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Let𝑊(𝑛; 𝑞,𝑚
1
, 𝑚
2
) be the unicyclic graph with 𝑛 vertices obtained by attaching two paths of lengths 𝑚

1
and 𝑚

2
at two adjacent

vertices of cycle 𝐶
𝑞
. Let 𝑈(𝑛; 𝑞,𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑠
) be the unicyclic graph with 𝑛 vertices obtained by attaching 𝑠 paths of lengths

𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑠
at the same vertex of cycle𝐶

𝑞
. In this paper, we prove that𝑊(𝑛; 𝑞,𝑚

1
, 𝑚
2
) and𝑈(𝑛; 𝑞,𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑠
) are determined

by their Laplacian spectra when 𝑞 is even.

1. Introduction

Let 𝐺 be a simple, undirected graph with 𝑛 vertices. Let 𝐴 be
the adjacency matrix of𝐺 and let𝐷 be the diagonal matrix of
vertex degrees of 𝐺. The matrices 𝐿 = 𝐷 − 𝐴 and 𝑄 = 𝐷 + 𝐴

are called the Laplacian matrix and signless Laplacian matrix
of 𝐺, respectively. The multiset of eigenvalues of 𝐴 and 𝐿 are
called the A-spectrum and L-spectrum of 𝐺, respectively. The
eigenvalues of 𝐴 and 𝐿 are called the A-eigenvalues and L-
eigenvalues of 𝐺, respectively. We use 𝜆

1
(𝐺) ⩾ 𝜆

2
(𝐺) ⩾ ⋅ ⋅ ⋅ ⩾

𝜆
𝑛
(𝐺) and 𝜇

1
(𝐺) ⩾ 𝜇

2
(𝐺) ⩾ ⋅ ⋅ ⋅ ⩾ 𝜇

𝑛
(𝐺) = 0 to denote the

𝐴-eigenvalues and the 𝐿-eigenvalues of 𝐺, respectively. Two
graphs are said to be L-cospectral (A-cospectral) if they have
the same 𝐿-spectrum (𝐴-spectrum). A graph 𝐺 is said to be
determined by its L-spectrum (A-spectrum) if there is no other
nonisomorphic graph L-cospectral (𝐴-cospectral) with 𝐺.
Let 𝜙
𝐴
(𝐺, 𝑥), 𝜙

𝐿
(𝐺, 𝑥), and 𝜙

𝑄
(𝐺, 𝑥) denote the characteristic

polynomials of the adjacency matrix, the Laplacian matrix,
and the signless Laplacian matrix of𝐺, respectively. As usual,
𝑃
𝑛
, 𝐶
𝑛
, and𝐾

𝑛
stand for the path, the cycle, and the complete

graph with 𝑛 vertices, respectively. Let ℓ(𝐺) denote the line
graph of 𝐺. A tree is called starlike if it has exactly one vertex
of degree larger than 2. Let 𝑇

𝑎,𝑏,𝑐
denote the starlike tree with

a vertex V of degree 3 such that 𝑇
𝑎,𝑏,𝑐

− V = 𝑃
𝑎
∪ 𝑃
𝑏
∪ 𝑃
𝑐
.

For a connected graph 𝐺 with 𝑛 vertices, 𝐺 is called a
unicyclic graph if𝐺 has 𝑛 edges.Which graphs are determined
by their spectrum is a difficult problem in the theory of graph

spectra. Here, we introduce some results on spectral char-
acterizations of unicyclic graphs. Let 𝑈(𝑛; 𝑞,𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑠
)

be the unicyclic graph with 𝑛 vertices obtained by attaching
𝑠 paths of lengths 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑠
(𝑚
𝑖
⩾ 1) at the same

vertex of cycle 𝐶
𝑞
(see Figure 1). Haemers et al. [1] proved

that 𝑈(𝑛; 𝑞,𝑚
1
) is determined by its A-spectrum when 𝑞 is

odd, and all 𝑈(𝑛; 𝑞,𝑚
1
) are determined by their L-spectra.

