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Recently, Zhang et al. proposed a sufficient descent Polak-Ribière-Polyak (SDPRP) conjugate gradient method for large-scale
unconstrained optimization problems andproved its global convergence in the sense that lim inf𝑘→∞‖∇𝑓(𝑥𝑘)‖ = 0when anArmijo-
type line search is used. In this paper, motivated by the line searches proposed by Shi et al. and Zhang et al., we propose two new
Armijo-type line searches and show that the SDPRP method has strong convergence in the sense that lim𝑘→∞‖∇𝑓(𝑥𝑘)‖ = 0 under
the two new line searches. Numerical results are reported to show the efficiency of the SDPRP with the new Armijo-type line
searches in practical computation.

1. Introduction

In this paper, we are concerned with the following uncon-
strained minimization problem:

min𝑓 (𝑥) , 𝑥 ∈ 𝑅
𝑛
, (1)

where 𝑓 : 𝑅
𝑛

→ 𝑅
1 is a smooth function whose gradient

∇𝑓(𝑥) is often denoted by 𝑔(𝑥). The related problem is called
large-scale minimization problem when its dimension 𝑛 is
very large (e.g., 𝑛 > 10

6). For solving large-scale minimiza-
tion problems, the matrices-free methods are quite efficient.
Among such methods, the conjugate gradient method is
very famous for its excellent numerical performance in the
practical computation. Much progress has been achieved in
the study of global convergence of the various conjugate
gradient methods, such as the Polak-Ribière-Polyak (PRP) [1,
2], the Fletcher-Reeves (FR) [3], the Hestenes-Stiefel (HS) [4,
5], and the Dai-Yuan (DY) [6] conjugate gradient methods,
et al.

Recently, Zhang et al. [7] presented a sufficient descent
Polak-Ribière-Polyak (SDPRP) conjugate gradient method
for solving large-scale problem (1), whose most important
property is that its generated direction is always a sufficient
descent direction for the objective function. Moreover, this

property is independent of the line search used, and it reduces
to the classical PRP method when the exact line search is
used. The iterative process of the SDPRP method is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 0, 1, . . . , (2)

where 𝑥𝑘 is the current iterate, 𝛼𝑘 > 0 is called the stepsize
which can be obtained by some line search techniques, such
as the Armijo line search, the Goldstein line search, and the
(strong) Wolfe line search, and 𝑑𝑘 is the search direction
determined by

𝑑𝑘 = {
−𝑔𝑘, if 𝑘 = 0,

−𝑔𝑘 + 𝛽
PRP
𝑘

𝑑𝑘−1 − 𝜃𝑘𝑦𝑘−1, if 𝑘 ≥ 1,
(3)

with

𝛽
PRP
𝑘

=
𝑔
⊤

𝑘
𝑦𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝜃𝑘 =

𝑔
⊤

𝑘
𝑑𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, (4)

where 𝑦𝑘−1 = 𝑔𝑘 − 𝑔𝑘−1. It is easy to deduce from (3) and (4)
that

𝑔
⊤

𝑘
𝑑𝑘 = −

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
, (5)
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which indicates that 𝑑𝑘 is a sufficient descent direction of
𝑓(𝑥) at the current iterate 𝑥𝑘 if ‖𝑔𝑘‖ ̸= 0; that is, 𝑥𝑘 is not a
stationary point of the objective function 𝑓(𝑥). It has been
proved that SDPRPmethod has global convergence under an
Armijo-type line search [7] in the sense that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘)
󵄩󵄩󵄩󵄩 = 0, (6)

which means that at least one cluster point of the sequence
{𝑥𝑘} is a stationary point if it is bounded.

In another recent paper, Shi and Shen [8] showed that
the classical PRP method in [1] has strong convergence and
linear convergence rate under a customized Armijo-type line
search, which is somewhat complicated. The new Armijo-
type line search ensures that the search direction generated
by the classical PRP method possesses the sufficient descent
property, which is helpful to prove the global convergence.

