in vector Ua by applying 𝑛

𝑟
constraints

(10) to eliminate unactuated modal controls Ur. Thus, 𝑛
𝑎

components of actuator forces in vector Fa can be obtained
in terms of 𝑛

𝑎
actuated modal controls in vector Ua from the

following operation:

Fa = BUa. (11)

Square matrix B =

̃Ba − ̃BrA−1r Aa (size 𝑛𝑎 × 𝑛

𝑎
) is referred to

as the pseudotransfer matrix, and it relates actuated modal
controls to real actuator forces. Similar to the normalized
constraint matrixA, the pseudotransfer matrix B is indepen-
dent of the choice of dummy actuators.

2.2. Optimal Manoeuvres of Underactuated Systems. In linear
optimal control [15], the manoeuvre is optimal if, for a given
task, it minimizes the performance index:

𝐽 =

1

2

∫

𝑡
𝑓

0

((𝜂
𝑇
̂Qd𝜂) + (𝜂̇

𝑇
̂Qk𝜂̇) + (U𝑇̂RU)) 𝑑𝑡 󳨀→ min,

(12)

where ̂Qd, ̂Qk, and ̂R are matrices, with the diagonal terms
̂

𝑄

𝑑𝑖𝑖
, ̂

𝑄V𝑖𝑖, and ̂

𝑅

𝑖𝑖
(𝑖 = 1, . . . , 𝑛

𝑚
), that are weights for

the system’s potential energy, kinetic energy, and actuator
work, respectively. Note that 𝑛

𝑚
modal variables and modal

controls are included in (12); however, these modes are
not independent because of constraint (10), resulting from
underactuation. Such a problem can be solved by applying
Pontryagin’s principle. Here we use the procedure described
in [15]. Hamiltonian 𝐻 for the constrained optimization
problem involving performance index (12), uncoupled equa-
tions of motion (8), and constraints (10) is defined in the
following form:

𝐻 = −

1

2

(𝜂
𝑇
̂Qd𝜂 + 𝜂̇

𝑇
̂Qk𝜂̇ + U𝑇̂RU) + Pd𝜂̇

+ Pk (−Δ𝜂̇ −Ω𝜂 + U) + v𝑇AU.

(13)

Pd and Pk are standard costate vectors related to modal
position and velocity states (𝜂 and 𝜂̇) of a system, respectively.
Vector v𝑇 = [V

1
⋅ ⋅ ⋅ V
𝑛
𝑟

] represents the set of time-dependent
Lagrange multipliers introduced to enforce constraints (10).
These multipliers play a similar role to, for example, that of
the multipliers used in the servo-constraint approach [6–9]
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mentioned before. According to Pontryagin’s principle the
costate equations take the following form:

̇Pd = −

𝜕𝐻

𝜕𝜂
=

̂Qd𝜂 +ΩPk, (14a)

̇Pk = −

𝜕𝐻

𝜕𝜂̇
=

̂Qk𝜂̇ − Pd + ΔPk. (14b)

The Hamiltonian is stationary with respect to modal control
if

𝜕𝐻

𝜕U
= −

̂RU + Pk + A𝑇v = 0. (15)

Substituting (8) into (15) gives

Pk =

̂R (I𝜂̈ + Δ𝜂̇ +Ω𝜂) − A𝑇k. (16)

Substituting (16) into (14b) yields

Pd =

̂Qk𝜂̇ −
̂R (I∴𝜂 +Δ𝜂̈ +Ω𝜂̇)

+ Δ̂R (I𝜂̈ + Δ𝜂̇ +Ω𝜂) + A𝑇v̇ − ΔA𝑇v.
(17)

Finally, substituting (17) into (14a) generates the following set
of optimality equations:

̂R ̈𝜂̈ + (2Ω̂R −

̂Qk −
̂RΔ2) 𝜂̈ + (

̂RΩ2 + ̂Qd) 𝜂

− (A𝑇v̈ − ΔA𝑇v̇ +ΩA𝑇v) = 0.
(18)

Note that 𝑛
𝑚
optimality equations (18) contain 𝑛

𝑚
unknown

components in 𝜂 and 𝑛

𝑟
unknown components in k. There-

fore, additional 𝑛
𝑟
constraint equations (10) are required in

order to obtain all the unknown modal variable functions
in vector 𝜂 and Lagrange multiplier functions in vector k.
However, the constraints must be written in terms of 𝜂 not
in terms of U (note the change in the constraints’ form from
algebraic to differential). The uncoupled equations of motion
(8) are substituted into algebraic constraints (10) to obtain

A (I𝜂̈ + Δ𝜂̇ +Ω𝜂) = 0. (19)

The number of 𝑛
𝑚
+ 𝑛

𝑟
((18) and (19)) is equal the unknown

components in vectors 𝜂 and k.
Boundary conditions (4) are mapped into modal space

by using the inverse of transformation (6a) or through the
relation 𝜂 = Φ

𝑇Mq (obtained by additional substitution of
condition (7a)). These transformed boundary conditions are

𝜂 (0) = Φ
𝑇Mq0, 𝜂̇ (0) = Φ

𝑇Mq̇0,

𝜂 (𝑡
𝑓
) = Φ

𝑇Mqf , 𝜂̇ (𝑡
𝑓
) = Φ

𝑇Mq̇f .
(20)

For fully actuated problems, the last term (A𝑇v̈ − ΔA𝑇v̇ +

ΩA𝑇v) in optimality equations (18) vanishes because there
are no constraints or Lagrange multipliers needed to enforce
them. Therefore, a fully actuated problem involves only
𝑛

𝑚
optimality equations (18) to be solved in terms of 𝑛

𝑚

uncoupled modal variables in vector 𝜂.

The solution to the combined set of (18), (19), and (20) can
be efficiently obtained using symbolic differential operator
𝐷

𝑛

= 𝑑

𝑛

/𝑑𝑡

𝑛. Substituting this operator into (19) and (20)
and rewriting in matrix notation give

[

E −

̂E𝑇
̃E 0 ] [

𝜂

^] = 0 or EpY = 0, (21)

where

E =

̂R𝐷4 + (2

̂RΩ −

̂Qv − ̂RΔ2)𝐷2 + (

̂RΩ2 + ̂Qd) ,

̂E = A (I𝐷2 + Δ𝐷 +Ω) , ̃E = A (I𝐷2 − Δ𝐷 +Ω) .

(22)

Matrix Ep contains submatrices E, ̃E, and −

̂E𝑇. Vector
Y = [𝜂

𝑇

| ^𝑇]
𝑇 contains all unknown modal variables and

Lagrangemultipliers.Note that in a fully actuated case,matrix
Ep in (21) consists only of submatrix E and vector Y = 𝜂.

The solution to a system described in form (21) involves
the roots 𝑟

𝑙
(𝑙 = 1, . . . , 4𝑛

𝑚
) of the characteristic equation for

the determinant of Ep [16], where operator 𝐷 is replaced by
the auxiliary variable 𝑟 rendering a 4𝑛

th
𝑚
order polynomial.

This operation is written as

detEp
󵄨

󵄨

󵄨

󵄨

󵄨𝐷→𝑟

= 0. (23)

Generally, the 4𝑛

𝑚
roots of the characteristic equation (23)

take the following form:

𝑟

𝑙
= ±𝛼

𝑘
± 𝑖𝛽

𝑘
(𝑘 = 1, . . . , 𝑛

𝑚
, 𝑙 = 1, . . . , 4𝑛

𝑚
) . (24)

Thepositive real numbers𝛼
𝑘
and𝛽
𝑘
characterize the response

of the 𝑘th mode of motion. For nonzero, unique roots,
solution vector Y consists of 𝑛

𝑚
+ 𝑛

𝑟
components 𝑌

𝑗
that can

be written in terms of 4𝑛
𝑚
independent elementary functions

related to the roots (24), in the form [16]:

𝑌

𝑗
=

𝑛
𝑚

∑

𝑘=1

[𝑒

𝛼
𝑘
𝑡

(𝑐

1

𝑘𝑗
sin (𝛽

𝑘
𝑡) + 𝑐

2

𝑘𝑗
cos (𝛽

𝑘
𝑡))

+𝑒

−𝛼
𝑘
𝑡

(𝑐

3

𝑘𝑗
sin (𝛽

𝑘
𝑡) + 𝑐

4

𝑘𝑗
cos (𝛽

𝑘
𝑡)) ] ,

where 𝑗 = 1, . . . , 𝑛

𝑚
+ 𝑛

𝑟
.

