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For the numerical solution of high order boundary value problems with special boundary conditions a general procedure to
determine collocation methods is derived and studied. Computation of the integrals which appear in the coefficients is generated
by a recurrence formula and no integrals are involved in the calculation. Several numerical examples are presented to demonstrate
the practical usefulness of the proposed method.

1. Introduction

Higher order differential equations arise in a variety of
different areas of science, engineering, and technology (see
[1, 2]) since they model a wide spectrum of phenomena.

Particularly, the solutions of fifth-order BVPs model
viscoelastic flows [3] and the seventh-order BVPs model
induction motors with two rotor circuits [4, 5]. Ordinary
differential equations of sixth and eighth order arise in
modeling instability when an infinite horizontal layer of
fluid is heated from below and is subject to the action of
rotation [6]. Moreover, high order boundary value problems
arise in hydrodynamic, hydromagnetic stability [7], and other
branches of applied sciences.

In [8] the authors presented a class of collocationmethods
for the numerical solution of high order boundary value
problems:

𝑦
(𝑛)
(𝑥) = 𝑓 (𝑥, y (𝑥)) , 𝑥 ∈ 𝐼 = [𝑎, 𝑏] , (1)

𝐵 [𝑥, 𝑦] = 𝑔, 𝑥 ∈ 𝜕𝐼, (2)

where 𝑛 > 1, y(𝑥) = (𝑦(𝑥), 𝑦

(𝑥), . . . , 𝑦

(𝑞)
(𝑥)), 0 ≤ 𝑞 < 𝑛, and

𝐵 is a linear operator on the boundary 𝜕𝐼, 𝑔 ∈ R𝑛.
The idea in [8] is the following: the differential problem

(1)-(2) is written in the following equivalent integral form:

𝑦 (𝑥) = 𝑃𝑛−1 [𝑦, 𝑥] + ∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑓 (𝑡, y (𝑡)) 𝑑𝑡, (3)

where 𝑃𝑛−1[𝑦, 𝑥] is the unique polynomial which satisfies the
boundary conditions

𝐵 [𝑥, 𝑃𝑛−1] = 𝑔 (4)

and 𝐺𝑛−1(𝑥, 𝑡) is a kernel (Green) function. 𝐺𝑛−1(𝑥, 𝑡) is such
that 𝐵[𝑥, 𝐺𝑛−1] = 0 and it is differentiable under the integral
sign such that (3) satisfies (1).

Thus, from (3) and (4) we obtain a collocation polynomial
which approximates the solution of problem (1)-(2).

In the present work the authors use this technique to
derive collocation methods for the numerical solution of (1)
with the particular boundary conditions

𝑦 (𝑎) = 𝛽0, 𝑦
(𝑘)
(𝑏) − 𝑦

(𝑘)
(𝑎) = 𝛽𝑘+1, 𝑘 = 0, . . . , 𝑛 − 2

(5)

with 𝛽𝑘, 𝑘 = 0, . . . , 𝑛 − 1, being real constants.
Conditions (5) are called the Bernoulli boundary condi-

tions, since they are related to the Bernoulli interpolation
problem [9]. They have physical and engineering interpreta-
tion [10], but to the authors’ knowledge, they have not been
considered previously in the literature.

In [9, 10] the BVP (1)–(5) is considered: in [10] a
nonconstructive proof of the existence and uniqueness of
solution is given, and in [9] Picard’s method is applied in
connection with Newton’s method for the numerical solution
of the problem.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 276585, 9 pages
http://dx.doi.org/10.1155/2014/276585

http://dx.doi.org/10.1155/2014/276585


2 Journal of Applied Mathematics

The present paper is organized as follows: in Section 2
we summarize some theoretical results on the existence
and uniqueness of solution for problem (1)–(5). Then, in
Section 3, we present the method for the numerical solution
of this type of problems, which produces smooth, global
approximations in the form of polynomial functions. In
Section 4 we give an a priori estimation of error and, in
Section 5, we present some particular cases. In Section 6 we
propose an algorithm to compute the numerical solution of
(1)–(5) in the nodal points and then, in Section 7, we present
some numerical examples of both linear and nonlinear BVPs
which confirm the theoretical results.

2. Preliminaries

Let 𝐵𝑘(𝑥) be the Bernoulli polynomial of degree 𝑘 [11] and let
us set

𝑆𝑘 (𝑡) = 𝐵𝑘 (𝑡) − 𝐵𝑘 (0) . (6)

Moreover, let

ℎ = 𝑏 − 𝑎, Δ𝑓
(𝑘)

𝑎 = 𝑓
(𝑘)
(𝑏) − 𝑓

(𝑘)
(𝑎) . (7)

The following theorems hold.

Theorem 1 (see [12]). Let 𝑓 ∈ 𝐶
(𝑛+1)

[𝑎, 𝑏]. Then

𝑓 (𝑥) = 𝑓 (𝑎) +

𝑛

∑

𝑘=1

𝑆𝑘 (
𝑥 − 𝑎

ℎ
)
ℎ
𝑘−1

𝑘!
Δ𝑓
(𝑘−1)

𝑎 + 𝑅𝑛 [𝑓, 𝑥] , (8)

where 𝑅𝑛[𝑓, 𝑥] is the remainder term

𝑅𝑛 [𝑓, 𝑥] = ∫

𝑏

𝑎

𝐺𝑛 (𝑥, 𝑡) 𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 (9)

with 𝐺𝑛(𝑥, 𝑡) being Peano’s kernel:

𝐺𝑛 (𝑥, 𝑡) =
1

𝑛!
[(𝑥 − 𝑡)

𝑛

+ −

𝑛

∑

𝑘=1

𝑆𝑘 (
𝑥 − 𝑎

ℎ
)
ℎ
𝑘−1

𝑘

×(
𝑛

𝑘 − 1
) (𝑏 − 𝑡)

𝑛−𝑘+1
] .