In this paper, motivated by the Armijo-type line search
in [8], we first propose a similar but simple line search,
which can ensure that the SDPRPmethod has strongly global
convergence in the sense that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘)
󵄩󵄩󵄩󵄩 = 0, (7)

that is, any cluster point of the sequence {𝑥𝑘} is a stationary
point of the objective function 𝑓(𝑥). Noting that the above
new line search needs to estimate the Lipschitz constant,
which is not easy even for linear function, we present another
Armijo-type line search, which ismotivated by the line search
in [7]. This new line search can also guarantee the global
convergence of the SDPRP method in the above sense.

The remainder of the paper is organized as follows.
In Section 2 we introduce the two new Armijo-type line
searches and present the strongly convergent SDPRPmethod.
The global convergence is established under the above two
new Armijo-type line searches in Section 3. Some numerical
results are presented in Section 4, and in the last section, we
conclude the paper with some remarks.

2. Strongly Convergent SDPRP Method

First, we give the following basic assumptions on the objec-
tion function 𝑓(𝑥).

Assumption 1. Consider the following.

(H1) The objective function 𝑓(𝑥) has a lower bound on the
level set 𝐿0 = {𝑥 ∈ 𝑅

𝑛
| 𝑓(𝑥) ≤ 𝑓(𝑥0)}, where 𝑥0 is

the starting point.
(H2) In some neighborhood 𝑁 of 𝐿0, the gradient 𝑔(𝑥) is

Lipschitz continuous on an open convex set 𝐵 that
contains 𝐿0, that is, there exists a constant 𝐿 > 0 such
that
󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , for any 𝑥, 𝑦 ∈ 𝐵. (8)

(H3) The level set 𝐿0 = {𝑥 ∈ 𝑅
𝑛

| 𝑓(𝑥) ≤ 𝑓(𝑥0)} is
bounded.

Although 𝑔(𝑥) is Lipschitz continuous, the Lipschitz
constant 𝐿 is usually unknown in practice, even for the linear
function 𝑔(𝑥). Therefore, we need to estimate the Lipschitz
constant𝐿. Here, we adopt one of three estimating approaches
proposed in [9]. More specifically, if 𝑘 ≥ 1, then we can set

𝐿 ≅ 𝐿𝑘 = max{𝐿𝑘−1,

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩
} , (9)

with 𝐿0 > 0, and 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1.

Armijo-Type Line Search I. Set 𝜇 ∈ (0, 1), 𝜌 ∈ (0, 1), 𝑐 ∈

(0, 1), and the initial stepsize 𝛿𝑘 = (1 − 𝑐)‖𝑔𝑘‖
2
/(𝐿𝑘‖𝑑𝑘‖

2
),

where 𝐿𝑘 is determined by (9). Let 𝛼𝑘 be the largest 𝛼 in
{𝛿𝑘, 𝜌𝛿𝑘, 𝜌

2
𝛿𝑘, . . .} such that

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) − 𝑓 (𝑥𝑘) ≤ −𝜇𝛼
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
. (10)

Armijo-Type Line Search II. Set 𝜇 > 0, 𝜌 ∈ (0, 1). Let 𝛼𝑘 be the
largest 𝛼 in {1, 𝜌, 𝜌

2
, . . .} such that

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑓 (𝑥𝑘) − 𝜇𝛼
2󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
4
. (11)

Nowwe begin to describe the strongly convergent SDPRP
method.

Algorithm 2 (strongly convergent SDPRP method).

Step 0. Given an initial point 𝑥0 ∈ 𝑅
𝑛, 𝜇 ∈ (0, 1/2) and 𝜌 ∈

(0, 1), 𝑐 ∈ (0, 1) and set 𝑑0 = −𝑔0, 𝑘 := 0.