(25)

Obviously, the frequency of 𝑘th mode controlled by the
actuators can be interpreted as 𝜔𝑎

𝑘
= 𝛽

𝑘
and its rate of active

attenuation (or amplification) as 𝜍

𝑎

𝑘
= 𝛼

𝑘
/𝛽

𝑘
. If multiple

roots and zero-valued roots are obtained from (23), then
solution functions (25) must be modified to mathematically
accommodate these situations. There are 4𝑛

𝑚
(𝑛

𝑚
+ 𝑛

𝑟
)

unknown integration constants 𝑐

1

𝑘𝑗
, . . . , 𝑐

4

𝑘𝑗
contained in the

solution functions (25).
Integration constants 𝑐

1

𝑘𝑗
, . . . , 𝑐

4

𝑘𝑗
are obtained by substi-

tuting the assumed form (25) into differential equations (18)
and (19) and using the method of undetermined coefficients
to generate 𝑛

𝑚
+ 𝑛

𝑟
sets of 4𝑛

𝑚
linear algebraic equations

relating these constants. By replacing one set of 4𝑛
𝑚
equations
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Figure 1: Gantry crane system.

with the set of 4𝑛
𝑚
boundary conditions (20), the integration

constants can be solved simultaneously. All these symbolic
operations, including the determination of the roots (24)
and constants in (25), can be done automatically using the
MAPLE mathematical software.

For closed-loop control, asymptotically convergent solu-
tion functions are required such that the control task is met
over an infinite period of time (𝑡

𝑓
→ ∞). The resulting

number of integration constants is reduced by half, as terms
involving positive exponential 𝑒𝛼𝑘𝑡 in the solution form (25)
disappear (𝑐1

𝑘𝑗
= 𝑐

2

𝑘𝑗
= 0).

To quantitatively measure the performance of closed-
loop control schemes settling time 𝑡3%

𝑓
is defined as the time

needed for various variables to be reduced to within 3% of
their initial value (i.e., 𝑒−𝛼

min
𝑘
𝑡
3%
𝑓

= 0.03 → 𝑡

3%
𝑓

= 3.5/𝛼

min
𝑘

).
The above procedure was applied to actively suppress

vibrations of a spatial antennamast in [13] andof plane frames
in [14], the cases with the number of DOFsmuch greater than
the number of significant modes included in the analysis (i.e.,
with 𝑛 ≫ 𝑛

𝑚
). In both cases only oscillating modes were

controlled. Here the application of the above methodology is
focused on various control schemes, which are demonstrated
in controlling the translational and oscillating modes of a
gantry crane.

3. Dynamics and Optimal Control of
the Gantry Crane System

The gantry crane problem is one of the simplest underactu-
ated mechanical systems involving two DOFs—cart transla-
tion and suspended load rotation—and a single actuator—a
cart-driving force (𝑛

𝑚
= 2, 𝑛

𝑎
= 𝑛

𝑟
= 1).

The gantry crane model is shown in Figure 1. The model
includes the mass of the cart 𝑀, the mass of the suspended
load𝑚, swing angle 𝜃, gravitational acceleration 𝑔, horizontal
distance 𝑎 from the cart’s initial position to the origin, and

length 𝐿 of the massless rigid link connecting the cart and
load. The task is to manoeuvre the system from an initial
resting state at some nonzero horizontal distance (𝑥 = 𝑎,
𝜃 = 0) to a final resting equilibrium state at the origin (𝑥 = 0,
𝜃 = 0) by applying time-varying force 𝐹

𝑎
. Any finite cart

translations are permitted, but swings of the suspended load
are assumed to be sufficiently small for a linearized model
to be valid. In modal space rigid body translation for such a
manoeuvre is easily separated from the oscillatory motion of
the suspended load. Dummy force 𝐹

𝑑
is added to artificially

make the system fully actuated and formulate the augmented
gantry crane system.

This same gantry crane model was used in several
papers dealing with control or/and optimization. Notably, a
Lyapunov functionwas used in [1] to obtain an asymptotically
stable (closed-loop) control (linear and nonlinear) for atten-
uating disturbances (nonzero initial positions) in the system,
and optimal control by applying Pontryagin’s principle was
considered in [3]. Results for the linearized system are of
interest because they serve as a useful comparison for the con-
trols obtained in this paper. Similar problems of controlling
the plane motion of gantry cranes were presented in [10, 11]
using the concept of flatness. Various aspects of controlling
gantry cranes, 3D operations were considered in [9, 17–19].

The gantry crane system shown in Figure 1 and its
coordinate system are chosen to mimic those used in [1].
Matrices and vectors in the general equation of motion (1)
take the following forms:

M = [

𝑀 + 𝑚 −𝑚

−𝑚 𝑚

] , K = [

0 0

0

𝑚𝑔

𝐿

] ,

B = [

1

0

] , B󸀠 = [

1 1

0 −1

] ,

q = [

𝑥

𝐿𝜃

] , F
󸀠

𝑎
= [

𝐹

𝑎

𝐹

𝑑

] .

(26)
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To be consistent with the assumptions made in [1, 3] no
dissipative effects (i.e., friction, etc.) are considered (C = 0).

The initial and final conditions (consistent with [1]) take
the following forms:

q (0) = [𝑎 0]

𝑇

,

q̇ (0) = q (𝑡

𝑓
) = q̇ (𝑡

𝑓
) = [0 0]

𝑇

.

(27)

The modal analysis (𝑛
𝑚
= 2) gives

Ω = [

0 0

0 (1 +

𝑚

𝑀

)

𝑔

𝐿

] , (28a)

Φ =

[

[

[

[

1

√
𝑀 +𝑚

√

𝑚

𝑀(𝑀 + 𝑚)

0
√

𝑀 +𝑚

𝑀𝑚

]

]

]

]

. (28b)

The rigid body translational mode of motion is represented
in (28a) by the frequency 𝜔

1
= 0 and the second vibrating

mode (load swinging) is represented by the frequency 𝜔

2
=

√(1 + 𝑚/𝑀)(𝑔/𝐿).
The uncoupled modal equations of motion (8) become:

̈𝜂

1
= 𝑢

1
, ̈𝜂

2
+ 𝜔

2

2
𝜂

2
= 𝑢

2
. (29)

The augmented system transfermatrix ̂B󸀠 = Φ𝑇B󸀠 is obtained
by the appropriate substitutions from (26) and (28b) into the
general partitioned form (9):

[

[

[

[

𝑀

√
𝑀 +𝑚

√

𝑀𝑚

𝑀+𝑚

𝑚

√
𝑀 +𝑚

−
√

𝑀𝑚

𝑀+𝑚

]

]

]

]

[

𝑢

1

𝑢

2

] = [

𝐹

𝑎

𝐹

𝑑

] = [

𝐹

𝑎

0

] . (30)

Modal controls 𝑢

1
and 𝑢

2
are considered actuated and

unactuated, respectively. The (𝑛
𝑟
= 1) constraint equation is

obtained by normalizing the bottom row of matrix (

̂B󸀠)−1 in
(30) to obtain

AU = [1 −

√

𝑀

𝑚

][

𝑢

1

𝑢

2

] = 𝑢

1
−

√

𝑀

𝑚

𝑢

2
= 0. (31)

The constraint (31) may be applied to eliminate redundant
modal control 𝑢

2
from the top row operation of (30) to obtain

force𝐹
𝑎
as a function of independentmodal control𝑢

1
, giving

𝐹

𝑎
= BU
𝑎
= (

√

𝑀 +𝑚)𝑢

1
, (32)

where B =
√
𝑀 +𝑚 is the pseudotransfer matrix (since

𝑛

𝑎
= 1, this matrix has only one term). Cart-driving force 𝐹

𝑎

may be applied using open-loop control (as a known function
of time) or using closed-loop control through a set of gains
in full-state feedback. Both schemes will be analyzed and
simulated using the CMSOC method.

