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We introduce a new class of sequences named as 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) and, for this space, we study some inclusion relations, topological
properties, and geometrical properties such as order continuous, the Fatou property, and the Banach-Saks property of type 𝑝.

1. Introduction, Definitions, and Preliminaries

By𝑤we denote the space of all complex (or real) sequences. If
𝑥 ∈ 𝑤, then we simply write 𝑥 = (𝑥

𝑘
) instead of 𝑥 = (𝑥

𝑘
)
∞

𝑘=0
.

We will write ℓ
∞
, 𝑐, and 𝑐

0
for the sequence spaces of all

bounded, convergent, and null sequences, respectively. Also
by ℓ
1
and ℓ
𝑝
we denote the spaces of all absolutely summable

and 𝑝-absolutely summable series, respectively.
The notion of difference sequence spaces was generalized

by Et and Çolak [1] such as𝑋(Δ𝑟) = {𝑥 = (𝑥
𝑘
) : Δ
𝑟

𝑥 ∈ 𝑋}, for
𝑋 = ℓ

∞
, 𝑐, and 𝑐

0
. They showed that these sequence spaces

are 𝐵𝐾-spaces with the norm

‖𝑥‖
Δ
=

𝑟

∑

𝑖=1





𝑥
𝑖





+




Δ
𝑟

𝑥



∞
, (1)

where 𝑟 ∈ N, Δ0𝑥 = 𝑥, Δ𝑥 = (𝑥
𝑘
− 𝑥
𝑘+1
), Δ𝑟𝑥 = (Δ𝑟𝑥

𝑘
) =

(Δ
𝑟−1

𝑥
𝑘
−Δ
𝑟−1

𝑥
𝑘+1
), andΔ𝑟𝑥

𝑘
= ∑
𝑟

V=0 (−1)
V
(
𝑟

V ) 𝑥𝑘+V. Recently
difference sequences and related concepts have been studied
in ([2–13]) and by many others.

Let 𝐸 be a sequence space. Then 𝐸 is called

(i) solid (ornormal) if (𝛼
𝑘
𝑥
𝑘
) ∈ 𝐸 for all sequences (𝛼

𝑘
) of

scalars with |𝛼
𝑘
| ≤ 1 for all 𝑘 ∈ N, whenever (𝑥

𝑘
) ∈ 𝐸,

(ii) symmetric if (𝑥
𝑘
) ∈ 𝐸 implies (𝑥

𝜋(𝑘)
) ∈ 𝐸, where 𝜋 is

a permutation of N,

(iii) monotone provided 𝐸 contains the canaonical preim-
ages of all its step spaces,

(iv) sequence algebra if 𝑥 ⋅ 𝑦 ∈ 𝐸, whenever 𝑥, 𝑦 ∈ 𝐸.

It is well known that if 𝐸 is normal then 𝐸 is monotone.
Throughout this paper 𝜑

𝑠
denotes the class of all subsets

of N; those do not contain more than 𝑠 elements. Let (𝜙
𝑛
)

be a nondecreasing sequence of positive numbers such that
𝑛𝜙
𝑛+1
≤ (𝑛+ 1)𝜙

𝑛
for all 𝑛 ∈ N. The class of all sequences (𝜙

𝑛
)

is denoted by Φ. The sequence space 𝑚(𝜙) was introduced
by Sargent [14] and he studied some of its properties and
obtained some relations with the space ℓ

𝑝
. Later on it was

investigated by Tripathy and Sen [15] and Tripathy and
Mahanta [16].

Let us recall that a sequence {V(𝑖)}∞
𝑖=1

in a Banach space𝑋
is called 𝑆𝑐ℎ𝑎𝑢𝑑𝑒𝑟 𝑏𝑎𝑠𝑖𝑠 of 𝑋 (or 𝑏𝑎𝑠𝑖𝑠 for short) if for each
𝑥 ∈ 𝑋 there exists a unique sequence {𝜆(𝑖)}∞

𝑖=1
of scalars such

that 𝑥 = ∑∞
𝑖=1
𝜆(𝑖)V(𝑖); that is, lim

𝑛→∞
∑
𝑛

𝑖=1
𝜆(𝑖)V(𝑖) = 𝑥.