Step 1. If ‖𝑔𝑘‖ = 0 then stop; otherwise go to Step 2.

Step 2. Compute the descent direction 𝑑𝑘 by (3) and (4).
Determine the stepsize 𝛼𝑘 by the Armijo-type line search (10)
or (11).

Step 3. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, and 𝑘 := 𝑘 + 1; go to Step 1.

Lemma 3. Assume that (H1) and (H2) hold, then there exist
𝑚0 > 0 and 𝑀0 > 0 such that for any 𝑘 ≥ 0, one has

𝑚0 ≤ 𝐿𝑘 ≤ 𝑀0, (12)

where 𝐿𝑘 is defined by (9).

Proof. See [9, Lemma 2.1].

Lemma 4. Assume that (H1) and (H2) hold. If ‖𝑔𝑘‖ > 0, then
the new Armijo-type line search I is well-defined for the index
𝑘.

Proof. The proof is easy; for completeness, we give the proof
here. In fact, we can prove this lemma by contradiction.
Suppose that the conclusion does not hold; then for 𝑘, the
inequality (10) does not hold for any nonnegative integer 𝑚;
that is,

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝛿𝑘𝜌
𝑚
𝑑𝑘) < 𝜇𝛿𝑘𝜌

𝑚󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
, ∀𝑚. (13)
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Thus,

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝛿𝑘𝜌
𝑚
𝑑𝑘)

𝛿𝑘𝜌
𝑚

< 𝜇
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
, ∀𝑚. (14)

Letting 𝑚 → +∞, by the continuity of 𝑓(𝑥) and −𝑔
⊤

𝑘
𝑑𝑘 =

‖𝑔𝑘‖
2, we can obtain

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ 𝜇

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
. (15)

This and 𝜇 ∈ (0, 1) yield that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0, (16)

which contradicts to ‖𝑔𝑘‖ > 0. The proof is completed.

Lemma 5. Assume that (H2) and (H3) hold. If ‖𝑔𝑘‖ > 0, then
the new Armijo-type line search II is well-defined for the index
𝑘.

Proof. The lemma is also proved by contradiction. Suppose
that the conclusion does not hold; then for 𝑘, the inequality
(11) does not hold for any nonnegative integer 𝑚; that is,

𝑓 (𝑥𝑘 + 𝜌
𝑚
𝑑𝑘) > 𝑓 (𝑥𝑘) − 𝜇𝜌

2𝑚󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
4
, ∀𝑚. (17)

That is,

𝑓 (𝑥𝑘 + 𝜌
𝑚
𝑑𝑘) − 𝑓 (𝑥𝑘)

𝜌𝑚
> −𝜇𝜌

𝑚󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
4
, ∀𝑚. (18)

Letting 𝑚 → +∞, by the continuity of 𝑓(𝑥) and −𝑔
⊤

𝑘
𝑑𝑘 =

‖𝑔𝑘‖
2, we can obtain

−
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
≥ 0, (19)

that is,

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0, (20)

which contradicts to ‖𝑔𝑘‖ > 0. The proof is completed.

3. Strongly Global Convergence

Throughout this section, we assume that ‖𝑔𝑘‖ > 0, for all 𝑘 ≥

0; otherwise a stationary point of the objective function 𝑓(𝑥)

has been found.

3.1. Global Convergence of SDPRPMethodwith the Line Search
I. We first prove the global convergent of SDPRP method
with the Armijo-type line search I.

Lemma 6. For all 𝑘 ≥ 0, one has

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ (1 +

2𝐿 (1 − 𝑐)

𝑚0
)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 , ∀𝑘, (21)

where𝑚0 is defined in Lemma 3.