The performance index (12) takes the following
form, consisting of the gantry crane system’s four states
(𝜂
1
, 𝜂

2
, ̇𝜂

1
, ̇𝜂

2
) and two modal controls (𝑢

1
, 𝑢

2
):

𝐽 =

1

2

∫

𝑡
𝑓

0

(

̂

𝑄

𝑑11
𝜂

2

1
+

̂

𝑄

𝑑22
𝜂

2

2
+

̂

𝑄V11 ̇𝜂

2

1

+

̂

𝑄V22 ̇𝜂

2

2
+

̂

𝑅

11
𝑢

2

1
+

̂

𝑅

22
𝑢

2

2
) 𝑑𝑡 󳨀→ min .

(33)

The 𝑛

𝑚
= 2 coupled optimality equations (18) take the

following forms:
̂

𝑅

11

̈

̈𝜂

1
−

̂

𝑄V11 ̈𝜂

1
+

̂

𝑄

𝑑11
𝜂

1
− ]̈ = 0, (34a)

̂

𝑅

22

̈

̈𝜂

2
+ (2

̂

𝑅

22
𝜔

2

2
−

̂

𝑄V22) ̈𝜂

2
+ (

̂

𝑅

22
𝜔

4

2
+

̂

𝑄

𝑑22
) 𝜂

2

+

√

𝑀

𝑚

(]̈ + 𝜔

2

2
]) = 0,

(34b)

where ] is the Lagrange multiplier used to meet the 𝑛

𝑟
=

1 constraint (31). The differential form (19) of constraint
equation (31) is written as

̈𝜂

1
−

√

𝑀

𝑚

( ̈𝜂

2
+ 𝜔

2

2
𝜂

2
) = 0.

(35a)

In modal space, the boundary conditions (27) are

𝜂

1
(0) = 𝑎

√

𝑀 + 𝑚, 𝜂

1
(𝑡

𝑓
) = 0,

𝜂

2
(0) = ̇𝜂

1
(0) = ̇𝜂

2
(0) = 0,

𝜂

2
(𝑡

𝑓
) = ̇𝜂

1
(𝑡

𝑓
) = ̇𝜂

2
(𝑡

𝑓
) = 0.

(36a)

Equations (34a), (34b), and (35a) written according to form
(21) (with𝐷

𝑛

= 𝑑

𝑛

/𝑑𝑡

𝑛) yield

EpY =

[

[

𝐸

1
0 −

̂

𝐸

11

0 𝐸

2
−

̂

𝐸

21

̃

𝐸

11

̃

𝐸

21
0

]

]

[

[

𝜂

1

𝜂

2

]
]

]

= 0, (37)

where
𝐸

1
=

̂

𝑅

11
𝐷

4

−

̂

𝑄V11𝐷
2

+

̂

𝑄

𝑑11
,

𝐸

2
=

̂

𝑅

22
𝐷

4

+ (2

̂

𝑅

22
𝜔

2

2
−

̂

𝑄V22)𝐷
2

+ (

̂

𝑅

22
𝜔

4

2
+

̂

𝑄

𝑑22
) ,

̂

𝐸

11
=

̃

𝐸

11
= 𝐷

2

,

̂

𝐸

21
=

̃

𝐸

21
= −

√

𝑀

𝑚

(𝐷

2

+ 𝜔

2

2
) .

(38)

The characteristic equation of the system represented in (37)
is obtained through operation (23), giving the 8th order
polynomial equation:

detEp
󵄨

󵄨

󵄨

󵄨

󵄨𝐷→𝑟

= 𝐸

1

̂

𝐸

2

21
+ 𝐸

2

̂

𝐸

2

11

󵄨

󵄨

󵄨

󵄨

󵄨𝐷→𝑟

=

𝑀

𝑚

(

̂

𝑅

11
𝑟

4

−

̂

𝑄V11𝑟
2

+

̂

𝑄

𝑑11
) (𝑟

2

+ 𝜔

2

2
)

2

+ 𝑟

4

(

̂

𝑅

22
𝑟

4

+ (2

̂

𝑅

22
𝜔

2

2
−

̂

𝑄V22) 𝑟
2

+ (

̂

𝑅

22
𝜔

4

2
+

̂

𝑄

𝑑22
)) = 0.

(39)
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Eight roots may be obtained from the characteristic equation
(39), which are then substituted into an appropriate assumed
solution form (if the roots take the full complex form (24),
then the assumed function takes form (25)) to characterize
the three unknown solution functions (𝜂

1
, 𝜂

2
, ]). This leaves

twenty-four unknown integration constants to be determined
by substituting the appropriate solution form into the three
equations (34a), (34b), and (35a). By relating the coefficients
corresponding to each of the eight independent elementary
functions (i.e., in (25) each is in the form 𝑒

(±𝛼
𝑖
±𝛽
𝑖
)𝑡), eight

algebraic equations are obtained for each differential equation
in the set (34a),(34b) and (35a), resulting in a total of twenty-
four equations in terms of twenty-four unknown integration
constants 𝑐

𝑖

𝑘𝑗
. However, these twenty-four equations are

linearly dependent. To obtain a unique solution, any one
set of eight algebraic equations (obtained from either (34a),
(34b), or (35a)) must be replaced with the eight boundary
conditions (36a).

The optimal actuation forces needed to drive the gantry
crane from an initially disturbed position (𝑥 = 𝑎, 𝜃 = 0) to
the origin (𝑥 = 0, 𝜃 = 0) will be derived for four cases using
the CMSOC method. These cases are as follows

(A) an open-loop control that minimizes actuation forces
for a fixed time interval as in [3];

(B) a closed-loop control that mimics the control pre-
sented in [1];

(C) a closed-loop control with response improved over
that presented in [1];

(D) a closed-loop control of the fully actuated system (two
actuators).

For each case, the gantry crane’s physical parameters are
chosen to match those given in [1]; namely, 𝑀 = 𝑚 = 1 kg,
𝐿 = 1m, 𝑔 = 9.8m/s2, 𝑎 = −5m, and 𝜔

2
= 4.43 s−1.

As a final case, the CMSOC method is applied to a
modified three-DOF gantry crane, with an additional link-
mass hinge attached to the existing model in Figure 1 and
controlled by one or two actuators. This final case involves
two subcases.

(E1) A closed-loop control that manoeuvres a modified
gantry crane to the origin using the cart-driving force
as well as a torque applied to the first rigid link (two
actuators).

(E2) An open-loop control that manoeuvres the modified
gantry crane to the origin using only the cart-driving
force (one actuator) over a fixed time interval.

(A) Open-Loop Control of Gantry Crane Manoeuvre in a
Finite Time Interval.The first control manoeuvres the gantry
crane from a known initial position to the origin in a finite
time interval 𝑡

𝑓
in an open-loop scheme. The performance

index is chosen to be consistent with that presented in [3],
corresponding to the weightings ̂𝑅

11
=

̂

𝑅

22
= 1 in the general

form (33) with all other weightings null valued. Thus, the
optimal control minimizes

𝐽 = ∫

𝑡
𝑓

0

(𝑢

2

1
+ 𝑢

2

2
) 𝑑𝑡 =

1

𝑀

∫

𝑡
𝑓

0

𝐹

2

𝑎
𝑑𝑡 󳨀→ min .