It is also known that 𝑈(𝑛; 𝑞,𝑚
1
) is determined by its A-

spectrum when 𝑞 is even [2]. Liu et al. [3] proved that
𝑈(𝑛; 𝑞,𝑚

1
, 𝑚
2
) is determined by its L-spectrum. It is known

that 𝑈(𝑛; 𝑞, 1, 1, . . . , 1) is determined by its L-spectrum, and
𝑈(𝑛; 𝑞, 1, 1, . . . , 1) is determined by its A-spectrum if 𝑞 is odd
(see [4]). Boulet [5] proved that the sun graph is determined
by its L-spectrum. Shen and Hou [6] gave a class of unicyclic
graphs with even girth that are determined by their L-spectra.

Let 𝑊(𝑛; 𝑞,𝑚
1
, 𝑚
2
) be the unicyclic graph with 𝑛 ver-

tices obtained by attaching two paths of lengths 𝑚
1
and

𝑚
2
(𝑚
1
, 𝑚
2

⩾ 1) at two adjacent vertices of cycle 𝐶
𝑞

(see Figure 1). In this paper, we prove that 𝑊(𝑛; 𝑞,𝑚
1
, 𝑚
2
)

and𝑈(𝑛; 𝑞,𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑠
) are determined by their L-spectra

when 𝑞 is even.

2. Preliminaries

In this section, we give some lemmas which play important
roles throughout this paper.
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Figure 1: Two classes of unicyclic graphs.

Lemma 1 (see [7]). Let𝐺 be a graph. For the adjacency matrix
and the Laplacian matrix, the following can be obtained from
the spectrum:

(i) the number of vertices,
(ii) the number of edges.

For the adjacency matrix, the following follows from the
spectrum:

(iii) the number of closed walks of any length.
For the Laplacian matrix, the following follows from the

spectrum:
(iv) the number of components,
(v) the number of spanning trees.

Lemma 2 (see [8]). For a bipartite graph 𝐺, one has
𝜙
𝐿
(𝐺, 𝑥) = 𝜙

𝑄
(𝐺, 𝑥).

Lemma 3 (see [8]). Let 𝐺 be a graph with 𝑛 vertices and 𝑚
edges. Then

𝜙
𝐴
(ℓ (𝐺) , 𝑥) = (𝑥 + 2)

𝑚−𝑛
𝜙
𝑄
(𝐺, 𝑥 + 2) . (1)

For a graph𝐺with 𝑛 vertices, let 𝜙
𝐿
(𝐺, 𝑥) = 𝑙

0
𝑥
𝑛
+𝑙
1
𝑥
𝑛−1

+

⋅ ⋅ ⋅ + 𝑙
𝑛
. Oliveira et al. determined the first four coefficients of

𝜙
𝐿
(𝐺, 𝑥) as follows.

Lemma 4 (see [9]). Let 𝐺 be a graph with 𝑛 vertices and 𝑚
edges, and let 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
be the degree sequence of 𝐺. Then

𝑙
0
= 1, 𝑙

1
= −2𝑚 = −

𝑛

∑

𝑖=1

𝑑
𝑖
,

𝑙
2
= 2𝑚
2
− 𝑚 −

1

2

𝑛

∑

𝑖=1

𝑑
2

𝑖
,

𝑙
3
=
1

3
[−4𝑚

3
+ 6𝑚
2
+ 3𝑚
2

𝑛

∑

𝑖=1

𝑑
2

𝑖

−

𝑛

∑

𝑖=1

𝑑
3

𝑖
− 3

𝑛

∑

𝑖=1

𝑑
2

𝑖
+ 6𝑁
𝐺
(𝐶
3
)] ,

(2)

where𝑁
𝐺
(𝐶
3
) is the number of triangles in 𝐺.

For a graph 𝐺, the subdivision graph of 𝐺, denoted by
𝑆(𝐺), is the graph obtained from 𝐺 by inserting a new vertex
in each edge of 𝐺.

Lemma 5 (see [8]). Let 𝐺 be a graph with 𝑛 vertices and 𝑚
edges. Then

𝜙
𝐴
(𝑆 (𝐺) , 𝑥) = 𝑥

𝑚−𝑛
𝜙
𝑄
(𝐺, 𝑥
2
) . (3)

Lemma 6 (see [8]). Let 𝑢 be a vertex of 𝐺, let𝑁(𝑢) be the set
of all vertices adjacent to 𝑢, and let 𝐶(𝑢) be the set of all cycles
containing 𝑢. Then

𝜙
𝐴
(𝐺, 𝑥) = 𝑥𝜙

𝐴
(𝐺 − 𝑢, 𝑥) − ∑

V∈𝑁(𝑢)
𝜙
𝐴
(𝐺 − 𝑢 − V, 𝑥)

− 2 ∑

𝑍∈𝐶(𝑢)

𝜙
𝐴
(𝐺 − 𝑉 (𝑍) , 𝑥) ,

(4)

where 𝑉(𝑍) is the vertex set of 𝑍.