(10)

Theorem 2 (see [12]). If 𝑓 ∈ 𝐶
(𝑛−1)

[𝑎, 𝑏], then the polynomial

𝑃𝑛 [𝑓, 𝑥] = 𝑓 (𝑎) +

𝑛

∑

𝑘=1

𝑆𝑘 (
𝑥 − 𝑎

ℎ
)
ℎ
𝑘−1

𝑘!
Δ𝑓
(𝑘−1)

𝑎 (11)

satisfies the Bernoulli interpolation problem

𝑃𝑛 [𝑓, 𝑎] = 𝑓 (𝑎) ,

Δ𝑃
(𝑘)

𝑛 = 𝑃
(𝑘)

𝑛 [𝑓, 𝑏] − 𝑃
(𝑘)

𝑛 [𝑓, 𝑎] = 𝑓
(𝑘)
(𝑏) − 𝑓

(𝑘)
(𝑎) = Δ𝑓

(𝑘)

𝑎 ,

𝑘 = 0, . . . , 𝑛 − 1.

(12)

The proof of the existence and uniqueness of solution
of (1)–(5) is based on (3) [8], under the hypothesis that the
function 𝑓(𝑥, y) satisfies the Lipschitz condition

𝑓 (𝑥, y1 (𝑥)) − 𝑓 (𝑥, y2 (𝑥))
 ≤

𝑞

∑

𝑘=0

𝐿𝑘


𝑦
(𝑘)

1 (𝑥) − 𝑦
(𝑘)

2 (𝑥)


(13)

in a certain domain interval of [𝑎, 𝑏] ×R𝑞+1.

3. The Collocation Method

Let 𝑦(𝑥) be the solution of (1)–(5). If 𝑥𝑖, 𝑖 = 1, . . . , 𝑚, are
𝑚 distinct points in [𝑎, 𝑏] and 𝑦(𝑥) ∈ 𝐶

(𝑛+𝑚)
[𝑎, 𝑏], using

Lagrange interpolation, we get

𝑦
(𝑛)
(𝑥) =

𝑚

∑

𝑖=1

𝑙𝑖 (𝑥) 𝑦
(𝑛)
(𝑥𝑖) + 𝑅𝑚 (𝑦, 𝑥) , (14)

where

𝑅𝑚 (𝑦, 𝑥) =
(𝑥 − 𝑥1) ⋅ ⋅ ⋅ (𝑥 − 𝑥𝑚)

𝑚!
𝑦
(𝑛+𝑚)

(𝜉𝑥) , 𝜉𝑥 ∈ (𝑎, 𝑏)

(15)

and 𝑙𝑖(𝑡) are the fundamental Lagrange polynomials on the𝑚
points 𝑥𝑖.

Inserting (14) into (3), in view of (1), we obtain

𝑦 (𝑥) = 𝑃𝑛−1 [𝑦, 𝑥]

+

𝑚

∑

𝑖=1

𝑓 (𝑥𝑖, y (𝑥𝑖)) ∫
𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑙𝑖 (𝑡) 𝑑𝑡

+ ∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑅𝑚 (𝑦, 𝑡) 𝑑𝑡.

(16)

Hence the following identity holds:

𝑦 (𝑥) = 𝑃𝑛−1 [𝑦, 𝑥] +

𝑚

∑

𝑖=1

𝑝𝑛,𝑖 (𝑥) 𝑓 (𝑥𝑖, y (𝑥𝑖)) + 𝑇𝑛,𝑚 (𝑦, 𝑥) ,

(17)

where

𝑝𝑛,𝑖 (𝑥) = ∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑙𝑖 (𝑡) 𝑑𝑡, 𝑖 = 1, . . . , 𝑚, (18)

𝑇𝑛,𝑚 (𝑦, 𝑥) = ∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑅𝑚 (𝑦, 𝑡) 𝑑𝑡. (19)

This suggests defining the polynomials

𝑦𝑛,𝑚 (𝑥) = 𝑃𝑛−1 [𝑦, 𝑥] +

𝑚

∑

𝑖=1

𝑝𝑛,𝑖 (𝑥) 𝑓 (𝑥𝑖, y𝑛,𝑚 (𝑥𝑖)) , (20)

where y𝑛,𝑚(𝑥) = (𝑦𝑛,𝑚(𝑥), 𝑦

𝑛,𝑚(𝑥), . . . , 𝑦

(𝑞)
𝑛,𝑚(𝑥)), 0 ≤ 𝑞 ≤ 𝑛−1.
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Theorem 3. The polynomial of degree 𝑛 +𝑚 implicitly defined
by (20) satisfies the relations

𝑦𝑛,𝑚 (𝑎) = 𝑦 (𝑎) , (21)

𝑦
(𝑘)

𝑛,𝑚 (𝑏) − 𝑦
(𝑘)

𝑛,𝑚 (𝑎) = 𝛽𝑘+1, 𝑘 = 0, . . . , 𝑛 − 2, (22)

𝑦
(𝑛)

𝑛,𝑚 (𝑥𝑖) = 𝑓 (𝑥𝑖, y𝑛,𝑚 (𝑥𝑖)) , 𝑖 = 1, . . . , 𝑚; (23)

that is, 𝑦𝑛,𝑚(𝑥) is a collocation polynomial for (1)–(5) on the
nodes 𝑥𝑖, 𝑖 = 1, . . . , 𝑚.