A sequence space 𝑋 with a linear topology is called a 𝐾-
𝑠𝑝𝑎𝑐𝑒 if each of the projection maps 𝑃

𝑖
: 𝑋 → C defined

by 𝑃
𝑖
(𝑥) = 𝑥(𝑖) for 𝑥 = (𝑥(𝑖))∞

𝑖=1
∈ 𝑋 is continuous for each

natural 𝑖. A Fréchet space is a complete metric linear space
and themetric is generated by an𝐹-norm and a Fréchet space
which is a𝐾-space is called an 𝐹𝐾-space; that is, a𝐾-space𝑋
is called an 𝐹𝐾-space if 𝑋 is a complete linear metric space.
In other words,𝑋 is an 𝐹𝐾-space if𝑋 is a Fréchet space with
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continuous coordinate projections. All the sequence spaces
mentioned above are 𝐹𝐾 spaces except the space 𝑐

00
.

An 𝐹𝐾-space 𝑋 which contains the space 𝑐
00

is said to
have the 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝐴𝐾 if for every sequence {𝑥(𝑖)} ∈ 𝑋, 𝑥 =
∑
∞

𝑖=1
𝑥(𝑖)𝑒(𝑖) where 𝑒(𝑖) = (0, 0, . . . , 1(𝑖th-place), 0, 0, . . .).
A Banach space𝑋 is said to be aKöthe sequence space (see

[17, 18]) if𝑋 is a subspace of 𝑤 such that

(i) if 𝑥 ∈ 𝑤, 𝑦 ∈ 𝑋 and |𝑥(𝑖)| ≤ |𝑦(𝑖)| for all 𝑖 ∈ N, then
𝑥 ∈ 𝑋 and ‖𝑥‖ ≤ ‖𝑦‖;

(ii) there exists an element 𝑥 ∈ 𝑋 such that 𝑥(𝑖) > 0 for
all 𝑖 ∈ N.

We say that 𝑥 ∈ 𝑋 is order continuous if for any sequence
(𝑥
𝑛
) in𝑋 such that𝑥

𝑛
(𝑖) ≤ |𝑥(𝑖)| for each 𝑖 ∈ N and𝑥

𝑛
(𝑖) → 0

(𝑛 → ∞) we have that ‖𝑥
𝑛
‖ → 0 holds.

A Köthe sequence space𝑋 is said to be order continuous
if all sequences in𝑋 are order continuous. It is easy to see that
𝑥 ∈ 𝑋 is order continuous if and only if ‖(0, 0, . . . , 0, 𝑥(𝑛 +
1), 𝑥(𝑛 + 2), . . .)‖ → 0 as 𝑛 → ∞.

A Köthe sequence space 𝑋 is said to have the
𝐹𝑎𝑡𝑜𝑢 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 if, for any real sequence 𝑥 and any {𝑥

𝑛
} in

𝑋 such that 𝑥
𝑛
↑ 𝑥 coordinatewisely and sup

𝑛
‖𝑥
𝑛
‖ < ∞, we

have that 𝑥 ∈ 𝑋 and ‖𝑥
𝑛
‖ → ‖𝑥‖.

A Banach space 𝑋 is said to have the 𝐵𝑎𝑛𝑎𝑐ℎ-
𝑆𝑎𝑘𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 if every bounded sequence {𝑥

𝑛
} in 𝑋

admits a subsequence {𝑧
𝑛
} such that the sequence {𝑡

𝑘
(𝑧)} is

convergent in𝑋 with respect to the norm, where

𝑡
𝑘
(𝑧) =

1

𝑘

(𝑧
1
+ 𝑧
2
+ ⋅ ⋅ ⋅ + 𝑧

𝑘
) , ∀𝑘 ∈ N. (2)

Some of recent works on geometric properties of
sequence space can be found in the following list ([19–21]).

2. Inclusion and Topological Properties of
the Space 𝑚

𝛼
(Δ
𝑟

,𝜙,𝑝)

In this section we introduce a new class of sequences and
establish some inclusion relations. Also we show that this
space is not perfect and normal.

Let 𝑟 be a fixed positive integer,𝛼 ∈ (0, 1] any real number,
and 𝑝 a positive real number such that 1 ≤ 𝑝 < ∞. Now we
define the sequence space𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝) as

𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) = {𝑥 ∈ 𝑤 : sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

< ∞} . (3)

In the case 𝑝 = 1, we will write 𝑚
𝛼
(Δ
𝑟

, 𝜙) instead of
𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) and in the special case 𝑚 = 0 and 𝑝 = 1 we
will write𝑚

𝛼
(𝜙) instead of𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝).
The proof of each of the following results is straightfor-

ward, so we choose to state these results without proof.