Lemma 7 (see [10]). Consider 𝜙
𝐴
(𝑃
𝑛
, 2) = 𝑛 + 1.

Lemma8 (see [1]). Let𝐺 be a graphwith 𝑛 vertices and let V be
a vertex of 𝐺. Then 𝜆

1
(𝐺) ⩾ 𝜆

1
(𝐺 − V) ⩾ 𝜆

2
(𝐺) ⩾ 𝜆

2
(𝐺 − V) ⩾

⋅ ⋅ ⋅ ⩾ 𝜆
𝑛−1
(𝐺 − V) ⩾ 𝜆

𝑛
(𝐺).

Lemma 9 (see [5]). Let 𝐺 be a graph with edge set 𝐸(𝐺). Then

𝜇
1
(𝐺) ⩽ max {𝑑 (𝑢) + 𝑑 (V) : 𝑢V ∈ 𝐸 (𝐺)} , (5)

where 𝑑(𝑢) stands for the degree of vertex 𝑢.

Lemma 10 (see [11]). For a connected graph 𝐺 with at least
two vertices, one has 𝜇

1
(𝐺) ⩾ Δ(𝐺) + 1, where Δ(𝐺) denotes

the maximum vertex degree of 𝐺; equality holds if and only if
Δ(𝐺) = 𝑛 − 1.

Lemma 11 (see [12]). Let 𝐺 be a connected graph with 𝑛 ⩾ 3

vertices and let 𝑑
2
be the second maximum degree of 𝐺. Then

𝑑
2
⩽ 𝜇
2
(𝐺).

Lemma 12 (see [8]). Let 𝐺 be a graph with 𝑛 vertices and let 𝑒
be an edge of𝐺.Then 𝜇

1
(𝐺) ⩾ 𝜇

1
(𝐺−𝑒) ⩾ 𝜇

2
(𝐺) ⩾ 𝜇

2
(𝐺−𝑒) ⩾

⋅ ⋅ ⋅ ⩾ 𝜇
𝑛−1
(𝐺 − 𝑒) ⩾ 𝜇

𝑛
(𝐺) = 𝜇

𝑛
(𝐺 − 𝑒) = 0.

For a graph𝐺, let𝑁
𝐺
(𝑀)denote the number of subgraphs

of 𝐺 which are isomorphic to graph𝑀.

Lemma 13 (see [13]). Let 𝐺 be a graph and let 𝑁
𝐺
(𝑘) be the

number of closed walks of length 𝑘 in 𝐺. Then

𝑁
𝐺
(3) = 6𝑁

𝐺
(𝐶
3
) ,

𝑁
𝐺
(5) = 30𝑁

𝐺
(𝐶
3
) + 10𝑁

𝐺
(𝐶
5
) + 10𝑁

𝐺
(𝑈 (4; 3, 1)) .

(6)
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3. Main Results

Lemma 14. Let 𝐺 be a unicyclic graph with 𝑛 vertices, and 𝐺
contains an even cycle 𝐶

𝑞
. Let 𝐻 be a graph L-cospectral with

𝐺. Then the following statements hold.

(1) 𝐻 is a unicyclic graph with 𝑛 vertices, and the girth of
𝐻 is 𝑞.

(2) The line graphs ℓ(𝐺) and ℓ(𝐻) are A-cospectral.
(3) Thesubdivision graphs 𝑆(𝐺) and 𝑆(𝐻) areA-cospectral,

and √𝜇
𝑖
(𝐺) = 𝜆

𝑖
(𝑆(𝐺)) (𝑖 = 1, 2, . . . , 𝑛).