Proof. From (18), 𝑝𝑛,𝑖(𝑎) = 𝑝𝑛,𝑖(𝑏) = 0, 𝑖 = 0, . . . , 𝑚, and thus
relations (21) follow from direct computation. To prove (22)
we derive 𝐺𝑛−1(𝑥, 𝑡) 𝑘 times, 𝑘 = 1, . . . , 𝑛 − 2, with respect to
𝑥, and using the well-known relation [11] 𝐵𝑠(𝑥) = 𝑠𝐵𝑠−1(𝑥),
𝑠 > 0, we get

𝜕
𝑘

𝜕𝑥𝑘
𝐺𝑛−1 (𝑥, 𝑡)

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑔1 (𝑥, 𝑡) =
(𝑥 − 𝑡)

𝑛−𝑘

(𝑛 − 𝑘)!

−

𝑛

∑

𝑗=𝑘

𝐵𝑗−𝑘 (
𝑥 − 𝑎

ℎ
)

ℎ
𝑗−𝑘−1

(𝑏 − 𝑡)
𝑛−𝑗−1

(𝑗 − 𝑘)! (𝑛 − 𝑗 − 1)!

𝑥 ≥ 𝑡

𝑔2 (𝑥, 𝑡) = −

𝑛

∑

𝑗=𝑘

𝐵𝑗−𝑘 (
𝑥 − 𝑎

ℎ
)

ℎ
𝑗−𝑘−1

(𝑏 − 𝑡)
𝑛−𝑗−1

(𝑗 − 𝑘)! (𝑛 − 𝑗 − 1)!

𝑥 < 𝑡.

(24)

From the property of Bernoulli polynomials 𝐵𝑠(1) =

(−1)
𝑠
𝐵𝑠(0), we have 𝑔1(𝑎, 𝑡) = 𝑔2(𝑏, 𝑡); thus

𝑝
(𝑘)

𝑛,𝑖 (𝑎) = ∫

𝑏

𝑎

𝑔1 (𝑎, 𝑡) 𝑙𝑖 (𝑡) 𝑑𝑡

= ∫

𝑏

𝑎

𝑔2 (𝑏, 𝑡) 𝑙𝑖 (𝑡) 𝑑𝑡 = 𝑝
(𝑘)

𝑛,𝑖 (𝑏) .

(25)

Hence

𝑦
(𝑘)

𝑛,𝑚 (𝑏) − 𝑦
(𝑘)

𝑛,𝑚 (𝑎)

= 𝑦
(𝑘)
(𝑏) − 𝑦

(𝑘)
(𝑎)

+

𝑚

∑

𝑖=1

(𝑝
(𝑘)

𝑛,𝑖 (𝑏) − 𝑝
(𝑘)

𝑛,𝑖 (𝑎)) 𝑓 (𝑥𝑖, y𝑛,𝑚 (𝑥𝑖))

= 𝑦
(𝑘)
(𝑏) − 𝑦

(𝑘)
(𝑎) .

(26)

From this, (22) follows. Next, by deriving 𝑦𝑛,𝑚(𝑥) 𝑛 times, we
obtain

𝑦
(𝑛)

𝑛,𝑚 (𝑥) = 𝑃
(𝑛)

𝑛−1 [𝑦, 𝑥] +

𝑛−1

∑

𝑘=1

𝑝
(𝑛)

𝑛,𝑘
(𝑥) 𝑓 (𝑥𝑘, y𝑛,𝑚 (𝑥𝑘))

=

𝑛−1

∑

𝑘=1

𝑙𝑘 (𝑥) 𝑓 (𝑥𝑘, y𝑛,𝑚 (𝑥𝑘))

(27)

and this implies (23).

4. The Error

In what follows for all𝑦 ∈ 𝐶
(𝑞)
[𝑎, 𝑏]we define the norm ‖𝑦‖ =

max0≤𝑠≤𝑞{max𝑎≤𝑡≤𝑏|𝑦
(𝑠)
(𝑡)|} [14] and the constants

𝐿 =

𝑞

∑

𝑘=0

𝐿𝑘, 𝑅 = max
𝑎≤𝑥≤𝑏


𝑅𝑚 (𝑦, 𝑥)


. (28)

Further, we define

𝑄𝑚 = max
0≤𝑠≤𝑞

{max
𝑎≤𝑥≤𝑏

𝑚

∑

𝑖=1


𝑝
(𝑠)

𝑛𝑖 (𝑥)

}

𝐷𝑛,𝑠 = max
𝑎≤𝑥≤𝑏

𝑛−1

∑

𝑘=𝑠

𝐵𝑘−𝑠 ((𝑥 − 𝑎) /ℎ)


(𝑘 − 𝑠)! (𝑛 − 𝑘)!
,

Δ = max
0≤𝑠≤𝑞

{
ℎ
𝑛−𝑠+1

(𝑛 − 𝑠 + 1)!
+ ℎ
𝑛−𝑠−1

𝐷𝑛,𝑠} .

(29)

An a priori estimation of the global error is possible.

Theorem 4. With the previous notations, suppose that 𝐿𝑄𝑚 <
1. Then

𝑦 − 𝑦𝑛,𝑚
 ≤

𝑅Δ

1 − 𝐿𝑄𝑚

. (30)

Proof. By deriving (17) and (20) we get

𝑦
(𝑠)
(𝑥) − 𝑦

(𝑠)

𝑛,𝑚 (𝑥)

=

𝑛−1

∑

𝑖=1

𝑝
(𝑠)

𝑛𝑖 (𝑥) [𝑓 (𝑥𝑖, y (𝑥𝑖)) − 𝑓 (𝑥𝑖, y𝑛,𝑚 (𝑥𝑖))]

+
𝜕
𝑠

𝜕𝑥𝑠
∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑅𝑛,𝑚 (𝑦, 𝑡) 𝑑𝑡.