(40)

Performance index (40) minimizes the modal controls or
the actuation force over the finite manoeuvre time 𝑡

𝑓
, which

is chosen as 𝑡

𝑓
= 4 s to represent again one of the

cases considered in [3]. The gantry crane’s characteristic
polynomial equation (39) is simplified to

(1 +

𝑀

𝑚

) (𝑟

2

+ 𝜔

2

2
)

2

𝑟

4

= 0. (41)

The roots of (41) are 𝑟

1,...,8
= 0, 0, 0, 0, ± 𝑖𝜔

2
, ± 𝑖𝜔

2
. There are

four zero roots 𝑟
1,...,4

= 0, two imaginary roots 𝑟
5,7

= 𝑖𝜔

2
, and

two imaginary roots 𝑟
6,8

= −𝑖𝜔

2
. When written in form (24),

these roots correspond to 𝛽

2
= 𝜔

2
and 𝛼

1
= 𝛽

1
= 𝛼

2
= 0.

Because of the zero roots and repeating roots, the solution
functions take the following form:

𝑌

𝑗
= 𝑐

1𝑗
+ 𝑐

2𝑗
𝑡 + 𝑐

3𝑗
𝑡

2

+ 𝑐

4𝑗
𝑡

3

+ (𝑐

5𝑗
+ 𝑐

7𝑗
𝑡) sin (𝜔

2
𝑡) + (𝑐

6𝑗
+ 𝑐

8𝑗
𝑡) cos (𝜔

2
𝑡) .

(42)

Each solution function (42) (𝑗 = 1, . . . , 3) contains eight
unknown integration constants 𝑐

𝑘𝑗
(𝑘 = 1, . . . , 8), which are

determined through substitution and comparison of similar
terms in any two differential equations in the set (34a),
(34b), and (35a) and by substitution of the eight boundary
conditions (36a). With the integration constants determined,
the resulting solution functions are

𝜂

1
= −7.09 − .104𝑡 + 1.41𝑡

2

− .235𝑡

3

+ .0235 sin (4.43𝑡) + .0151 cos (4.43𝑡) ,
(43)

𝜂

2
= .144 − .0719𝑡 + (.00451 − .0333𝑡) sin (4.43𝑡)

+ (−.144 + .0520𝑡) cos (4.43𝑡) ,
(44)

] = −2.82 + 1.41𝑡 − .460 sin (4.43𝑡) − .295 cos (4.43𝑡) . (45)

Substituting (43) into (29) yields

𝑢

1
= 2.82 − 1.41𝑡 − .460 sin (4.43𝑡) − .295 cos (4.43𝑡) . (46)

The Lagrange multiplier function V(𝑡) (45), which represents
a “modal force” enforcing the modal constraints, is not used
in further analysis and is shown here only for completeness
of the solution.

Mapping modal variables 𝜂
1
and 𝜂

2
((43) and (44)) into

DOFs 𝑥 and 𝜃 via transformation (6a), the trajectories shown
in Figures 2(a) and 2(b) are obtained. Optimal force 𝐹

𝑎
,

shown in Figure 2(c), is obtained by substituting modal
control 𝑢

1
(46) into transformation (32).

This phase of the solution was done automatically using
MAPLE. The solution procedure accepts any problem with
𝑛

𝑚
modes (obtained from FE analysis for more complex

structures) controlled by 𝑛

𝑎
≤ 𝑛

𝑚
actuators. The modal-to-

DOF transformations for the gantry crane are indicated in
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Figure 2: Histograms of (a) cart trajectory 𝑥, (b) swing angle 𝜃, and (c) force 𝐹
𝑎
(open loop).

Figures 2(a), 2(b), and 2(c). As shown, the open-loop control
is able to perform the task in exactly four seconds, with a
peak force of about 3.6N and amaximum load swing angle of
about 0.28 rad (16∘). The optimal force accelerates the gantry
crane over the first half of themanoeuvre (2 s) and decelerates
the cart over the last half with identical, but opposite and
mirrored, forces.

Similar plots for the closed-loop control presented in
[1] are shown in Figure 3. This control requires an effective
manoeuvre time of 𝑡3%

𝑓
≈ 6 s to reach the origin, a maximum

load rotation angle of 0.73 rad (42 deg), and amaximum force
of 15N. It should be noted that this relatively large rotation
angle is mentioned here (and other angles quoted in the
sequel) for the purpose of comparison only.

From Figure 2 and Figure 3, one can conclude that the
open-loop control performs the manoeuvre in a shorter
period of time (𝑡

𝑓
= 4 s versus 𝑡

3%
𝑓

≈ 6 s) with much
smaller peak force requirements (3.6N versus 15N) and
much smaller angles of oscillation (16∘ versus 42∘). Also, the
open-loop control brings the system to a complete stop after
4 s, while the closed-loop control produces overshoot and the
system takes longer to effectively come to rest.

Calculations show that if the finite manoeuvre time for
the open-loop control is extended (or shortened), the peak
force requirement andmaximum swing angle are reduced (or
increased)—approximately proportional to 𝑡

−2

𝑓
. For example,

if the open-loop control is modified to settle over the same
effective period of time as that of the closed-loop control (𝑡

𝑓
≈

6), themaximum force is reduced to approximately 1.6Nwith
a maximum swing of about 7 deg.

The open-loop control can always provide a faster and
more efficient manoeuvre. However, it is possible only when
the initial positions and manoeuvre times are known in
advance. Closed-loop control is necessary if any initial con-
figuration (unknown explicitly) is treated as disturbance, and
its automatic reduction/removal is desired (the final position
is at rest). Case (B) demonstrates how the CMSOC method
is applied to analyze and simulate a closed-loop system that
approximately produces the same dynamic responses as given
in [1].

(B) Closed-Loop Control of Gantry Crane: Reproducing Con-
trol from [1].A closed-loop control can perform the same task
as that of the open-loop control (case (A)); however it does so
automatically, without prior knowledge of initial conditions
involved. Any disturbance from its resting configuration at
the origin (𝑥 = 0, 𝜃 = 0) is relayed through a set of constant
gains to generate the cart-driving force 𝐹

𝑎
to attenuate this

disturbance.
In general, to simulate the closed-loop process analyti-

cally the manoeuvre time 𝑡

𝑓
is infinite and all parameters

are driven asymptotically to the origin with increasing time.
For the gantry crane, this requires that all roots of the
characteristic equation (39) be nonzero complex numbers
in the left half of the complex plane (unlike the open-loop
system of case (A), which contained zero roots and purely
imaginary roots). It can be verified that the weightings ̂

𝑄

𝑑11

and ̂

𝑄

𝑑22
in the performance index (33) must be nonzero in

order to meet these criteria.
The gantry crane control as given in [1] is closely repro-

duced by choosing the weightings in the performance index
(33) equal to ̂

𝑄V11 =

̂

𝑄V22 = 0, ̂𝑄
𝑑11

= 4.5, ̂𝑄
𝑑22

= 42,
and ̂

𝑅

11
=

̂

𝑅

22
= 1. The resulting characteristic polynomial

equation (39) has eight roots that take form (24), with real
and complex parts equal to

𝛼

1
= 0.853, 𝛽

1
= 0.856,

𝛼

2
= 0.513, 𝛽

2
= 4.46.