Proof. By Lemma 1, 𝐻 is a unicyclic graph with 𝑛 vertices,
and the girth of𝐻 is 𝑞. Since 𝑞 is even, 𝐺 and𝐻 are bipartite.
By Lemma 2, one has 𝜙

𝑄
(𝐺, 𝑥) = 𝜙

𝐿
(𝐺, 𝑥) = 𝜙

𝐿
(𝐻, 𝑥) =

𝜙
𝑄
(𝐻, 𝑥). Lemma 3 implies that line graphs ℓ(𝐺) and ℓ(𝐻) are

𝐴-cospectral. By Lemma 5, subdivision graphs 𝑆(𝐺) and 𝑆(𝐻)
are𝐴-cospectral, and√𝜇

𝑖
(𝐺) = 𝜆

𝑖
(𝑆(𝐺)) (𝑖 = 1, 2, . . . , 𝑛).

Theorem 15. The unicyclic graph 𝐺 = 𝑊(𝑛; 𝑞,𝑚
1
, 𝑚
2
) is

determined by its L-spectrum when 𝑞 is even.

Proof. Let𝐻 be any graph 𝐿-cospectral with𝐺. By Lemma 14,
we know that𝐻 is a unicyclic graph with 𝑛 vertices, the girth
of𝐻 is 𝑞, and ℓ(𝐺) and ℓ(𝐻) are 𝐴-cospectral. By Lemmas 1
and 13, we have𝑁

ℓ(𝐻)
(𝐶
3
) = 𝑁

ℓ(𝐺)
(𝐶
3
) = 2. So the maximum

degree of 𝐻 does not exceed 3. Suppose that there are 𝑎
𝑖

vertices of degree 𝑖 (𝑖 = 1, 2, 3) in𝐻. From Lemma 4, we have

3

∑

𝑖=1

𝑎
𝑖
= 𝑛,

3

∑

𝑖=1

𝑖𝑎
𝑖
= 2𝑛,

3

∑

𝑖=1

𝑖
2
𝑎
𝑖
= 2 × 3

2
+ 4 (𝑛 − 4) + 2 = 4𝑛 + 4.

(7)

Solving the above equations, we get 𝑎
1
= 2, 𝑎

2
= 𝑛−4, 𝑎

3
= 2.

So𝐻 and 𝐺 have the same degree sequence. Then, one of the
following holds.

(1) 𝐻 is the unicyclic graph obtained by attaching two
paths of lengths 𝑙

1
and 𝑙
2
at two nonadjacent vertices

of cycle 𝐶
𝑞
.

(2) 𝐻 = 𝑊(𝑛; 𝑞, 𝑙
1
, 𝑙
2
); that is, 𝐻 is the unicyclic graph

obtained by attaching two paths of lengths 𝑙
1
and 𝑙
2
at

two adjacent vertices of cycle 𝐶
𝑞
.

(3) 𝐻 is the graph shown in Figure 2.

Next, we discuss each of these three cases listed above.

Case 1 (𝐻 is the unicyclic graph obtained by attaching two
paths of lengths 𝑙

1
and 𝑙
2
at two nonadjacent vertices of cycle

𝐶
𝑞
). Since ℓ(𝐺) and ℓ(𝐻) are 𝐴-cospectral, by Lemma 1,

ℓ(𝐺) and ℓ(𝐻) have the same number of closed walks of any
length. It is not difficult to see that 𝑁

ℓ(𝐺)
(𝐶
5
) = 𝑁

ℓ(𝐻)
(𝐶
5
).

By Lemma 13, we have 𝑁
ℓ(𝐻)

(𝑈(4; 3, 1)) = 𝑁
ℓ(𝐺)

(𝑈(4; 3, 1)).

1 2

1 2

Cq

l1

l2

u v

Figure 2: Graph𝐻.

Note that𝑚
1
+ 𝑚
2
+ 𝑞 = 𝑙

1
+ 𝑙
2
+ 𝑞 = 𝑛. If𝑚

1
⩾ 2 or𝑚

2
⩾ 2,

then 𝑁
ℓ(𝐺)

(𝑈(4; 3, 1)) ⩾ 7 and𝑁
ℓ(𝐻)

(𝑈(4; 3, 1)) ⩽ 6. If 𝑚
1
=

𝑚
2
= 1, then𝑁

ℓ(𝐺)
(𝑈(4; 3, 1)) = 6 and𝑁

ℓ(𝐻)
(𝑈(4; 3, 1)) = 4.