(31)

Now, since

𝜕
𝑠

𝜕𝑥𝑠
∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑅𝑛,𝑚 (𝑦, 𝑡) 𝑑𝑡

=
1

(𝑛 − 𝑠)!
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑛−𝑠
𝑅𝑛,𝑚 (𝑦, 𝑡) 𝑑𝑡

−

𝑛−1

∑

𝑘=𝑠

𝐵𝑘−𝑠 (
𝑥 − 𝑎

ℎ
)

ℎ
𝑘−𝑠−1

(𝑘 − 𝑠)! (𝑛 − 𝑘 + 1)!

× ∫

𝑏

𝑎

(𝑏 − 𝑡)
𝑛−𝑘+1

𝑅𝑛,𝑚 (𝑦, 𝑡) 𝑑𝑡,

(32)

we have


𝜕
𝑠

𝜕𝑥𝑠
∫

𝑏

𝑎

𝐺𝑛−1 (𝑥, 𝑡) 𝑅𝑛 (𝑦, 𝑡) 𝑑𝑡



≤
ℎ
𝑛−𝑠+1

(𝑛 − 𝑠 + 1)!
𝑅 + ℎ
𝑛−𝑠−1

𝑅𝐷𝑛,𝑠.

(33)
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Thus

𝑦
(𝑠)
(𝑥) − 𝑦

(𝑠)

𝑛,𝑚 (𝑥)


≤

𝑛−1

∑

𝑖=1


𝑝
(𝑠)

𝑛𝑖 (𝑥)


𝑞

∑

𝑘=0

𝐿𝑘


𝑦
(𝑠)
(𝑥𝑖) − 𝑦

(𝑠)

𝑛 (𝑥𝑖)


+
ℎ
𝑛−𝑠+1

(𝑛 − 𝑠 + 1)!
𝑅 + ℎ
𝑛−𝑠−1

𝑅𝐷𝑛𝑠

≤ 𝐿
𝑦 − 𝑦𝑛

𝑄𝑚 + 𝑅Δ

(34)

and inequality (30) follows.

5. Particular Cases

Now we present explicitly the formulas for some values of 𝑛.
For the computation of 𝑝𝑛,𝑖(𝑥) we need ∫

𝑥

𝑎
𝑡
𝑘
𝑙𝑖(𝑡)𝑑𝑡 and

∫
𝑏

𝑥
𝑡
𝑘
𝑙𝑖(𝑡)𝑑𝑡. Letting

𝐹𝑖1 (𝑥) = ∫

𝑥

𝑎

𝑙𝑖 (𝑡) 𝑑𝑡, 𝑀𝑖1 (𝑥) = ∫

𝑏

𝑥

𝑙𝑖 (𝑡) 𝑑𝑡,

𝐹𝑖𝑘 (𝑥) = ∫

𝑥

𝑎

𝐹𝑖,𝑘−1 (𝑡) 𝑑𝑡, 𝑀𝑖𝑘 (𝑥) = ∫

𝑏

𝑥

𝑀𝑖,𝑘−1 (𝑡) 𝑑𝑡,

𝑘 ≥ 2,

(35)

and integrating by parts 𝑘 times, we obtain

∫

𝑥

𝑎

𝑡
𝑘
𝑙𝑖 (𝑡) 𝑑𝑡 =

𝑘

∑

𝑗=0

(−1)
𝑗 𝑘!

(𝑘 − 𝑗)!
𝑥
𝑘−𝑗

𝐹𝑖,𝑗+1 (𝑥) ,

∫

𝑏

𝑥

𝑡
𝑘
𝑙𝑖 (𝑡) 𝑑𝑡 =

𝑘

∑

𝑗=0

𝑘!

(𝑘 − 𝑗)!
𝑥
𝑘−𝑗

𝑀𝑖,𝑗+1 (𝑥) .

(36)

5.1. The Fifth-Order Case. Now we consider the case of the
fifth-order BVP

𝑦
(V)
(𝑥) = 𝑓 (𝑥, y (𝑥)) , 𝑥 ∈ [0, 1] ,

𝑦 (0) = 𝛽0,

𝑦
(𝑘)
(1) − 𝑦

(𝑘)
(0) = 𝛽𝑘+1, 𝑘 = 0, . . . , 3.

(37)

In this case Green’s function is
𝐺4 (𝑥, 𝑡)

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

1

4!
[𝑡
4
(1 − 𝑥) + 𝑡

3
(2𝑥
2
− 2𝑥)

+ 𝑡
2
(−2𝑥
3
+ 3𝑥
2
− 𝑥)

+ 𝑡 (𝑥
4
− 2𝑥
3
+ 𝑥
2
)]

𝑡 ≤ 𝑥

1

4!
[−𝑡
4
𝑥 + 𝑡
3
(2𝑥
2
+ 2𝑥)

− 𝑡
2
(2𝑥
3
+ 3𝑥
2
+ 𝑥)

+ 𝑡 (𝑥
4
+ 2𝑥
3
+ 𝑥
2
) − 𝑥
4
]

𝑥 ≤ 𝑡,

4!𝑝5,𝑖 (𝑥) = (𝑥
4
− 2𝑥
3
+ 𝑥
2
) [𝐹𝑖2 (𝑥) − 𝑀𝑖2 (𝑥)]

− 2𝑥 (2𝑥
2
− 3𝑥 + 1) [𝐹𝑖3 (𝑥) + 𝑀𝑖3 (𝑥)]

+ 12𝑥 (𝑥 − 1) [𝐹𝑖4 (𝑥) − 𝑀𝑖4 (𝑥)]

+ 24 (1 − 𝑥) 𝐹𝑖5 (𝑥) − 24𝑥𝑀𝑖5 (𝑥) .