(47)

Note that the first actively controlledmode of frequency𝜔𝑎
1
=

0.856 s−1 (𝜔
1
= 0 for uncontrolled system) is dampedwith the

ratio 𝜍

𝑎

1
= 0.996, while the second mode of frequency 𝜔

𝑎

2
=

4.46 s−1 (𝜔
2
= 4.43 s−1 for uncontrolled system) is damped

with the ratio 𝜍

𝑎

1
= 0.115.

Similar to case (A), modal variables 𝜂

1
and 𝜂

2
are

determined by substituting the parameters from (47) into
the assumed solution function (25) and then solving for the
unknown coefficients by comparing similar terms in two of
the three optimality/constraint equations (34a), (34b) and
(35a), and substituting the boundary conditions (36a). Unlike
case (A), the closed-loop problem requires that only half
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Figure 3: Histograms of (a) cart trajectory, (b) swing angle, and (c) optimal force from [1].

as many integration constants must be solved because the
coefficients preceding exponential growth functions (𝑒𝛼𝑖𝑡) are
assumed to be null valued. This gives

𝜂

1
= 𝑒

−𝛼
1
𝑡

(−7.70 sin (𝛽

1
𝑡) − 7.08 cos (𝛽

1
𝑡))

+ 𝑒

−𝛼
2
𝑡

(.126 sin (𝛽

2
𝑡) − .00564 cos (𝛽

2
𝑡)) ,

𝜂

2
= 𝑒

−𝛼
1
𝑡

(−.565 sin (𝛽

1
𝑡) + .534 cos (𝛽

1
𝑡))

+ 𝑒

−𝛼
2
𝑡

(.149 sin (𝛽

2
𝑡) − .534 cos (𝛽

2
𝑡)) ,

𝑢

1
= 𝑒

−𝛼
1
𝑡

(−10.3 sin (𝛽

1
𝑡) + 11.3 cos (𝛽

1
𝑡))

+ 𝑒

−𝛼
2
𝑡

(−2.44 sin (𝛽

2
𝑡) − .686 cos (𝛽

2
𝑡)) .

(48)

Using the appropriate transformations (see Figure 2) the
modal space variables (48) are mapped into the DOF space
variables. The resulting system trajectories and the optimal
force histogram are visually indistinguishable from those
shown in Figure 3.

The CMSOC method can also generate the closed-loop
gains from the assumedweighting coefficients to demonstrate

that the gains corresponding to the solution (48) are obtained
and compared with the gains used in [1].

In full-state feedback control the active force is a function
of all system states in the following form:

Fa = −Gdq − Gvq̇. (49)

For the general CMSOCmethod, gainsGd = [
𝑔

1𝑑
⋅ ⋅ ⋅ 𝑔

𝑛
𝑚
𝑑
]

and Gv = [
𝑔

1V ⋅ ⋅ ⋅ 𝑔

𝑛
𝑚
V] correspond to the observed

positions and velocities of all 𝑛
𝑚
DOFs of a system. For the

gantry crane, (49) takes the following form:

𝐹

𝑎
= −𝑔

1𝑑
𝑥 − 𝑔

2𝑑
𝐿𝜃 − 𝑔

1V𝑥̇ − 𝑔

2V𝐿
̇

𝜃. (50)

By substituting known DOF trajectories (𝑥 = (1/
√
2)(𝜂

1
+

𝜂

2
) and 𝜃 =

√
2𝜂

2
) and the known force function (𝐹

𝑎
=

√
2𝑢

1
) into (50) and grouping the terms related to the four

independent elementary solution functions (operations are
done in MAPLE automatically), one obtains:

𝑒

−𝛼
1
𝑡

{

(−14.6 − 5.85𝑔

1𝑑
+ 8.95𝑔

1V − .799𝑔

2𝑑
+ .0352𝑔

2V) sin (𝛽

1
𝑡)

+ (16.0 − 4.63𝑔

1𝑑
− 1.06𝑔

1V + .755𝑔

2𝑑
− 1.33𝑔

2V) cos (𝛽1𝑡)
}

+ 𝑒

−𝛼
2
𝑡

{

(−3.45 + .195𝑔

1𝑑
+ 1.56𝑔

1V + .211𝑔

2𝑑
+ 3.26𝑔

2V) sin (𝛽

2
𝑡)

+ (−.970 − .374𝑔

1𝑑
+ 1.06𝑔

1V − .755𝑔

2𝑑
+ 1.33𝑔

2V) cos (𝛽2𝑡)
} = 0.

(51)

Each of the bracketed terms in (51) (containing the unknown
gains) must equal to zero for the equation to be true at any
time. This gives four equations in terms of four unknown
gains, which may be solved to obtain

Gd = [𝑔

1𝑑
𝑔

2𝑑
] = [3.00 .732] ,

Gv = [𝑔

1V 𝑔

2V] = [3.66 −.924] .

(52)

Though initial conditions were assumed in determining the
trajectories 𝑥 and 𝜃 and force 𝐹

𝑎
, it can be verified that gains

(52) remain invariant towards any choice of these assumed
conditions.

The control gains used in [1] were

G∗d = [𝑔

1𝑑
𝑔

2𝑑
] = [3.0 .71] ,

G∗k = [𝑔

1𝑑
𝑔

2𝑑
] = [3.69 −.87] .

(53)

Comparing the gains (52) and (53) confirms that the CMSOC
method is able to closely reproduce the closed-loop control
in [1] by careful selection of the weighting parameters in
performance index (33). However, as shown next in case (C),
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Table 1: Weightings for five different performance indices in form
(33).

Index # ̂

𝑄

𝑑11

̂

𝑄

𝑑22

̂

𝑄V11
̂

𝑄V22
̂

𝑅

11

̂

𝑅

22

P0 0.01 0.01 0 0 1 1
P1 6 0.01 0 0 1 1
P2 6 50 0 0 1 1
P3 6 50 4 0 1 1
P4 6 50 4 50 1 1

the performance of this closed-loop controlmay be improved
through better selection of these weighting parameters to
produce faster convergence without an increase in the
required peak actuation forces.

(C) Closed-Loop Control of Gantry Crane: Improving Perfor-
mance. Case (B) developed a control that closely reproduced
the control given in [1] by minimizing a performance index
that gave no weight (̂𝑄V11 =

̂

𝑄V22 = 0) to states ̇𝜂

1
and

̇𝜂

2
, representing the gantry crane’s velocity. Consequently,

the control caused the gantry to gain too much speed and
then overshoot its target and produce large persistent load
swings. These problems are mitigated by a more careful
choice of the performance index weighting parameters in
(33). To demonstrate the effect these parameters have on the
gantry crane’s dynamics and to illustrate how they might be
meaningfully selected, several cases, labelled P1 to P5 (each
with different performance indices as listed in Table 1), are
considered.

Each case reflects a performance index which gives
significant weightings to an incrementally increasing number
of system states (of four possible states 𝜂

1
, 𝜂
2
, ̇𝜂

1
, ̇𝜂

2
), while

holding the weighting on both modal controls (𝑢
1
, 𝑢

2
) at

unity. Case P0 gives none of the states a significant weighting,
case P1 gives a significant weighting to a single state (𝜂

1
),

case P2 gives significant weightings to two states (𝜂
1
, 𝜂

2
),

and so on until case P4 significantly weights all four states.
Table 1 summarizes how these weightings are chosen for
each case. Since the gantry crane’s asymptotic convergence
mathematically requires that weightings ̂

𝑄

𝑑11
and ̂

𝑄

𝑑22
in

the index (33) are nonzero, a small value (0.01) is used
instead of zero in cases P0 and P1 to demonstrate how the
system behaves when these weightings are negligible. The
DOF trajectories (𝑥 and 𝜃) and force histogram (𝐹

𝑎
) for the

manoeuvres minimizing the performance indices for cases
P0–P4 are presented in Table 2. The settling times 𝑡3%

𝑓
of the

DOFs are also listed for each case. All plots in Table 2 are
shown over the first 8 s of the manoeuvre period except for
P0 (30 s).