Hence𝑁
ℓ(𝐻)

(𝑈(4; 3, 1)) ̸= 𝑁
ℓ(𝐺)

(𝑈(4; 3, 1)), a contradiction.

Case 2 (𝐻 is the unicyclic graph 𝑊(𝑛; 𝑞, 𝑙
1
, 𝑙
2
)). From

Lemma 14, we know that the subdivision graphs 𝑆(𝐺) and
𝑆(𝐻) (shown in Figure 3) are 𝐴-cospectral. Let 𝑝

𝑓
=

𝜙
𝐴
(𝑃
𝑓
, 𝑥); from Lemmas 6 and 7, we have

𝜙
𝐴
(𝑆 (𝐺) , 𝑥) = 𝑥𝑝

2𝑚
1
+2𝑚
2
+2𝑞−1

− (𝑝
2𝑚
1

𝑝
2𝑞−2+2𝑚

2

+ 𝑝
2𝑚
2

𝑝
2𝑞−2+2𝑚

1

)

− 2𝑝
2𝑚
1

𝑝
2𝑚
2

,

𝜙
𝐴
(𝑆 (𝐺) , 2) = 2 (2𝑚

1
+ 2𝑚
2
+ 2𝑞)

− (2𝑚
1
+ 1) (2𝑞 + 2𝑚

2
− 1)

− (2𝑚
2
+ 1) (2𝑞 + 2𝑚

1
− 1)

− 2 (2𝑚
1
+ 1) (2𝑚

2
+ 1)

= −4 (𝑚
1
𝑞 + 𝑚

2
𝑞 + 4𝑚

1
𝑚
2
) ,

𝜙
𝐴
(𝑆 (𝐻) , 𝑥) = 𝑥𝑝

2𝑙
1
+2𝑙
2
+2𝑞−1

− (𝑝
2𝑙
1

𝑝
2𝑞−2+2𝑙

2

+ 𝑝
2𝑙
2

𝑝
2𝑞−2+2𝑙

1

)

− 2𝑝
2𝑙
1

𝑝
2𝑙
2

,

𝜙
𝐴
(𝑆 (𝐻) , 2) = 2 (2𝑙

1
+ 2𝑙
2
+ 2𝑞)

− (2𝑙
1
+ 1) (2𝑞 + 2𝑙

2
− 1)

− (2𝑙
2
+ 1) (2𝑞 + 2𝑙

1
− 1)

− 2 (2𝑙
1
+ 1) (2𝑙

2
+ 1)

= −4 (𝑙
1
𝑞 + 𝑙
2
𝑞 + 4𝑙

1
𝑙
2
) .

(8)

By 𝜙
𝐴
(𝑆(𝐺), 2) = 𝜙

𝐴
(𝑆(𝐻), 2), we get −4(𝑚

1
𝑞 + 𝑚

2
𝑞 +

4𝑚
1
𝑚
2
) = −4(𝑙

1
𝑞+𝑙
2
𝑞+4𝑙
1
𝑙
2
). By𝑚

1
+𝑚
2
+𝑞 = 𝑙

1
+𝑙
2
+𝑞 = 𝑛, we

get 𝑚
1
𝑚
2
= 𝑙
1
𝑙
2
. Hence, 𝑚

1
= 𝑙
1
, 𝑚
2
= 𝑙
2
or 𝑚
1
= 𝑙
2
, 𝑚
2
= 𝑙
1
,

𝐺 and𝐻 are isomorphic.

Case 3 (𝐻 is the graph shown in Figure 2). It is well known
that the largest 𝐿-eigenvalue of a path is less than 4, and the
largest 𝐿-eigenvalue of an even cycle is 4. Lemma 12 implies
that 𝜇

2
(𝐺) < 4. Let 𝑢 and V be the two vertices of degree 3 in

𝐻 (see Figure 2). If 𝑢 and V are nonadjacent, there exists an
edge 𝑒 of𝐻 such that𝐻−𝑒 = 𝐶

𝑞
∪𝑇
𝑙
1
,𝑙
2
,𝑛−𝑙
1
−𝑙
2
−𝑞−1

. By Lemmas
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Figure 3: Two subdivision graphs.