(38)

Hence

𝑦5,𝑚 (𝑥) = 𝑃4 [𝑦, 𝑥] +

𝑚

∑

𝑖=1

𝑝5,𝑖 (𝑥) 𝑓 (𝑥𝑖, y5,𝑚 (𝑥𝑖)) . (39)

By deriving (44) we get

𝑦
(𝑠)

5,𝑚 (𝑥) = 𝑃
(𝑠)

4 [𝑦, 𝑥] +

𝑚

∑

𝑖=1

𝑝
(𝑠)

5,𝑖 (𝑥) 𝑓 (𝑥𝑖, y5,𝑚 (𝑥𝑖))

𝑠 = 1, . . . , 5,

(40)

where 𝑝(𝑠)
5,𝑖
(𝑥) can be easily computed using the same tech-

nique as for 𝑝5,𝑖(𝑥).

5.2. The Seventh-Order Case. Consider

𝑦
(V𝑖𝑖)

(𝑥) = 𝑓 (𝑥, y (𝑥)) , 𝑥 ∈ [0, 1] ,

𝑦 (0) = 𝛽0,

𝑦
(𝑘)
(1) − 𝑦

(𝑘)
(0) = 𝛽𝑘+1, 𝑘 = 0, . . . , 5.

(41)

In this case Green’s function is

𝐺6 (𝑥, 𝑡)

=
1

6!

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑡
6
(1 − 𝑥) + 3𝑡

5
(𝑥
2
− 𝑥) + 5𝑡

4
(−𝑥
3
+
3

2
𝑥
2
−
𝑥

2
)

+ 5𝑡
3
(5𝑥
4
− 2𝑥
3
+ 𝑥
2
)

+ 𝑡
2
(−3𝑥
5
+
15

2
𝑥
4
− 5𝑥
3
+
𝑥

2
)

+ 𝑡(𝑥
6
− 3𝑥
5
+
5

2
𝑥
4
−
𝑥
2

2
)

𝑡 ≤ 𝑥

− 𝑡
6
𝑥 + 3𝑡

5
(𝑥
2
+ 𝑥) + 5𝑡

4
(−𝑥
3
−
3

2
𝑥
2
−
𝑥

2
)

+ 5𝑡
3
(5𝑥
4
+ 2𝑥
3
+ 𝑥
2
)

+ 𝑡
2
(−3𝑥
5
+
15

2
𝑥
4
− 5𝑥
3
+
𝑥

2
)

+ 𝑡(𝑥
6
− 3𝑥
5
+
5

2
𝑥
4
−
𝑥
2

2
) − 𝑥

6

𝑥 ≤ 𝑡.

(42)
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Hence

6!𝑝7,𝑖 (𝑥) = (𝑥
6
− 3𝑥
5
+
5

2
𝑥
4
−
𝑥
2

2
) [𝐹𝑖2 (𝑥) − 𝑀𝑖2 (𝑥)]

− 𝑥 (6𝑥
4
− 15𝑥

3
+ 10𝑥

2
− 1) [𝐹𝑖3 (𝑥) + 𝑀𝑖3 (𝑥)]

+ 30(𝑥 − 1)
2
[𝐹𝑖4 (𝑥) − 𝑀𝑖4 (𝑥)]

− 60𝑥 (2𝑥
2
− 3𝑥 + 1) [𝐹𝑖5 (𝑥) + 𝑀𝑖5 (𝑥)]

+ 360𝑥 (𝑥 − 1) [𝐹𝑖6 (𝑥) − 𝑀𝑖6 (𝑥)]

+ 6! (1 − 𝑥) 𝐹𝑖7 (𝑥) − 6!𝑥𝑀𝑖7 (𝑥) ,

(43)

𝑦7,𝑚 (𝑥) = 𝑃6 [𝑦, 𝑥] +

𝑚

∑

𝑖=1

𝑝7,𝑖 (𝑥) 𝑓 (𝑥𝑖, y7,𝑚 (𝑥𝑖)) . (44)

5.3. Order 𝑛 = 8, 9, 10. For 𝑛 = 8, we have
7!𝑝8,𝑖 (𝑥)

= (
𝑥
8

4
− 𝑥
7
+
7

6
𝑥
6
−

7

12
𝑥
4
+
𝑥
2

6
) [𝐹𝑖1 (𝑥) + 𝑀𝑖1 (𝑥)]

+ (𝑥
7
−
7

2
𝑥
6
+
7

2
𝑥
5
−
7

6
𝑥
3
+
𝑥

6
) [𝐹𝑖2 (𝑥) − 𝑀𝑖2 (𝑥)]

− 7𝑥 (𝑥
5
− 3𝑥
4
+
5

2
𝑥
3
−
𝑥

2
) [𝐹𝑖3 (𝑥) + 𝑀𝑖3 (𝑥)]

− 7𝑥 (6𝑥
4
− 15𝑥

3
+ 10𝑥

2
− 1) [𝐹𝑖4 (𝑥) − 𝑀𝑖4 (𝑥)]

+ 210𝑥
2
(𝑥 − 1)

2
[𝐹𝑖5 (𝑥) + 𝑀𝑖5 (𝑥)]

− 420𝑥 (2𝑥
2
− 3𝑥 + 1) [𝐹𝑖6 (𝑥) − 𝑀𝑖6 (𝑥)]

+ 2520𝑥 (𝑥 − 1) [𝐹𝑖7 (𝑥) + 𝑀𝑖7 (𝑥)]

+ 7! (1 − 𝑥) 𝐹𝑖8 (𝑥) + 7!𝑥𝑀𝑖8 (𝑥) .