Note that the first modal variable 𝜂
1
primarily influences

the cart’s rigid bodymode of motion, while the secondmodal
variable 𝜂

2
influences the suspended load rotation. In fact

there is a direct relationship between the angle of the load
rotation and the second modal variable (𝜃 =

√
2𝜂

2
) such

that this angular trajectory is directly affected by varying the
weights given to 𝜂

2
(

̂

𝑄

𝑑22
) and its derivative ̇𝜂

2
(

̂

𝑄V22) in the
performance index (33). Likewise, the speed at which the

cart can be made to reach its target is affected through the
weightings given to 𝜂

1
(

̂

𝑄

𝑑11
) and its derivative ̇𝜂

1
(

̂

𝑄V11).
The performance index in case P0 heavily weights the

modal controls 𝑢
1
and 𝑢

2
in comparison to modal variables

𝜂

1
and 𝜂

2
(100 times more) and neglects the modal velocities

̇𝜂

1
and ̇𝜂

2
. The resulting control requires a small peak

force (0.7N), producing small maximum load swing angles
(0.06 rad or 3.4 deg), but requires a very longmanoeuvre time
to converge to the origin (𝑡3%

𝑓
≈ 440 s). If the weightings ̂

𝑅

11
,

and ̂

𝑅

22
were increased even further relative to the weighting

̂

𝑄

𝑑11
, themaximum force requirements and angular rotations

would become infinitesimal while the settling times would
approach infinity.

In case P1 a significant weighting value is given to the first
modal variable 𝜂

1
(

̂

𝑄

𝑑11
= 6), while other weightings remain

unchanged from case P0. This control greatly increases the
speed at which the cart reaches its target position at 𝑥 = 0 (∼
2 s), but upon reaching this position the load undergoes large
swing angles (1.0 rad or 57 deg) that persist for a very long
time (𝑡3%

𝑓
≈ 440 s).

The maximum force increases significantly (17.3N) in
comparison to case P0 because the rigid body cart motion
requires much larger accelerations during the initial 2 s of
the manoeuvre in order to quickly attenuate 𝜂

1
due to its

significant weighting value.
Case P2 improves the load swing attenuation, which was

poorly dampened in case P1, by including a large weighting
value to the second modal variable 𝜂

2
(

̂

𝑄

𝑑22
= 50) (other

weightings remain the same as in the previous case). The
maximum load swing angle is reduced (0.8 rad or 46 deg)
and the load swinging motion is damped much more quickly
(∼6.5 s). The cart translation requires similar accelerations
and thus approximately the same maximum force (17.3N) is
needed. By inspection, one can see that case P2 produces
similar behaviour to the control given in [1] shown in Figure 3
and likewise shares the problem of target overshoot and large
persistent load swings.

Case P3 reduces the tendency of the cart to overshoot
the target by also giving a significant weighting to the first
modal velocity ̇𝜂

1
(

̂

𝑄V11 = 4). However, large persistent load
swings are still present, and so convergence is not significantly
improved over that produced in case P2. The maximum
required force (17.3N) remains essentially unchanged, while
the load swing angles are reduced slightly (0.75 rad or 43 deg).

The performance index in case P4 includes a large weight
on the second modal velocity ̇𝜂

2
(̂𝑄V22 = 50), while keeping

all other weightings unchanged from case P3. This produces
a control that reduces the magnitude of load swing angles
(0.45 rad or 25.8 deg) while attenuating the swinging motion
more quickly (𝑡3%

𝑓
≈ 4.2 s). The gantry crane performs

the manoeuvre in essentially a single load swing cycle,
with similar initial cart accelerations and thus maximum
forces (17.3N) as in previous cases. Case P4 produces faster
convergence then previous cases because, from an optimal
control perspective, it incorporates all of the gantry crane’s
states in the minimization by assigning all weightings in the
performance index (33) with significant numerical values.
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Table 2: DOF responses and force histograms that optimize performance indices P0–P4.

Index # 𝑥 (m) 𝜃 (rad) 𝐹

𝑎
(N)

P0

0

−1

−2

−3

−4

−5

5 10 15 20 25 30

t

t3%f ≈ 20 s

5 10 15 20 25 30

t

0.06

0.04

0.02

0

−0.02

−0.04
t3%f ≈ 440 s

5 10 15 20 25 30

t

0.6

0.4

0.2

0

P1

0

−1

−2

−3

−4

−5

t

2 4 6 8

t3%f ≈ 135 s

t

2 4 6 8

0.5

0

−0.5

−1

1

t3%f ≈ 440 s t

2 4 6 8

15

10

5

0

P2

0

−1

−2

−3

−4

−5

t

2 4 6 8

t3%f ≈ 4 s

0.4

0.8

0

−0.4 t

2 4 6 8

t3%f ≈ 6.5 s
−5

15

10

5

0

t

2 4 6 8

P3

0

−1

−2

−3

−4

−5

t

2 4 6 8

t3%f ≈ 3.5 s

0.4

0

−0.4 t

2 4 6 8

t3%f ≈ 6.5 s

15

10

5

0

t

2 4 6 8

P4

0

−1

−2

−3

−4

−5

t

2 4 6 8

t3%f ≈ 3.5 s

0.4

0.2

0

t

2 4 6 8

t3%f ≈ 4.2 s

15

10

5

0

t

2 4 6 8

It is essential that the second modal velocity ̇𝜂

2
is given a

significant weighting value to yield fast convergence, because
the energy of the suspended load oscillates equally between
potential and kinetic energy. Since potential energy and
kinetic energy are proportional to the squares of displace-
ment and velocity, respectively, both of the corresponding
states 𝜂

2
and ̇𝜂

2
should carry a significant and approxi-

mately equal weight in the performance index (33). Without

weighting the load swing velocity state, the control focuses on
eliminating swing angles but not swing velocities. However,
when the load is near the bottom of its swing, its velocity is
near maximum ( ̇𝜂

2
=

√
2

̇

𝜃 → max), while its displacement
is near minimum (𝜂

2
=

√
2𝜃 → min). Therefore, the

optimal force derived without consideration for the load
swing velocity is unable to eliminate any significant portion of
the load swing energy when the load is near the bottom of its
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swing (𝜃 → 0). Cases P2 and P3 failed to adequately weight
̇𝜂

2
, resulting in larger,more persistent load swings than in case

P4.
The control produced in case P4 provides a significant

improvement over the control presented in [1], as it converges
more quickly to the origin, while reducing load swing
magnitudes, without any increase in the required maximum
forces. To complete the design of this closed-loop control, the
gains are obtained from (50) in a similar fashion as in case (B),
giving

Gd = [𝑔

1𝑑
𝑔

2𝑑
] = [3.46 9.10] ,

Gv = [𝑔

1V 𝑔

2V] = [5.43 1.79] .

(54)

Note that the gains 𝑔

1𝑑
and 𝑔

1V are somewhat close to the
gains for the control presented in [1] (53), but gains 𝑔

2𝑑
and

𝑔

2V are substantially different.

(D) Closed-Loop Control of Gantry Crane: Fully Actuated
Control. The CMSOC method can also be applied to fully
actuated systems. To illustrate this, consider the same gantry
crane system, now with both actuators 𝐹

𝑎
and 𝐹

𝑑
acting as

real actuators (no dummy actuator). This situation may arise
practically when a person is employed to guide the suspended
load while the cart performs its translations.