2l1

2l2

C2q

1 2

1 2

2m1

2m2

S(G)

C2q

1 2

1 2
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Figure 4: Two subdivision graphs.

10 and 12, we get 𝜇
2
(𝐻) ⩾ 4, a contradiction to 𝜇

2
(𝐺) < 4. So

𝑢 and V are adjacent.
From Lemma 14, we know that the subdivision graphs

𝑆(𝐺) and 𝑆(𝐻) (shown in Figure 4) are 𝐴-cospectral. Let
𝑝
𝑓
= 𝜙
𝐴
(𝑃
𝑓
, 𝑥); from Lemmas 6 and 7, we have

𝜙
𝐴
(𝑆 (𝐺) , 𝑥)

= 𝑥𝑝
2𝑚
1
+2𝑚
2
+2𝑞−1

− (𝑝
2𝑚
1

𝑝
2𝑞−2+2𝑚

2

+ 𝑝
2𝑚
2

𝑝
2𝑞−2+2𝑚

1

)

− 2𝑝
2𝑚
1

𝑝
2𝑚
2

,

𝜙
𝐴
(𝑆 (𝐺) , 2)

= 2 (2𝑚
1
+ 2𝑚
2
+ 2𝑞)

− (2𝑚
1
+ 1) (2𝑞 + 2𝑚

2
− 1)

− (2𝑚
2
+ 1) (2𝑞 + 2𝑚

1
− 1)

− 2 (2𝑚
1
+ 1) (2𝑚

2
+ 1)

= −4 (𝑚
1
𝑞 + 𝑚

2
𝑞 + 4𝑚

1
𝑚
2
) ,

𝜙
𝐴
(𝑆 (𝐻) , 𝑥)

= 𝑥𝑝
2𝑞−1

𝜙
𝐴
(𝑇
1,2𝑙
1
,2𝑙
2

, 𝑥)

− (𝑝
2𝑞−1

𝑝
2𝑙
1
+2𝑙
2
+1
+ 2𝑝
2𝑞−2

𝜙
𝐴
(𝑇
1,2𝑙
1
,2𝑙
2

, 𝑥))

− 2𝜙
𝐴
(𝑇
1,2𝑙
1
,2𝑙
2

, 𝑥) ,

𝜙
𝐴
(𝑆 (𝐻) , 2)

= 2 × 2𝑞𝜙
𝐴
(𝑇
1,2𝑙
1
,2𝑙
2

, 2)

− [2𝑞 (2𝑙
1
+ 2𝑙
2
+ 2) + 2 (2𝑞 − 1) 𝜙

𝐴
(𝑇
1,2𝑙
1
,2𝑙
2

, 2)]

− 2𝜙
𝐴
(𝑇
1,2𝑙
1
,2𝑙
2

, 2)

= −4𝑞 (𝑙
1
+ 𝑙
2
+ 1) . (9)

Since 𝜙
𝐴
(𝑆(𝐺), 2) = 𝜙

𝐴
(𝑆(𝐻), 2), we have−4𝑞(𝑙

1
+𝑙
2
+1) =

−4(𝑚
1
𝑞 + 𝑚

2
𝑞 + 4𝑚

1
𝑚
2
). By 𝑙

1
+ 𝑙
2
+ 1 = 𝑚

1
+ 𝑚
2
, we get

𝑚
1
𝑚
2
= 0, a contradiction to𝑚

1
, 𝑚
2
> 0.

Here, we describe a classic method to count the number
of closed walks of a given length in a graph (see [2, 13, 14]).
For a graph 𝐺, 𝑁

𝐺
(𝑘) stands for the number of closed walks

of length 𝑘 in 𝐺 and 𝑁
𝐺
(𝑀) stands for the number of

subgraphs of𝐺which are isomorphic to graph𝑀. Let 𝜔
𝑘
(𝑀)

be the number of closed walks of length 𝑘 of graph𝑀 which
contains all edges of 𝑀, and 𝑀

𝑘
(𝐺) denotes the set of all

connected subgraphs𝑀 of 𝐺 such that 𝜔
𝑘
(𝑀) ̸= 0. Then

𝑁
𝐺
(𝑘) = ∑

𝑀∈𝑀
𝑘(𝐺)

𝑁
𝐺
(𝑀)𝜔

𝑘
(𝑀) . (10)

Lemma 16. Let 𝐺 = 𝑈(𝑛; 𝑞,𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑠
) and 𝐺

󸀠
=

𝑈(𝑛; 𝑞, 𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑠
) be L-cospectral graphs. If 𝑞 is even, then 𝐺

and 𝐺󸀠 are isomorphic.