(45)
For 𝑛 = 9, we get

8!𝑝9,𝑖 (𝑥)

= (𝑥
8
− 4𝑥
7
+
14

3
𝑥
6
−
7

3
𝑥
4
+
2

3
𝑥
2
) [𝐹𝑖2 (𝑥) − 𝑀𝑖2 (𝑥)]

+ 4𝑥 (−2𝑥
6
+ 7𝑥
5
− 7𝑥
4
+
7

3
𝑥
2
−
𝑥

3
) [𝐹𝑖3 (𝑥) + 𝑀𝑖3 (𝑥)]

+ 28𝑥
2
(2𝑥
4
− 6𝑥
3
+ 5𝑥
4
− 1) [𝐹𝑖4 (𝑥) − 𝑀𝑖4 (𝑥)]

+ 56𝑥 (−5𝑥
4
+ 15𝑥

3
− 10𝑥

2
+ 1) [𝐹𝑖5 (𝑥) + 𝑀𝑖5 (𝑥)]

+ 1680𝑥
2
(𝑥 − 1)

2
[𝐹𝑖6 (𝑥) − 𝑀𝑖6 (𝑥)]

+ 3360𝑥 (−2𝑥
2
+ 3𝑥 − 1) [𝐹𝑖7 (𝑥) + 𝑀𝑖7 (𝑥)]

+ 20160𝑥 (𝑥 − 1) [𝐹𝑖8 (𝑥) − 𝑀𝑖8 (𝑥)]

+ 8! (1 − 𝑥) 𝐹𝑖9 (𝑥) − 8!𝑥𝑀𝑖9 (𝑥) .

(46)

For 𝑛 = 10, we obtain

9!𝑝10,𝑖 (𝑥)

= (
𝑥
10

5
− 𝑥
9
+
3

2
𝑥
8
−
7

5
𝑥
6
+ 𝑥
4
−

3

10
𝑥
3
)

× [𝐹𝑖1 (𝑥) + 𝑀𝑖1 (𝑥)]

− 𝑥 (𝑥
8
−
9

2
𝑥
7
+ 6𝑥
6
−
21

5
𝑥
4
+ 2𝑥
2
−

3

10
)

× [𝐹𝑖2 (𝑥) − 𝑀𝑖2 (𝑥)]

+ 3𝑥
2
(3𝑥
6
− 12𝑥

5
+ 14𝑥

4
− 7𝑥
2
+ 2) [𝐹𝑖3 (𝑥) + 𝑀𝑖3 (𝑥)]

+ 12𝑥 (−6𝑥
6
+ 21𝑥

5
− 21𝑥

4
+ 7𝑥
2
− 1) [𝐹𝑖4 (𝑥) − 𝑀𝑖4 (𝑥)]

+ 252𝑥
2
(2𝑥
4
− 6𝑥
3
+ 5𝑥
2
− 1) [𝐹𝑖5 (𝑥) + 𝑀𝑖5 (𝑥)]

+ 504𝑥 (−6𝑥
4
+ 15𝑥

3
− 10𝑥

2
+ 1) [𝐹𝑖6 (𝑥) − 𝑀𝑖6 (𝑥)]

+ 15120𝑥
2
(𝑥 − 1)

2
[𝐹𝑖7 (𝑥) + 𝑀𝑖7 (𝑥)]

+ 30240𝑥 (−2𝑥
2
+ 3𝑥 − 1) [𝐹𝑖8 (𝑥) − 𝑀𝑖8 (𝑥)]

+ 181440𝑥 (𝑥 − 1) [𝐹𝑖9 (𝑥) + 𝑀𝑖9 (𝑥)]

+ 9! (1 − 𝑥) 𝐹𝑖10 (𝑥) + 9!𝑥𝑀𝑖10 (𝑥) .

(47)

6. Algorithms

To calculate the approximate solution of problem (1)–(5) by
(20) at 𝑥 ∈ [𝑎, 𝑏], we need the values 𝑦(𝑘)

𝑗
= 𝑦
(𝑘)
𝑛,𝑚(𝑥𝑗), 𝑗 =

1, . . . , 𝑚, and 𝑘 = 0, . . . , 𝑞. These values can be calculated by
solving the following system:

𝑦
(𝑘)

𝑖 = 𝑃
(𝑘)

𝑛−1 [𝑦, 𝑥𝑖] +

𝑚

∑

𝑗=1

𝑝
(𝑘)

𝑛𝑗 (𝑥𝑖) 𝑓 (𝑥𝑗, y𝑗)

𝑖 = 1, . . . , 𝑚, 𝑘 = 0, . . . , 𝑞

(48)

with y𝑗 = (𝑦𝑗, 𝑦

𝑗, . . . , 𝑦

(𝑞)

𝑗
), 0 ≤ 𝑞 ≤ 𝑛 − 1.

To solve it, if we put

𝑌 = (𝑌0, . . . , 𝑌𝑞)
𝑇
, 𝑌𝑘 = (𝑦

(𝑘)

1 , . . . , 𝑦
(𝑘)

𝑚 ) ,

𝐹 (𝑌) = (𝐹𝑚, . . . , 𝐹𝑚)
𝑇
∈ R
𝑞+1

,

𝐹𝑚 = (𝑓1, . . . , 𝑓𝑚) , 𝑓𝑖 = 𝑓 (𝑥𝑖, y𝑖) ,

𝐶 = (𝐵0, . . . , 𝐵𝑞)
𝑇
,

𝐵𝑘 = (𝑃
(𝑘)

𝑚 [𝑦, 𝑥1] , . . . , 𝑃
(𝑘)

𝑛−1 [𝑦, 𝑥𝑚]) ,

𝐴 = (

𝐴0 0 ⋅ ⋅ ⋅ 0

0 d
...

... d 0

0 ⋅ ⋅ ⋅ 0 𝐴𝑞

), 𝐴𝑘 = (

𝑝
(𝑘)
1,1 ⋅ ⋅ ⋅ 𝑝

(𝑘)
1,𝑚

...
...