Theorem 1. Let 𝜙 ∈ Φ, 𝛼 ∈ (0, 1], and let 𝑝 be a positive
real number such that 1 ≤ 𝑝 < ∞. Then the sequence space
𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) is a 𝐵𝐾-space normed by

‖𝑥‖ =

𝑟

∑

𝑖=1





𝑥
𝑖





+ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

(∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

)

1/𝑝

. (4)

Theorem 2. Let 𝜙 ∈ Φ, 𝛼 ∈ (0, 1], and let 𝑝 be a positive real
number such that 1 ≤ 𝑝 < ∞; then𝑚

𝛼
(Δ
𝑟

, 𝜙) ⊂ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝).

Theorem 3. Let 𝛼 and 𝛽 be fixed real numbers such that 0 <
𝛼 ≤ 𝛽 ≤ 1 and 𝑝 a positive real number such that 1 ≤ 𝑝 < ∞;
then𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝) ⊂ 𝑚
𝛽
(Δ
𝑟

, 𝜙, 𝑝).

Theorem 4. Let 𝛼 and 𝛽 be fixed real numbers such that 0 <
𝛼 ≤ 𝛽 ≤ 1 and 𝑝 a positive real number such that 1 ≤ 𝑝 <
∞. For any two sequences (𝜙

𝑠
) and (𝜓

𝑠
) of real numbers such

that 𝜙, 𝜓 ∈ Φ. Then𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) ⊂ 𝑚
𝛽
(Δ
𝑟

, 𝜓, 𝑝) if and only if
sup
𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛽

𝑠
) < ∞.

Proof. Let 𝑥 ∈ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) and sup
𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛽

𝑠
) < ∞. Then

sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

< ∞ (5)

and there exists a positive number𝐾 such that 𝜙𝛼
𝑠
≤ 𝐾𝜓

𝛽

𝑠
and

so that 1/𝜓𝛽
𝑠
≤ 𝐾/𝜙

𝛼

𝑠
for all 𝑠. Therefore for all 𝑠 we have

1

𝜓
𝛽

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

≤

𝐾

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

. (6)

Now taking supremum over 𝑠 ≥ 1 and 𝜎 ∈ 𝜑
𝑠
we get

sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜓
𝛽

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

≤ sup
𝑠≥1,𝜎∈𝜑

𝑠

𝐾

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

(7)

and so 𝑥 ∈ 𝑚
𝛽
(Δ
𝑟

, 𝜓, 𝑝).
Conversely let 𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝) ⊂ 𝑚
𝛽
(Δ
𝑟

, 𝜓, 𝑝) and suppose
that sup

𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛽

𝑠
) = ∞. Then there exists an increasing

sequence (𝑠
𝑖
) of naturals numbers such that lim

𝑖
(𝜙
𝛼

𝑠
𝑖

/𝜓
𝛽

𝑠
𝑖

) =

∞. Let 𝐵 ∈ R+, where R+ is the set of positive real numbers;
then there exists 𝑖

0
∈ N such that 𝜙𝛼

𝑠
𝑖

/𝜓
𝛽

𝑠
𝑖

> 𝐵 for all 𝑠
𝑖
≥ 𝑖
0
.

Hence 𝜙𝛼
𝑠
𝑖

> 𝐵𝜓
𝛽

𝑠
𝑖

and so 1/𝜓𝛽
𝑠
𝑖

> 𝐵/𝜙
𝛼

𝑠
𝑖

. Then we can write

1

𝜓
𝛽

𝑠
𝑖

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

>

𝐵

𝜙
𝛼

𝑠
𝑖

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

(8)

for all 𝑠
𝑖
≥ 𝑖
0
. Now taking supremum over 𝑠

𝑖
≥ 𝑖
0
and 𝜎 ∈ 𝜑

𝑠

we get

sup
𝑠
𝑖
≥𝑖
0
,𝜎∈𝜑
𝑠

1

𝜓
𝛽

𝑠
𝑖

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

> sup
𝑠
𝑖
≥𝑖
0
,𝜎∈𝜑
𝑠

𝐵

𝜙
𝛼

𝑠
𝑖

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

. (9)

Since (9) holds for all 𝐵 ∈ R+ (we may take the number 𝐵
sufficiently large), we have

sup
𝑠
𝑖
≥𝑖
0
,𝜎∈𝜑
𝑠

1

𝜓
𝛽

𝑠
𝑖

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

= ∞ (10)

when 𝑥 ∈ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) with

0 < sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





Δ
𝑟

𝑥
𝑛






𝑝

< ∞. (11)

Hence 𝑥 ∉ 𝑚
𝛽
(Δ
𝑟

, 𝜓, 𝑝). This contradicts to 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) ⊂

𝑚
𝛽
(Δ
𝑟

, 𝜓, 𝑝). Hence sup
𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛽

𝑠
) < ∞.
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The following results are derivable easily from Theorem
4.