Proof. If 𝑘 = 0 then

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ (1 +

2𝐿 (1 − 𝑐)

𝑚0
)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 . (22)

If 𝑘 ≥ 1 then, from (3), (4), and (H2), we can get that

󵄩󵄩󵄩󵄩𝑑𝑘 + 𝑔𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛽
PRP
𝑘

𝑑𝑘−1 − 𝜃𝑘𝑦𝑘−1
󵄩󵄩󵄩󵄩󵄩

≤
2
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

≤
2𝐿𝛼𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

≤
2𝐿𝛿𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

≤
2𝐿 (1 − 𝑐)

𝑚0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ,

(23)

which together with the triangular inequality implies that

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑑𝑘 + 𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ (1 +

2𝐿 (1 − 𝑐)

𝑚0
)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 . (24)

This completes the proof.

The following lemma shows that the stepsize sequence
{𝛼𝑘} generated by the Armijo-type line search I is bounded
from below.

Lemma 7. For all 𝑘 ≥ 0, there exists a constant 𝐶 > 0, such
that

𝛼𝑘 ≥ 𝐶, (25)

in which 𝛼𝑘 is generated by the Armijo-type line search I.

Proof. We divide the proof into two cases: 𝛼𝑘 = 𝛿𝑘 and 𝛼𝑘 <

𝛿𝑘. For the first case, by (12) and (21), we get

𝛼𝑘 ≥
(1 − 𝑐)

𝑀0
(1 +

2𝐿 (1 − 𝑐)

𝑚0
)

−2

. (26)

For the second case, that is 𝛼𝑘 < 𝛿𝑘, which indicates that 𝛼𝑘/𝜌
does not satisfy (10); that is,

𝑓(𝑥𝑘 +
𝛼𝑘𝑑𝑘

𝜌
) > 𝑓 (𝑥𝑘) −

𝜇𝛼𝑘
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

𝜌
. (27)

Using the mean value theorem in the above inequality, we
obtain 𝜃𝑘 ∈ (0, 1), such that

[𝑔(𝑥𝑘 +
𝜃𝑘𝛼𝑘𝑑𝑘

𝜌
) − 𝑔𝑘]

⊤

𝑑𝑘 > (1 − 𝜇)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
. (28)
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This inequality and (H2), (21) show that

𝐿𝛼𝑘

𝜌
≥

󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘 + 𝜃𝑘𝛼𝑘𝑑𝑘/𝜌) − 𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘 + 𝜃𝑘𝛼𝑘𝑑𝑘/𝜌) − 𝑔𝑘
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥
[𝑔 (𝑥𝑘 + 𝜃𝑘𝛼𝑘𝑑𝑘/𝜌) − 𝑔𝑘]

⊤
𝑑𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥ (1 − 𝜇)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥ (1 − 𝜇) (1 +
2𝐿 (1 − 𝑐)

𝑚0
)

−2

.

(29)

Therefore, we have that

𝛼𝑘 ≥
(1 − 𝜇) 𝜌

𝐿
(1 +

2𝐿 (1 − 𝑐)

𝑚0
)

−2

. (30)

Obviously, (26) and (30) show that (25) holds with

𝐶 = min{
(1 − 𝑐)

𝑀0
,
(1 − 𝜇) 𝜌

𝐿
}(1 +

2𝐿 (1 − 𝑐)

𝑚0
)

−2

. (31)

This completes the proof.

We are now ready to establish the strong convergence of
SDPRP method using the Armijo-type line search I.

Theorem 8. Suppose that (H1) and (H2) hold. Then

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (32)

Proof. Since the generated sequence {𝑥𝑘} ⊆ 𝐿0 and the
objection function 𝑓(𝑥) is bounded below on the level set 𝐿0,
by (10) and (25), we have

∞

∑
𝑘=0

𝐶𝜇
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
≤

∞

∑
𝑘=0

(𝑓𝑘 − 𝑓𝑘+1) < 𝑓0. (33)

Thus

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (34)

This completes the proof.