𝑝
(𝑘)
𝑚,1 ⋅ ⋅ ⋅ 𝑝

(𝑘)
𝑚,𝑚

)

(49)
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with 𝑝(𝑘)
𝑖,𝑗

= 𝑝
(𝑘)

𝑛,𝑗
(𝑥𝑖), 𝑘 = 0, . . . , 𝑞, we write (48) as

𝑌 − 𝐴𝐹 (𝑌) = 𝐶 (50)

or, equivalently, 𝑌 = 𝐺(𝑌), where

𝐺 (𝑍) = 𝐴𝐹 (𝑍) + 𝐶. (51)

For the existence and the uniqueness of the solution of
(50) the following result holds.

Proposition 5. Let 𝐿 be defined as in (28). If 𝑇 = 𝐿‖𝐴‖∞ < 1,
the system (50) has a unique solution which can be calculated
by an iterative method

𝑌
(]+1)

= 𝐺 (𝑌
(])
) , ] = 1, 2, . . . (52)

with a fixed 𝑌(0) ∈ R𝑠, 𝑠 = 𝑚(𝑞 + 1), and 𝐺 defined as in (51).
Moreover, if 𝑌 is the exact solution of the system,


𝑌
(])
− 𝑌

∞
≤

𝑇
]

1 − 𝑇


𝑌
(1)
− 𝑌
(0)∞

. (53)

Proof. If 𝑉 = (𝑉0, . . . , 𝑉𝑞)
𝑇, 𝑉𝑘 = (V(𝑘)1 , . . . , V

(𝑘)
𝑚 ) and

𝑊 = (𝑊0, . . . ,𝑊𝑞)
𝑇, 𝑊𝑘 = (𝑤

(𝑘)
1 , . . . , 𝑤

(𝑘)
𝑚 ), then

‖𝐺(𝑉) − 𝐺(𝑊)‖∞ ≤ ‖𝐴‖∞𝐿‖𝑉 −𝑊‖∞; hence 𝐺 is contrac-
tive.Thus the result follows from the well-known contraction
mapping theorem.

To calculate the elements 𝐴0, . . . , 𝐴𝑞 of the matrix 𝐴 we
need the values 𝐹𝑖𝑠(𝑥𝑗) and 𝑀𝑖𝑠(𝑥𝑗), 𝑠 = 1, . . . , 𝑛, 𝑖, 𝑗 =

1, . . . 𝑚, where 𝐹𝑖𝑠(𝑥) and𝑀𝑖𝑠(𝑥) are defined in (35).
Since 𝑙𝑖(𝑡) = ∏

𝑚

𝑘=1, 𝑘 ̸= 𝑖((𝑡 − 𝑥𝑘)/(𝑥𝑖 − 𝑥𝑘)), it suffices to
compute

∫

𝑥𝑗=𝑡𝑘

𝑐

∫

𝑡𝑘−1

𝑐

⋅ ⋅ ⋅ ∫

𝑡1

𝑐

𝑟𝑚,𝑖 (𝑡) 𝑑𝑡𝑑𝑡1 ⋅ ⋅ ⋅ 𝑑𝑡𝑘−1, (54)

where 𝑐 = 𝑎 or 𝑐 = 𝑏,𝑟0,0(𝑡) = 1, and

𝑟𝑚,𝑖 (𝑡) = (𝑡 − 𝑥1) ⋅ ⋅ ⋅ (𝑡 − 𝑥𝑖−1) (𝑡 − 𝑥𝑖+1) ⋅ ⋅ ⋅ (𝑡 − 𝑥𝑚)

𝑖 = 1, 2, . . . , 𝑚.

(55)

Let us define

𝑔
(𝑖)

0,1,𝑐 (𝑥) = 𝑥 − 𝑐 (56)

and, for 𝑠 = 1, . . . , 𝑚 − 1,

𝑔
(𝑖)

𝑠,𝑗,𝑐 (𝑥)

= ∫

𝑥=𝑡𝑗

𝑐

∫

𝑡𝑗−1

𝑐

⋅ ⋅ ⋅ ∫

𝑡1

𝑐

(𝑡 − 𝑧
(𝑖)

1 ) (𝑡 − 𝑧
(𝑖)

2 )

⋅ ⋅ ⋅ (𝑡 − 𝑧
(𝑖)

𝑠 ) 𝑑𝑡𝑑𝑡1 ⋅ ⋅ ⋅ 𝑑𝑡𝑗−1,

(57)

where

𝑧
(𝑖)

𝑗 = {
𝑥𝑗 if 𝑗 < 𝑖

𝑥𝑗+1 if 𝑗 ≥ 𝑖
𝑗 = 1, . . . , 𝑚 − 1. (58)

We can easily compute

𝑔
(𝑖)

0,𝑗,𝑐 (𝑥) =
(𝑥 − 𝑐)

𝑗

𝑗!
. (59)

For the computation of (57) we use the recursive algorithm
[15]

𝑔
(𝑖)

𝑠,𝑗,𝑐 (𝑥) = (𝑥 − 𝑧
(𝑖)

𝑠 ) 𝑔
(𝑖)

𝑠−1,𝑗,𝑐 (𝑥) − 𝑗𝑔
(𝑖)

𝑠−1,𝑗+1,𝑐 (𝑥) . (60)

Thus, if𝑊𝑖 = ∏
𝑚

𝑘=1, 𝑘 ̸= 𝑖(𝑥𝑖 − 𝑥𝑘), we get

𝐹𝑖𝑘 (𝑥𝑗) =
𝑔
(𝑖)

𝑚−1,𝑘,𝑎
(𝑥𝑗)

𝑊𝑖

,

𝑀𝑖𝑘 (𝑥𝑗) = (−1)
𝑘
𝑔
(𝑖)

𝑚−1,𝑘,𝑏
(𝑥𝑗)

𝑊𝑖

.

