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An extended nonsingular terminal sliding surface is proposed for second-order nonlinear systems. It is shown that the proposed
surface is a superset of a conventional nonsingular terminal sliding surface which guarantees that the system state gets to zero
in finite time. The conventional nonsingular sliding surfaces have been designed using a power function whose exponent is a
rational number with positive odd numerator and denominator.The proposed nonsingular terminal sliding surface overcomes the
restriction on the exponent of a power function; that is, the exponent can be a positive real number. Simulation results are provided
to show the validity of the main result.

1. Introduction

According to the progress of control schemes, a variety of
nonlinear control systems have been proposed: H-infinity
optimal control, fuzzy control, neural network control, con-
troller using genetic algorithms, and so on [1–4]. Sliding
mode control (SMC) method, which is also called a variable
structure system (VSS), is one of nonlinear robust control
schemes. It has been widely used because of its invariance
properties to parametric uncertainties and external distur-
bances [5–8]. In conventional sliding mode control systems,
sliding surfaces have been designed such that the overall
system in the sliding mode is asymptotically stable. However,
the asymptotic stability does not guarantee a finite time
convergence.

Although most of control systems proposed so far have
been designed such that the closed-loop system is asymptotic,
finite time stabilization is very important to many actual
applications, such as motor, power, robot, and aerospace
systems because, in the actual applications, themain objective
of a control system is tomake system’s state to a desired one in
a finite time interval which is determined a priori.Thus,many
recent studies have focused on the finite time stabilization [9–
13].

Finite time control systems based on slidingmode control
schemes have been called terminal sliding mode control
systems since their sliding surfaces have been designed as
terminal attractors [14]. Recently, terminal sliding mode
control systems have been studied to achieve a finite time
convergence in many applications [15–17]. Conventional ter-
minal slidingmode controllers used terminal sliding surfaces
whichwere designed using a power function of a system state.
They guaranteed that the system state reached zero in finite
time.On the contrary, however, they suffered from singularity
problems and had restrictions on the range of the exponent
of a power function. The exponent should be a rational
number with positive odd numerator and denominator [18].
In order to avoid the singularity problem in conventional
terminal sliding mode control systems, nonsingular terminal
sliding surfaces have been proposed very recently for robot
manipulators [19, 20]. However, the same restriction on the
exponent of a power function in the nonsingular sliding
surface still remained: the exponent should be a rational
number with a positive odd numerator and denominator.

Thus, in this paper, a novel nonsingular terminal sliding
surface is proposed for second-order nonlinear systems. It is
shown that the proposed scheme guarantees that the system
state gets to zero in finite time and it does not suffer from
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singularity problems. Furthermore, the proposed nonsin-
gular terminal sliding surface overcomes the restriction on
the exponent of a power function by being a superset of a
conventional nonsingular terminal sliding surface.That is, we
extend the range of an exponent of a power function in the
nonsingular terminal sliding surface from a rational number
with an odd numerator and an odd denominator to a real
number.

Simulation results and experimental results are given to
show the validity of the main result.

2. Main Results

Consider a second-order nonlinear system of the following
form:

𝑥̈ = 𝑓 (𝑥, 𝑥̇, 𝑡) + 𝑔 (𝑥, 𝑥̇, 𝑡) (𝑢 + 𝑑 (𝑥, 𝑥̇, 𝑡)) , (1)

where 𝑥 and 𝑥̇ are state variables, 𝑓(𝑥, 𝑥̇, 𝑡) is a nonlinear
term, 𝑢 is a scalar input, 𝑔(𝑥, 𝑥̇, 𝑡) ̸= 0 ∀𝑥, 𝑥̇ ∈ 𝑅, ∀𝑡 ∈

𝑅

+
, and 𝑑(𝑥, 𝑥̇, 𝑡) represents the uncertainties and external

disturbances. It is assumed that the following assumption
holds.

Assumption 1. The uncertainty 𝑑(𝑥, 𝑥̇, 𝑡) is bounded as fol-
lows:

|𝑑 (𝑥, 𝑥̇, 𝑡)| ≤ 𝐷 (𝑥, 𝑥̇, 𝑡) , ∀𝑥, 𝑥̇ ∈ 𝑅, ∀𝑡 ∈ 𝑅

+
, (2)

where𝐷(𝑥, 𝑥̇, 𝑡) is a known positive function.
In previous works on terminal sliding mode control

systems, the conventional terminal sliding surfaces have been
designed as

𝑠

1
= 𝑥̇ + 𝑐

1
𝑥

𝑞
1
/𝑟
1
,

(3)

where 𝑐

1
> 0, 0 < 𝑞

1
/𝑟

1
< 1, and 𝑞

1
and 𝑟

1
are positive odd

integers [8–10]. However, though the conventional terminal
sliding surface in (3) ensures finite time convergence, it suffers
from the singularity problem and has a restriction on the
exponent of the power function [14]. In the phase space with
𝑥 and 𝑥̇ axes, the set of singular points is a vertical axis except
for at the origin; that is,