Corollary 5. Let 𝛼 and 𝛽 be fixed real numbers such that 0 <
𝛼 ≤ 𝛽 ≤ 1 and 𝑝 a positive real number such that 1 ≤ 𝑝 < ∞.
For any two sequences (𝜙

𝑠
) and (𝜓

𝑠
) of real numbers such that

𝜙, 𝜓 ∈ Φ. Then one has

(i) 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) = 𝑚
𝛽
(Δ
𝑟

, 𝜓, 𝑝) if and only if 0 <

inf
𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛽

𝑠
) < sup

𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛽

𝑠
) < ∞,

(ii) 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) = 𝑚
𝛼
(Δ
𝑟

, 𝜓, 𝑝) if and only if 0 <

inf
𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛼

𝑠
) < sup

𝑠≥1
(𝜙
𝛼

𝑠
/𝜓
𝛼

𝑠
) < ∞,

(iii) 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) = 𝑚
𝛽
(Δ
𝑟

, 𝜙, 𝑝) if and only if 0 <

inf
𝑠≥1
(𝜙
𝛼

𝑠
/𝜙
𝛽

𝑠
) < sup

𝑠≥1
(𝜙
𝛼

𝑠
/𝜙
𝛽

𝑠
) < ∞.

Theorem 6. Consider 𝑚
𝛼
(Δ
𝑟−1

, 𝜙, 𝑝) ⊂ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) and the
inclusion is strict.

Proof. It follows from Minkowski’s inequality. To show the
inclusion is strict, let 𝜙

𝑛
= 1 for all 𝑛 ∈ N, 𝛼 = 1, 𝑝 = 1,

and 𝑥 = (𝑘𝑟−1); then 𝑥 ∈ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) \ 𝑚
𝛼
(Δ
𝑟−1

, 𝜙, 𝑝).

Theorem 7. The sequence space 𝑚
𝛼
(𝜙) is solid and hence

monotone, but the sequence space𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) is neither solid
nor symmetric and sequence algebra for𝑚 ≥ 1.

Proof. Let 𝑥 ∈ 𝑚
𝛼
(𝜙) and 𝑦 = (𝑦

𝑛
) be sequences such that

|𝑥
𝑛
| ≤ |𝑦
𝑛
| for each 𝑛 ∈ N. Then we get

sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





𝑥
𝑛





≤ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

∑

𝑛∈𝜎





𝑦
𝑛





. (12)

Hence 𝑚
𝛼
(𝜙) is solid and hence monotone. To show the

space 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) is normal, let 𝜙
𝑛
= 1, for all 𝑛 ∈ N,

𝛼 = 1, 𝑝 = 1, and 𝑥 = (𝑘𝑟−1), then 𝑥 ∈ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝); but
(𝛼
𝑘
𝑥
𝑘
) ∉ 𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝) when 𝛼
𝑘
= (−1)

𝑘 for all 𝑘 ∈ N. Hence
𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) is not solid. The other cases can be proved on
considering similar examples.

Theorem 8. Consider

ℓ
𝑝
(Δ
𝑟

) ⊂ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) ⊂ ℓ
∞
(Δ
𝑟

) . (13)

Proof. It is omitted.

Theorem 9. If 0 < 𝑝 < 𝑞, then𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) ⊂ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑞).

Proof. Proof follows from the following inequality:

(

𝑛

∑

𝑘=1





𝑥
𝑘






𝑞

)

1/𝑞

< (

𝑛

∑

𝑘=1





𝑥
𝑘






𝑞

)

1/𝑞

, (0 < 𝑝 < 𝑞) . (14)

3. Geometrical Properties of
the Space 𝑚

𝛼
(Δ
𝑟

,𝜙,𝑝)

In this section, we study some geometrical properties of the
space 𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝). Some of these geometrical properties are

the order continuous, the Fatou property, and the Banach-
Saks property of type 𝑝. Let us start with the following
theorem.

Theorem 10. The space𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) is order continuous.