3.2. Global Convergence of SDPRPMethodwith the Line Search
II. Then, we prove the strongly global convergent of SDPRP
method with the Armijo-type line search II. It is obvious that
𝑥𝑘 ∈ 𝐿0 for all 𝑘 ≥ 0. Therefore, from the line search II, we
have

lim
𝑘→∞

𝛼𝑘
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
= 0. (35)

This together with (5) implies that

lim
𝑘→∞

𝛼𝑘
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
≤ lim
𝑘→∞

𝛼𝑘
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
= 0. (36)

In addition, (H3) implies that there is a constant𝑀 > 0 such
that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑀, ∀𝑘 ≥ 0. (37)

Lemma 9. Suppose that (H2) and (H3) hold. Then for all 𝑘 ≥

0, one has

𝛼𝑘 ≥ min{1,
𝜌
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

(𝐿 + 𝜇
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
)
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
} . (38)

Proof. If 𝛼𝑘 ̸= 1, then 𝛼
󸀠

𝑘
= 𝛼𝑘/𝜌 does not satisfy (11); that is

𝑓 (𝑥𝑘 + 𝛼
󸀠

𝑘
𝑑𝑘) > 𝑓 (𝑥𝑘) − 𝜇(𝛼

󸀠

𝑘
)
2󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
4
. (39)

From the mean value theorem and (H2), there exists a
constant 𝜃𝑘 ∈ (0, 1), such that

𝑓 (𝑥𝑘 + 𝛼
󸀠

𝑘
𝑑𝑘) − 𝑓 (𝑥𝑘)

= 𝛼
󸀠

𝑘
𝑔(𝑥𝑘 + 𝜃𝑘𝛼

󸀠

𝑘
𝑑𝑘)
⊤

𝑑𝑘

= 𝛼
󸀠

𝑘
𝑔
⊤

𝑘
𝑑𝑘 + (𝑔 (𝑥𝑘 + 𝜃𝑘𝛼

󸀠

𝑘
𝑑𝑘) − 𝑔𝑘)

⊤

𝑑𝑘

≤ −𝛼
󸀠

𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
+ (𝛼
󸀠

𝑘
)
2

𝐿
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
,

(40)

which together with (36) shows that (35) holds. This com-
pletes the proof.

We are now ready to establish the strong convergence
of SDPRP method using the Armijo-type line search II. The
proof is motivated by the proof of Theorem 2.2 in [10].

Theorem 10. Suppose that (H2) and (H3) hold. Then

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (41)

Proof. For the sake of contradiction, we suppose that the
conclusion is not right. Then there exist a constant 𝜖 > 0 and
an infinite index set 𝐾 such that

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩 ≥ 𝜖, ∀𝑘 ∈ 𝐾. (42)

Moreover, the fact 𝛼𝑘 ≤ 1, (35) and (H2) imply that

󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
≤ 𝐿
2
𝛼
2

𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2
≤ 𝐿
2
𝛼𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2
󳨀→ 0. (43)

This and (42) indicate that there exists a positive constant 𝜖1
such that for sufficiently large 𝑘 ∈ 𝐾, we have

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜖1. (44)

Then by (36) and (44), we can get

lim
𝑘→∞,𝑘∈𝐾

𝛼𝑘 = 0. (45)
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Table 1: The results for the methods on the tested problems.

P 𝑛 SDPRPI SDPRPII TTPRP
FREUROTH 50 45/265/0.0313 152/1778/0.1719 62/633/0.0625

Extended trigonometric 1000 30/112/0.2188 218/2870/4.4375 26/122/0.2344
3000 72/116/0.8906 F 82/227/1.1875

SROSENBR 500 850/2472/0.5625 1567/4536/0.9375 1151/3288/0.7344

Extended White and Holst 1000 125/485/0.3906 170/2170/1.2031 71/760/0.4531
5000 133/561/1.9688 411/6741/18.1563 65/701/2.0625

BEALE 1000 131/453/0.2813 49/282/0.1406 64/380/0.1563
5000 116/370/1.1875 41/233/0.6250 55/329/0.7813

Extended penalty 1000 38/352/0.1094 F 26/250/0.0781
3000 29/328/0.2813 F 26/277/0.2500