Since the problem is fully actuated there, are no additional
constraints on the system motion and consequently no
Lagrange multipliers needed to enforce them. The optimal
forces can be solved by calculating the inverse dynamics
directly from (6b), which takes form (30) (except 𝐹

𝑑
̸= 0),

written as

F=̂B−1U 󳨐⇒ [

𝐹

𝑎

𝐹

𝑑

] =

[

[

[

[

𝑀

√
𝑀 +𝑚

√

𝑀𝑚

𝑀+𝑚

𝑚

√
𝑀 +𝑚

−
√

𝑀𝑚

𝑀+𝑚

]

]

]

]

[

𝑢

1

𝑢

2

] . (55)

Theoptimality equations in the differential operator form (21)
become

EpY = [E] [𝜂] = 0 󳨐⇒ [

𝐸

1
0

0 𝐸

2

] [

𝜂

1

𝜂

2

] = 0, (56)

where

𝐸

1
=

̂

𝑅

11
𝐷

4

−

̂

𝑄V11𝐷
2

+

̂

𝑄

𝑑11
,

𝐸

2
=

̂

𝑅

22
𝐷

4

+ (2

̂

𝑅

22
𝜔

2

2
−

̂

𝑄V22)𝐷
2

+ (

̂

𝑅

22
𝜔

4

2
+

̂

𝑄

𝑑22
) .

(57)

With weightings chosen according to the performance index
in case P4 (̂𝑄

𝑑11
= 6, ̂𝑄

𝑑22
= 50, ̂𝑄V11 = 4, ̂𝑄V22 = 50, and

̂

𝑅

11
=

̂

𝑅

22
= 1), the roots of the characteristic equation (39)

for the system given by (56) (𝐸
1
𝐸

2
|

𝐷→𝑟
= 0) take form (24)

with the following real and imaginary parts:

𝛼

1
= 3.62, 𝛽

1
= 2.78,

𝛼

2
= 1.49, 𝛽

2
= 0.474.

(58)

For any fully actuated system, each modal variable 𝜂
𝑖
is inde-

pendently controlled by a single modal control 𝑢
𝑖
, resulting

in uncoupled solution functions of the following form:

𝜂

𝑖
= 𝑒

𝛼
𝑖
𝑡

(𝑐

1

𝑖
sin (𝛽

𝑖
𝑡) + 𝑐

2

𝑖
cos (𝛽

𝑖
𝑡)) . (59)

For the gantry crane (𝑖 = 1, 2) the four unknown integration
constants 𝑐

1,2

𝑖
are obtained by substituting the four initial

conditions for 𝜂

𝑖
(0) and ̇𝜂

𝑖
(0) given by (36a). As in the

previous cases, the solved modal variables in form (59)
are mapped into the original coordinates to obtain the
DOF trajectories and optimal forces. Figure 4 shows the cart
trajectory 𝑥 and the optimal forces on the cart and suspended
load 𝐹

𝑎
and 𝐹

𝑑
, respectively. The angular trajectory 𝜃 of the

load is not shown because it remains zero (𝜃 = 0) all the
time. Practically, this means that for the optimal manoeuvre
the person (actuator) guiding the suspended load must
simply act to prevent it from swinging. Fast convergence
(𝑡3%
𝑓

= 0.78 s) to the origin is obtained; however the task
requires relatively large maximum forces (104N) compared
to previous cases. The required actions of cart-driving force
𝐹

𝑎
and suspended load guiding force 𝐹

𝑑
are identical, as the

whole gantry crane system moves as a single rigid body. If
smaller forces are desired, then a larger weight may be given
to the modal controls (̂𝑅

11
,

̂

𝑅

22
) in the performance index.

Note that only a 30N maximum force would be required
to execute the manoeuvre in 1 s by applying an open-loop
control scheme.

(E1) Closed-Loop Control of Modified Three-DOF Gantry
Crane (Two Actuators). To illustrate the application of the
CMSOC method to a problem of a higher dimension (𝑛

𝑚
=

3), the gantry crane is modified by adding an additional link
with an end load, as shown in Figure 5 (a case of a double-
pendulum gantry crane in 3D was presented in [19]). In
comparison to the previous cases considered the control task
is unchanged except that the oscillations of the additional
suspended load must also be damped. Consider the control
that uses two actuators (𝑛

𝑎
= 2)—the standard cart-driving

force 𝐹
𝑎
and torque 𝑇

𝑎
, produced by a motor fixed to the cart

and applied to the first rigid link of length 𝐿

1
which supports

the mass 𝑚

1
. Dummy torque 𝑇

𝑑
to be used in formulating

the augmented system is applied to the second link of length
𝐿

2
which carries mass𝑚

2
. All other physical variables are the

same as in the original gantry cranemodel with the exception
of 𝜃
1
and 𝜃
2
, which denote the angles of links of lengths𝐿

1
and

𝐿

2
, respectively.
The standard matrices in the augmented system’s equa-

tion of motion (1) for this new model are

M =

[

[

𝑀 +𝑚

1
+ 𝑚

2
−𝑚

1
− 𝑚

2
−𝑚

2

−𝑚

1
− 𝑚

2
𝑚

1
+ 𝑚

2
𝑚

2

−𝑚

2
𝑚

2
𝑚

2

]

]

,

K =

[

[

[

[

[

[

0 0 0

0

𝑔 (𝑚

1
+ 𝑚

2
)

𝐿

1

0

0 0

𝑔𝑚

2

𝐿

2

]

]

]

]

]

]

,
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Figure 4: Histograms of (a) cart trajectory and (b) forces for the fully actuated gantry crane.
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Figure 5: Modified three-DOF gantry crane model.

B󸀠 =
[

[

[

[

[

1 0 0

0

1

𝐿

1

−

1

𝐿

1

0 0

1

𝐿

2

]

]

]

]

]

.

(60)

The augmented system consists of DOF vector q =

[𝑥 𝐿

1
𝜃

1
𝐿

2
𝜃

2
]

𝑇 and force vector 𝐹

󸀠

𝑎
= [𝐹

𝑎
𝑇

𝑎
𝑇

𝑑
]

𝑇. The

following numerical values are adopted: 𝑀 = 𝑚

1
= 𝑚

2
=

1 kg, 𝐿
1
= 𝐿

2
= 1m, 𝑎 = −5m, and 𝑔 = 9.8m/s2.

The set of 𝑛
𝑚

= 3 equations of motion (1) are uncoupled
in modal space, with matrices of ordered frequencies Ω and
mode shapes 𝜑 normalized according to (7a) and (7b), taking
the following forms:

Ω =

[

[

0 0 0

0 12.4 0

0 0 46.4

]

]

, Φ =

[

[

.577 .577 .577

0 .366 1.37

0 1 −1

]

]

. (61)
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As before, the first mode represents the rigid body mode
of motion (𝜔2

1
= 0), while the second and third modes,

with the squared frequencies 𝜔2
2
= 12.43 (rad/s)2 and 𝜔

2

3
=

46.37 (rad/s)2, represent the swinging modes of the rotating
link-masses.