Proof. If 𝑞 is even, by Lemma 14, ℓ(𝐺) and ℓ(𝐺
󸀠
) are 𝐴-

cospectral. From Lemma 1, we get 𝑁
ℓ(𝐺)

(𝑘) = 𝑁
ℓ(𝐺
󸀠
)
(𝑘) for

any positive integer 𝑘. Suppose 𝑚
1
⩽ 𝑚
2
⩽ ⋅ ⋅ ⋅ ⩽ 𝑚

𝑠
,

𝑙
1
⩽ 𝑙
2
⩽ ⋅ ⋅ ⋅ ⩽ 𝑙

𝑠
. Let 𝑟

𝑖
= min{𝑚

𝑖
, 𝑙
𝑖
} (𝑖 = 1, 2, . . . , 𝑠). If

𝑚
1

̸= 𝑙
1
, by𝑚

1
+𝑚
2
+ ⋅ ⋅ ⋅ +𝑚

𝑠
= 𝑙
1
+ 𝑙
2
+ ⋅ ⋅ ⋅ + 𝑙

𝑠
, we know that

𝑀
2𝑟
1
+3
(ℓ(𝐺)) = 𝑀

2𝑟
1
+3
(ℓ(𝐺
󸀠
)). For any 𝑀 ∈ 𝑀

2𝑟
1
+3
(ℓ(𝐺))

and 𝑀 ̸= 𝑈(3 + 𝑟
1
; 3, 𝑟
1
), we have 𝑁

ℓ(𝐺)
(𝑀) = 𝑁

ℓ(𝐺
󸀠
)
(𝑀).

Since𝑁
ℓ(𝐺)

(𝑈(3 + 𝑟
1
; 3, 𝑟
1
)) ̸= 𝑁

ℓ(𝐺
󸀠
)
(𝑈(3 + 𝑟

1
; 3, 𝑟
1
)), by (10),

we get 𝑁
ℓ(𝐺)

(2𝑟
1
+ 3) ̸= 𝑁

ℓ(𝐺
󸀠
)
(2𝑟
1
+ 3), a contradiction. So

we have𝑚
1
= 𝑙
1
. Similar to the above arguments, by counting

the number of closed walks of length 2𝑟
𝑖
+ 3 (𝑖 = 2, 3, . . . , 𝑠),
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we can get 𝑚
𝑖
= 𝑙
𝑖
(𝑖 = 2, 3, . . . , 𝑠). Hence 𝐺 and 𝐺

󸀠 are
isomorphic.

Theorem 17. The unicyclic graph 𝐺 = 𝑈(𝑛; 𝑞,𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑠
)

is determined by its L-spectrum when 𝑞 is even.

Proof. Let𝐺󸀠 be any graph𝐿-cospectral with𝐺. By Lemma 14,
𝐺
󸀠 is a unicyclic graph with 𝑛 vertices, and the girth of 𝐺󸀠 is

𝑞. Let V be the vertex of degree 𝑠 + 2 in the subdivision graph
𝑆(𝐺) = 𝑈(2𝑛; 2𝑞, 2𝑚

1
, 2𝑚
2
, . . . , 2𝑚

𝑠
); then 𝑆(𝐺) − V = 𝑃

2𝑞−1
∪

𝑃
2𝑚
1

∪ 𝑃
2𝑚
2

∪ ⋅ ⋅ ⋅ ∪ 𝑃
2𝑚
𝑠

. Since the largest 𝐴-eigenvalue of a
path is less than 2, by Lemmas 8 and 14, we get √𝜇

2
(𝐺) =

𝜆
2
(𝑆(𝐺)) < 2, 𝜇

2
(𝐺) < 4. Suppose 𝑑

1
⩾ 𝑑
2
⩾ ⋅ ⋅ ⋅ ⩾ 𝑑

𝑛
is the

degree sequence of 𝐺󸀠. By Lemma 11, we have 𝑑
2
⩽ 3. From

Lemmas 9 and 10, we get 𝑠 + 3 < 𝜇
1
(𝐺) ⩽ 𝑠 + 4, 𝑑

1
+ 𝑑
2
⩾

𝜇
1
(𝐺) > 𝑠 + 3, and 𝑑

1
+ 1 < 𝜇

1
(𝐺) ⩽ 𝑠 + 4. By 𝑑

2
⩽ 3, we have

𝑠 < 𝑑
1
< 𝑠 + 3.