Perturbed quadratic 1000 340/2761/0.6875 350/3850/0.8750 283/3062/0.6719
5000 699/6693/6.2656 1161/19049/16.5625 725/9442/8.2500

Raydan 1 500 168/611/0.2188 214/1177/0.3125 186/1017/0.2813

Raydan 2
1000 5/6/0.0313 4/6/0.0625 5/6/0.0625
5000 5/6/0.2969 5/8/0.3281 5/6/0.2969
10000 5/6/1.1250 6/13/1.1563 5/6/1.1406

Diagonal1 100 87/353/0.0625 88/451/0.0625 92/476/0.0781
Diagonal2 1000 6755/6756/10.9531 6753/6754/10.5625 6753/6754/10.4063
Diagonal3 100 84/435/0.0938 103/678/0.1250 103/678/0.1250
Hager 500 55/221/0.1875 61/280/0.2188 48/218/0.1563

Generalized tridiagonal-1 1000 46/236/0.3125 41/231/0.3281 46/262/0.3438
5000 43/213/1.7656 42/234/1.8438 49/277/2.1094

Extended tridiagonal-1 1000 58/104/0.1406 64/120/0.2031 58/105/0.1563
5000 60/110/0.9219 214/366/2.1406 68/121/0.9688

Extended three exponential 1000 25/ 81/0.0938 39/160/0.1563 39/160/0.1719
3000 29/ 95/0.3438 38/146/0.4844 38/146/0.4688

Generalized tridiagonal-2 1000 47/278/0.3438 55/441/0.6250 76/614/0.8438

By (3), (4), and (H2), for all 𝑘 ∈ 𝐾, we have
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨
𝛽
PRP
𝑘

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜃𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
2𝐿𝛼𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

≤ (1 +
2𝐿𝛼𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

𝜖2
)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 .

(46)

From (35), for all sufficiently large 𝑘 ∈ 𝐾, there exist a
constant 𝑟 > 0, such that

𝛼𝑘−1
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2
≤ 𝑟. (47)

Therefore ‖𝑑𝑘‖ ≤ 𝑀2‖𝑔𝑘‖ with 𝑀2 = 1 + (2𝐿𝑟/𝜖
2
). Thus, for

𝑘 ∈ 𝐾, this and (37) imply that
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑀2. (48)

Thus, from (38) and (48), we get

𝛼𝑘 ≥ min {1,
𝜌

(𝐿 + 𝜇𝑀2𝑀2
2
)𝑀2
2

} , ∀𝑘 ∈ 𝐾, (49)

which contradicts (45). The proof is then completed.

4. Numerical Results

In this section, we present some numerical results to compare
the performance of SDPRPmethodwith the twonewArmijo-
type line searches I and II and the three-term PRPmethod in
[7].

(i) SDPRPI: the SDPRPmethodwith the line search (10),
with 𝜇 = 10

−4
, 𝜌 = 0.5, 𝑐 = 0.2;

(ii) SDPRPII: the SDPRPmethodwith the line search (11),
with 𝜇 = 10

−4
, 𝜌 = 0.5.

(iii) TTPRP: the two-termPRPmethodwith the following
Armijo-type line search: let 𝛼𝑘 be the largest 𝛼 in
{1, 𝜌, 𝜌

2
, . . .} such that

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑓 (𝑥𝑘) − 𝜇𝛼
2󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
, (50)

where 𝜇 = 10
−4

, 𝜌 = 0.5.
All codes were written inMatlab 7.1 and run on a portable

computer. We stopped the iteration if the number of iteration
exceeds 10000 or ‖𝑔𝑘‖ < 10

−5. Tables 1 and 2 list the numerical
results for solving some test problems numbered from 1 to 30
in [11] with different dimension 𝑛. Our numerical results are
listed in the formNI/NF/CPU,where the symbolsNI,NF, and



6 Abstract and Applied Analysis

Table 2: The results for the methods on the tested problems.