Proof. To prove this theorem, we have to show that 𝑚
𝛼
(Δ
𝑟

,

𝜙, 𝑝) is an 𝐴𝐾-space. It is easy to see that 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝)

contains 𝑐
00

which is the space of real sequences which
have only a finite number of nonzero coordinates. By using
definition of 𝐴𝐾-properties, we have that 𝑥 = {𝑥(𝑖)} ∈

𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) has a unique representation 𝑥 = ∑∞
𝑖=1
𝑥(𝑖)𝑒(𝑖);

that is, ‖𝑥 − 𝑥[𝑗]‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)

= ‖(0, 0, . . . , 𝑥(𝑗), 𝑥(𝑗 + 1),

. . . )‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)

→ 0 as 𝑗 → ∞, which means that 𝑚
𝛼
(Δ
𝑟

, 𝜙,

𝑝) has 𝐴𝐾. Hence, since 𝐵𝐾-space 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) containing
𝑐
00
has 𝐴𝐾-property, the space𝑚

𝛼
(Δ
𝑟

, 𝜙, 𝑝) is order continu-
ous.

Theorem 11. The space𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) has the Fatou property.

Proof. Let 𝑥 be any real sequence from (𝑤)
+

and {𝑥
𝑛
}

any nondecreasing sequence of nonnegative elements from
𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝) such that 𝑥
𝑛
(𝑖) → 𝑥(𝑖) as 𝑛 → ∞ coordinate-

wisely and sup
𝑛
‖𝑥
𝑛
‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)

< ∞.
Let us denote 𝜏 = sup

𝑛
‖𝑥
𝑛
‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)

.Then, since the sup-
remum is homogeneous, we have

1

𝜏

(

𝑟

∑

𝑖=1





𝑥
𝑛
(𝑖)




+ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

(∑

𝑖∈𝜎





Δ
𝑟

𝑥
𝑛
(𝑖)





𝑝

)

1/𝑝

)

=

𝑟

∑

𝑖=1










𝑥
𝑛
(𝑖)

𝜏










+ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

(∑

𝑛∈𝜎










Δ
𝑟

𝑥
𝑛
(𝑖)

𝜏










𝑝

)

1/𝑝

≤

𝑟

∑

𝑖=1












𝑥
𝑛
(𝑖)





𝑥
𝑛




𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)












+ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

(∑

𝑛∈𝜎












Δ
𝑟

𝑥
𝑛
(𝑖)





𝑥
𝑛




𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)












𝑝

)

1/𝑝

=

1





𝑥
𝑛




𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)





𝑥
𝑛




𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)

= 1.

(15)

Moreover, by the assumptions that {𝑥
𝑛
} is nondecreasing

and convergent to 𝑥 coordinatewisely and by the Beppo-Levi
theorem, we have

1

𝜏

lim
𝑛→∞

(

𝑟

∑

𝑖=1





𝑥
𝑛
(𝑖)




+ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

(∑

𝑖∈𝜎





Δ
𝑟

𝑥
𝑛
(𝑖)





𝑝

)

1/𝑝

)

=

𝑟

∑

𝑖=1










𝑥 (𝑖)

𝜏










+ sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝛼

𝑠

(∑

𝑖∈𝜎










Δ
𝑟

𝑥 (𝑖)

𝜏










𝑝

)

1/𝑝

=









𝑥

𝑠







𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

≤ 1,

(16)
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whence

‖𝑥‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝)))

≤ 𝜏 = sup
𝑛





𝑥
𝑛




𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

= lim
𝑛→∞





𝑥
𝑛




𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

< ∞.

(17)

Therefore, 𝑥 ∈ 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝)). On the other hand, since
0 ≤ 𝑥

𝑛
≤ 𝑥 for any natural number 𝑛 and the

sequence {𝑥
𝑛
} is nondecreasing, we obtain that the sequence

{‖𝑥
𝑛
‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

} is bounded from above by ‖𝑥‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

.
As a result, lim

𝑛→∞
‖𝑥
𝑛
‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

≤ ‖𝑥‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

, which
together with the opposite inequality proved already yields
that ‖𝑥‖

𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

= lim
𝑛
‖𝑥
𝑛
‖
𝑚
𝛼
(Δ
𝑟
,𝜙,𝑝))

.

Theorem 12. The space 𝑚
𝛼
(Δ
𝑟

, 𝜙, 𝑝)) has the Banach-Saks
property of the type 𝑝.

Proof. It can be proved with standard technic.
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[21] M. Et, M. Karakaş, and V. Karakaya, “Some geometric proper-
ties of a new difference sequence space defined by de la Vallée-
Poussinmean,”AppliedMathematics andComputation, vol. 234,
pp. 237–244, 2014.