If 𝑑
1
= 𝑠 + 2, applying Lemma 4, we have

𝑛

∑

𝑖=2

𝑑
𝑖
= 2 + 2 + ⋅ ⋅ ⋅ + 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑠−1

+ 1 + 1 + ⋅ ⋅ ⋅ + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠

,

𝑛

∑

𝑖=2

𝑑
2

𝑖
= 2
2
+ 2
2
+ ⋅ ⋅ ⋅ + 2

2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑠−1

+ 1
2
+ 1
2
+ ⋅ ⋅ ⋅ + 1

2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠

.

(11)

Since ∑𝑛
𝑖=2
𝑑
2

𝑖
is minimal if and only if |𝑑

𝑖
− 𝑑
𝑗
| ≤ 1 for any

𝑖, 𝑗 ∈ {2, 3, . . . , 𝑛}, the degree sequences of 𝐺 and 𝐺󸀠 are both
𝑠 + 2, 2, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑠−1

, 1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠

. Lemma 16 implies that 𝐺 and 𝐺󸀠

are isomorphic.
If 𝑑
1
= 𝑠 + 1, by 𝑑

1
+ 𝑑
2
> 𝑠 + 3 and 𝑑

2
< 4, we get

𝑑
2
= 3. Suppose that there are 𝑎

3
three, 𝑎

2
two, and 𝑎

1
one in

𝑑
2
, 𝑑
3
, . . . , 𝑑

𝑛
. By Lemma 4, we have

3

∑

𝑖=1

𝑎
𝑖
+ 1 = 𝑛,

3

∑

𝑖=1

𝑖𝑎
𝑖
+ (𝑠 + 1) = 𝑠 + 2 (𝑛 − 𝑠 − 1) + (𝑠 + 2) ,

3

∑

𝑖=1

𝑖
2
𝑎
𝑖
+ (𝑠 + 1)

2
= 𝑠 + 4 (𝑛 − 𝑠 − 1) + (𝑠 + 2)

2
.

(12)

Solving the above equations, we get 𝑎
1
= 2𝑠 − 1, 𝑎

2
= 𝑛 −

3𝑠, 𝑎
3
= 𝑠. From Lemma 4, we have

3

∑

𝑖=1

𝑖
3
𝑎
𝑖
+ (𝑠 + 1)

3
= 𝑠 + 8 (𝑛 − 𝑠 − 1) + (𝑠 + 2)

3
. (13)

𝑠 = 0 or 𝑠 = 1 is the solution of the above equation. Then
𝑑
1
= 1 or 𝑑

1
= 2, a contradiction to 𝑑

2
= 3.

The join of two graphs 𝐺 and𝐻, denoted by 𝐺×𝐻, is the
graph obtained from 𝐺 ∪ 𝐻 by joining each vertex of 𝐺 to
each vertex of 𝐻. Some results on spectral characterizations
of graphs obtained by join operation can be found in [15–20].
For a unicyclic graph 𝐺, if 𝐺 is determined by its 𝐿-spectrum
and 𝐺 ̸= 𝐶

6
, then 𝐺×𝐾

𝑟
is determined by its 𝐿-spectrum (cf.

[18, Theorem 4.4]). Hence, we can obtain the following two
results fromTheorems 15 and 17.

Corollary 18. Let 𝐺 = 𝑊(𝑛; 𝑞,𝑚
1
, 𝑚
2
). Then 𝐺 × 𝐾

𝑟
is

determined by its L-spectrum when 𝑞 is even.

Corollary 19. Let 𝐺 = 𝑈(𝑛; 𝑞,𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑠
). Then 𝐺 × 𝐾

𝑟

is determined by its L-spectrum when 𝑞 is even.
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