P 𝑛 SDPRPI SDPRPII TTPRP

Diagonal4 function
5000 195/1606/8.7656 66/533/3.8125 188/1764/9.3438
1000 36/156/0.0625 57/401/0.0781 60/418/0.1094
5000 36/154/0.4219 74/596/0.7031 78/532/0.5781

Diagonal5 1000 3/4/0.0469 3/4/0.0156 3/4/0.0469
5000 4/5/0.4688 4/5/0.4688 4/5/0.5000

HIMMELBC 1000 48/295/0.0938 47/329/0.0781 48/313/0.0938
5000 53/326/0.7344 88/716/0.9844 52/338/0.7344

Generalized PSC1 1000 292/540/0.5313 326/726/0.7188 422/756/0.7656
5000 373/733/3.6094 352/1355/7.5469 373/733/3.6094

Extended PSC1 1000 28/80/0.0938 28/138/0.1094 18/59/0.0625
5000 27/78/0.6250 56/502/1.9063 18/59/0.5781

Extended Powell 1000 213/1548/1.1094 415/5098/2.7188 207/1498/1.0781
5000 133/979/3.5781 F 145/1055/3.8281

Extended block diagonal 1000 25/128/0.0625 37/213/0.1094 37/213/0.1094
5000 30/151/0.6406 41/216/0.7656 41/216/0.7813

Extended Maratos 500 36/257/0.0469 48/1451/0.1563 48/466/0.0625

Extended Cliff 1000 41/235/0.1406 633/3098/1.7031 71/363/0.2188
5000 47/255/1.0625 963/3585/10.2188 68/357/1.2344

Quadratic diagonal perturbed 1000 842/4828/1.2969 496/5415/1.1406 709/7359/1.5313
5000 1049/7363/5.3906 1031/15570/9.2500 767/9203/5.5156

Extended Wood 1000 237/1519/0.3594 F 299/2940/0.5313
5000 222/1483/1.7188 F 174/1738/1.8750

Extended Hiebert 1000 582/2850/0.7188 F 59/763/0.1406
5000 609/3056/3.4063 F 73/932/1.0000

Quadratic function 1000 343/2436/0.5313 360/3700/0.6719 321/3122/0.5938
5000 808/7176/6.5781 F 746/8948/7.1875
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Figure 1: Performance profiles of three methods about the number
of function evaluations.

CPU mean the number of iterations, the number of function
evaluations, and the CPU time in seconds, respectively.

Figures 1 and 2 show the performance of these methods
relative to the number of function evaluations and CPU time,
respectively, which are evaluated using the profiles of Dolan
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Figure 2: Performance profiles of three methods about CPU time.

and Moré [12]. That is, for each method, we plot the fraction
𝑃 of problems for which the method is within a factor 𝜏 of
the best time. The left side of the figure gives the percentage
of the test problems for which a method is fastest; while the
right side gives the percentage of the test problems that are
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successfully solved by each of the methods. The top curve
is the method that solved most problems in a time that was
within a factor 𝜏 of the best time. Figures 1 and 2 show that
SDPRPImethod performs a little better than TTPRPmethod
and obviously better than SDPRPII method. It solves about
72% and 63% of the problems with the smallest number of
function evaluations and CPU time, respectively. Obviously,
the performance of SDPRPII method is not so good, and,
in the future, we will further study the corresponding line
search. Of course, more numerical experiments should be
carried out to test our proposed methods.

5. Conclusion

In this paper, we have proposed two new Armijo-type line
searches and proved that the sufficient descent PRP method
proposed by Zhang et al. is strongly global convergent with
the two new line searches. Numerical results show that the
SDPRP method with the proposed line searches is efficient
for the test problems.
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