Augmented force vector 𝐹

󸀠

𝑎
is related to modal control

vector U through the inverse of transformation (6b) which
is partitioned according to (9) to give

̂B−1U =

[

[

1.73 0 0

−1.73 1.37 .366

−.577 .789 −.211

]

]

[

[

𝑢

1

𝑢

2

𝑢

3

]

]

=

[

[

𝐹

𝑎

𝑇

𝑎

𝑇

𝑑

]

]

. (62)

The constraint equation (𝑛
𝑟
= 1) is obtained from the bottom

row of (62) (𝑇
𝑑
= 0) and normalized into the following form:

AU = [1 −1.37 .366]

[

[

𝑢

1

𝑢

2

𝑢

3

]

]

= 0. (63)

The 𝑛

𝑎
= 2 actuation forces may be obtained directly from

the top two rows of (62) in terms of all modal controls, but
according to (11) these forces may be expressed in terms of
two independent modal controls (chosen as 𝑢

1
and 𝑢

2
) in the

following form:

BUa = [

1.73 0

−2.73 2.73

] [

𝑢

1

𝑢

2

] = [

𝐹

𝑎

𝑇

𝑎

] . (64)

Selecting a performance index of form (12) gives three (𝑛
𝑚
=

3) optimality equations in the form (18) that, with the
constraint equation (63), may be written according to (21) in
the following form:

EpY =

[

[

[

[

𝐸

1
0 0

̂

𝐸

11

0 𝐸

2
0

̂

𝐸

21

0 0 𝐸

3

̂

𝐸

31

̃

𝐸

11

̃

𝐸

21

̃

𝐸

31
0

]

]

]

]

[

[

[

[

𝜂

1

𝜂

2

𝜂

3

]

]

]

]

]

= 0, (65)

where

𝐸

𝑖
=

̂

𝑅

𝑖𝑖
𝐷

4

− (2

̂

𝑅

𝑖𝑖
𝜔

2

𝑖
−

̂

𝑄V𝑖𝑖)𝐷
2

+ (

̂

𝑅

𝑖𝑖
𝜔

4

𝑖
+

̂

𝑄

𝑑𝑖𝑖
) ,

̂

𝐸

𝑖𝑗
= 𝐴

𝑗𝑖
(𝐷

2

+ 𝜔

2

𝑖
) (𝑖 = 1, . . . , 3, 𝑗 = 1) .

(66)

The parameters𝐴
𝑗𝑖
in the equation above are the 𝑗th row and

𝑖th column components of the constraint matrix A given by
(63). The selected weightings for the performance index are
̂

𝑄

𝑑11
= 6, ̂𝑄

𝑑22
=

̂

𝑄

𝑑33
= 50, ̂𝑄V11 = 4, ̂𝑄V22 =

̂

𝑄V33 = 50, and
𝑅

11
= 𝑅

22
= 𝑅

33
= 1.

The twelve (4𝑛
𝑚
) roots of the characteristic equation

(23) are obtained in the complex form (24) and are used to
generate an assumed solution of form (25) for each unknown
modal variable (𝑛

𝑚
= 3) and Lagrange multiplier (𝑛

𝑟
= 1).

Half of these roots generate exponential growth functions
that are eliminated by assuming their corresponding integra-
tion constants to be zero-valued. Then through the method
of undetermined coefficients, four (𝑛

𝑚
+ 𝑛

𝑟
) sets of six linear

algebraic equations are obtained. Replacing one set by the set

of six initial conditions, the unknown integration constants
are obtained by solving the set of twenty-four equations (the
number of equations is 2𝑛

𝑚
(𝑛

𝑚
+ 𝑛

𝑟
)).

The boundary conditions for this problem are the same
as those chosen for the original gantry crane, written in
(36a), with the additional condition that the initial and final
positions and velocities of the thirdmodal variable 𝜂

3
are also

zero. In otherwords, themanoeuvre requires a horizontal cart
translation from a resting position at 𝑥 = 𝑎 = −5m with
both links hanging vertically to the same resting position at
the origin.

Figure 6 shows trajectories 𝑥, 𝜃
1
, and 𝜃

2
of the three-DOF

gantry crane as well as required actuation forces 𝐹
𝑎
and 𝑇

𝑎
.

The manoeuvre, requiring a maximum force of 29N and
a maximum torque of 18Nm, is effectively completed after
𝑡

3%
eff = 4 s. The maximum load swing angle of the first link is
0.11 rad (6.3∘) and that of the second link is 0.48 rad (27.5 deg).

(E2) Open-Loop Control ofModifiedThree-DOFGantry Crane
(One Actuator). In order to show the case where one actuator
controls threeDOFs, the optimalmanoeuvre for themodified
gantry crane using only a single actuator—cart-driving force
𝐹

𝑎
—is investigated for an open-loop scheme. Both of the

torque actuators 𝑇
𝑎
and 𝑇

𝑑
(Figure 5) are treated as dummy

actuators and so the inverse transformation, while identical
to (62), is repartitioned in the following form:

̂B−1U =

[

[

1.73 0 0

−1.73 1.37 .366

−.5774 .789 −.211

]

]

[

[

𝑢

1

𝑢

2

𝑢

3

]

]

=

[

[

𝐹

𝑎

𝑇

𝑎

𝑇

𝑑

]

]

=

[

[

𝐹

𝑎

0

0

]

]

.

(67)

The constraint equations (𝑛
𝑟
= 2) are obtained from the two

bottom rows of (67) and normalized into the following form:

AU = [

1 −1 0

0 1 1

]

[

[

𝑢

1

𝑢

2

𝑢

3

]

]

= 0. (68)

According to (11) the single cart-driving force may be
expressed in terms of the independentmodal control (chosen
as 𝑢
1
) in the following form:

BUa = [1.73] [𝑢

1
] = [𝐹

𝑎
] . (69)

Note that matrix B is the same for all cases involving one
actuator. Choosing a performance index in form (12) gives
three (𝑛

𝑚
= 3) optimality equations in form (18) that, with

constraint equation (68), may be written according to (21) in
the following form:

EpY =

[

[

[

[

[

[

[

𝐸

1
0 0

̂

𝐸

11

̂

𝐸

12

0 𝐸

2
0

̂

𝐸

21

̂

𝐸

22

0 0 𝐸

3

̂

𝐸

31

̂

𝐸

32

̂

𝐸

11

̂

𝐸

21

̂

𝐸

31
0 0

̂

𝐸

12

̂

𝐸

22

̂

𝐸

32
0 0

]

]

]

]

]

]

]

[

[

[

[

[

[

𝜂

1

𝜂

2

𝜂

3

]
1

]
2

]

]

]

]

]

]

= 0, (70)

where
𝐸

𝑖
=

̂

𝑅

𝑖𝑖
𝐷

4

− (2

̂

𝑅

𝑖𝑖
𝜔

2

𝑖
−

̂

𝑄V𝑖𝑖)𝐷
2

+ (

̂

𝑅

𝑖𝑖
𝜔

4

𝑖
+

̂

𝑄

𝑑𝑖𝑖
) ,

̂

𝐸

𝑖𝑗
= 𝐴

𝑗𝑖
(𝐷

2

+ 𝜔

2

𝑖
) (𝑖 = 1, . . . , 3, 𝑗 = 2) .

(71)
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Figure 6: (a) Cart trajectory, (b) swing angles, and (c) force/torque for the modified gantry crane.
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Figure 7: (a) Cart trajectory, (b) swing angles, and (c) force for modified gantry crane (open loop).

The assumed weightings are 𝑅

11
= 𝑅

22
= 𝑅

33
= 1 and

̂

𝑄

𝑑11
=

̂

𝑄

𝑑22
=

̂

𝑄

𝑑33
=

̂

𝑄V11 =
̂

𝑄V22 =
̂

𝑄V33 = 0 (only the
control effort is to be minimized). Consistent with the open-
loop control presented in case (A) the finite manoeuvre time
is chosen to be 𝑡

𝑓
= 4 s.

The solution procedure is similar to previous examples.
Figure 7 shows trajectories𝑥, 𝜃

1
, and 𝜃

2
as well as the required

cart-driving force 𝐹

𝑎
. The manoeuvre requires a peak force

of 4.8N and completes the task in exactly 4 s. The maximum
load swing angle of the first link is 0.19 rad (11∘) and that of
the second link is 0.35 rad (20∘).

4. Conclusions

The CMSOC methodology was presented as a means of
solving linear underactuated (or fully actuated) control prob-
lems. The gantry crane problem was selected to illustrate
in detail various operations required for different control
methodologies. As demonstrated the method can be applied
to open-loop control schemes as well as closed-loop (asymp-
totically convergent) control schemes. In the latter case the
weightings of the performance index can be translated to the
gains of the full-state feedback closed-loop controllers. The
operations would be identical for any similar problems with
larger numbers of modes and actuators.
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