(61)

7. Numerical Examples

Nowwe present some numerical results obtained by applying
method (20) to find numerical approximations of the solu-
tions of some test problems. As the true solutions are known,
we considered the error function 𝐸(𝑥) = |𝑦(𝑥) − 𝑦𝑛,𝑚(𝑥)|.
To solve the nonlinear system (48) we used the so-called
modified Newton method [16] (the same Jacobian matrix is
used for more than one iteration) and algorithm (60) for the
computation of the entries of the matrix. Equidistant points
are used as nodal points. Analogous results are obtained
in the considered examples by using as nodes the zeros of
Chebyshev polynomials of first and second kind.

Example 1. Consider the following

𝑦
(V)
(𝑥) = 𝑦 (𝑥) − (15 + 10𝑥) 𝑒

𝑥
, 𝑥 ∈ [0, 1] ,

𝑦 (0) = 0, 𝑦 (1) = 0,

𝑦

(1) − 𝑦


(0) = − (𝑒 + 1) , 𝑦


(1) − 𝑦


(0) = −4𝑒,

𝑦

(1) − 𝑦


(0) = 3 − 9𝑒,

(62)

with solution 𝑦(𝑥) = 𝑥(1 − 𝑥)𝑒
𝑥. Figure 1 shows the graph of

the error function 𝐸(𝑥) for two different values of𝑚.

Example 2. Consider the following

𝑦
(V)
(𝑥) = −24𝑒

−5𝑦
+

48

1 + 𝑥5
, 𝑥 ∈ [0, 1] ,

𝑦 (0) = 0, 𝑦 (1) = log 2,

𝑦

(1) − 𝑦


(0) = −

1

2
, 𝑦


(1) − 𝑦


(0) =

3

4
,

𝑦

(1) − 𝑦


(0) = −

7

4
,

(63)

with solution 𝑦(𝑥) = log(𝑥 + 1). The graph of 𝐸(𝑥), for two
different numbers of nodes, is plotted in Figure 2.



Journal of Applied Mathematics 7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
×10

−6

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
×10

−10

(b)

Figure 1: Error function of problem (62) for𝑚 = 4 (a) and for𝑚 = 6 (b).
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Figure 2: Error function of problem (63) for𝑚 = 4 (a) and for𝑚 = 7 (b).

Example 3. Consider

𝑦
(V𝑖𝑖)

(𝑥) = −𝑦 − 𝑒
𝑥
(2𝑥
2
+ 12𝑥 + 35) , 𝑥 ∈ [0, 1] ,

𝑦 (0) = 𝑦 (1) = 0,

𝑦

(1) − 𝑦


(0) = − (𝑒 + 1) , 𝑦


(1) − 𝑦


(0) = −4𝑒,

𝑦

(1) − 𝑦


(0) = 3 (1 − 3𝑒) ,

𝑦
(𝑖V)

(1) − 𝑦
(𝑖V)

(0) = 8 (1 − 2𝑒) ,

𝑦
(V)
(1) − 𝑦

(V)
(0) = 5 (3 − 5𝑒) ,

(64)

with solution 𝑦(𝑥) = 𝑥(1 − 𝑥)𝑒
𝑥. Figure 3 shows the graph of

𝐸(𝑥).

Note that the equation in (64) is the same as that in
Example 2 of [1], but the boundary conditions are different.

Example 4. Consider

𝑦
(𝑖𝑥)

(𝑥) = 𝑦 (𝑥) − 9𝑒
𝑥
, 𝑥 ∈ [0, 1] ,

𝑦 (0) = 1, 𝑦 (1) = 0,

𝑦

(1) − 𝑦


(0) = −𝑒, 𝑦


(1) − 𝑦


(0) = 1 − 2𝑒,

𝑦

(1) − 𝑦


(0) = 2 − 3𝑒,

𝑦
(𝑖V)

(1) − 𝑦
(𝑖V)

(0) = 3 − 4𝑒,

𝑦
(V)
(1) − 𝑦

(V)
(0) = 4 − 5𝑒,

𝑦
(V𝑖)

(1) − 𝑦
(V𝑖)

(0) = 5 − 6𝑒,

𝑦
(V𝑖𝑖)

(1) − 𝑦
(V𝑖𝑖)

(0) = 6 − 7𝑒,

(65)

with solution 𝑦(𝑥) = (1 − 𝑥)𝑒
𝑥. Figure 4 shows the graph of

𝐸(𝑥).
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Figure 3: Error function of problem (64) for𝑚 = 4 (a) and for𝑚 = 8 (b).
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Figure 4: Error function of problem (65) for𝑚 = 4 (a) and for𝑚 = 8 (b).
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Figure 5: Error function of problem (66) for𝑚 = 3 (a) and for𝑚 = 6 (b).
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The equation in (65) is the same as that in [1, 2], but the
boundary conditions are different.

Example 5. Consider

𝑦
(𝑥)
(𝑥) = 𝑒

−𝑥
𝑦
2
(𝑥) , 𝑥 ∈ [0, 1] ,

𝑦 (0) = 1,

𝑦
(𝑘)
(1) − 𝑦

(𝑘)
(0) = 𝑒 − 1, 𝑘 = 0, . . . , 8

(66)

with solution 𝑦(𝑥) = 𝑒
𝑥. Figure 5 shows the graph of 𝐸(𝑥).

Note that the equation in (66) is the same as that in [2], but
the boundary conditions are different. The conditions in [2]
are the so-called Lidstone-type conditions. Problems of this
type have been analyzed in [13] using a similar technique.

8. Conclusions

This paper presents a class of collocation methods for
𝑛th order differential equations with Bernoulli boundary
conditions. For two positive integers 𝑛,𝑚 a polynomial of
degree 𝑛 + 𝑚 approximating the exact solution is given
explicitly. Numerical experiments support theoretical results.
Further developments can be done, concerning particularly
numerical estimates of the error.
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