𝑆 = {(𝑥, 𝑥̇) | 𝑥 = 0, 𝑥̇ ̸= 0} . (4)

Recently, a nonsingular terminal sliding surface was
proposed to overcome the singularity problem [12]

𝑠

2
= 𝑥̇

𝑞
2
/𝑟
2
+ 𝑐

2
𝑥,

(5)

where 𝑐

2
> 0, 1 < 𝑞

2
/𝑟

2
< 2, and 𝑞

2
, 𝑟

2
are positive odd

integers
However, this surface still has the restrictions on the

exponent of the power function; that is, 𝑞
2
, 𝑟

2
should be

positive odd integers. Thus, we propose an extended nonsin-
gular terminal sliding surface whose exponent can be any real
number.

𝑠 = |𝑥̇|

1/𝑝 sgn (𝑥̇) + 𝑐 ⋅ 𝑥,
(6)

where sgn(⋅) is the signum function, 𝑐 is a positive constant,
and 1/2 ≤ 𝑝 < 1 is a real number.
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Figure 1: Example of a nonsingular terminal sliding surface.

Figure 1 shows a typical nonsingular terminal sliding
surface. Clearly, for any 𝑐 > 0 and 1/2 ≤ 𝑝 < 1, the phase
portrait is in the second and fourth quadrants in the phase
space with the axes of 𝑥

1
= 𝑥 and 𝑥

2
= 𝑥̇.

Remark 2. It is clear that the proposed nonsingular terminal
sliding surface is stable because the sliding surface is in the
second and fourth quadrants in the phase space with the axes
of 𝑥 and 𝑥̇, where this property implies that 𝑥 ⋅ 𝑥̇ < 0 for all
𝑥 ̸= 0.

For the proposed nonsingular terminal sliding surface, we
derived the following theorem for the finite time convergence.

Theorem3. Theproposed nonsingular terminal sliding surface
(6) guarantees that the system state gets to zero in finite time in
the sliding mode, 𝑠 = 0, and the relaxation time [18] is

𝑡

𝑟
=

|𝑥(0)|

1−𝑝

𝑐

𝑝
(1 − 𝑝)

. (7)

Proof. If the system is in the sliding mode and 𝑥̇ ≥ 0, the
proposed sliding surface (6) can be rewritten as follows:

𝑥̇

(1/𝑝)

+ 𝑐𝑥 = 0.
(8)

From the above equation, if 𝑥̇(0) ≥ 0, that is, 𝑥(0) ≤ 0,
the following equations can be easily derived:

𝑥̇

(1/𝑝)

+ 𝑐𝑥 = 0

⇐⇒

𝑑𝑥

𝑑𝑡

= 𝑐

𝑝
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𝑝
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𝑝
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𝑝
= 𝑐

𝑝
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⇐⇒ −∫

−𝑥=0

−𝑥=−𝑥(0)
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(−𝑥)

𝑝
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𝑡
𝑟

0
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𝑑𝑡



Abstract and Applied Analysis 3
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,

(9)
where 𝑡

𝑟
represents the relaxation time [18].

If 𝑥̇(0) < 0, that is, 𝑥(0) > 0, 𝑡
𝑟
can be derived in a similar

way:

− (−𝑥̇)
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(10)

This completes the proof.

In the above theorem, we proved that the system state gets
to zero in finite time if it is in the sliding mode. Thus, in the
following theorem, we propose a controller that guarantees
that the sliding mode existence condition holds such that the
overall system will be in the sliding mode.

Theorem 4. For system (1) with the proposed nonsingular
terminal sliding surface (6), the following controller guarantees
that the sliding mode existence condition holds:

𝑢 =

1

𝑔 (𝑥, 𝑥̇)

× (−𝑓 (𝑥, 𝑥̇) − 𝑐𝑝|𝑥̇|

(2−(1/𝑝)) sgn (𝑥̇) − 𝑘

1
𝑠 − 𝑘

2
sgn (𝑠)) ,

(11)
where 𝑘

1
> 0, 𝑘

2
> |𝑔| (𝐷 + 𝛼), 𝛼 is a positive constant and

1/2 ≤ 𝑝 < 1.

Proof. Let the Lyapunov function candidate be

𝑉 (𝑠) =

1

2

𝑠

2

. (12)

Applying (1) and (6) to 𝑑𝑉/𝑑𝑡 =

̇

𝑉, the following equations
can be obtained if 𝑥̇ > 0; that is, 𝑥 < 0:

̇

𝑉 (𝑠) = 𝑠 ̇𝑠 = 𝑠 (

1

𝑝

𝑥̇

((1/𝑝)−1)

𝑥̈ + 𝑐𝑥̇)

= 𝑠 (

1

𝑝
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(𝑓 + 𝑔 (𝑢 + 𝑑)) + 𝑐𝑥̇)
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1

𝑝
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1
𝑠 − 𝛼 sgn (𝑠))
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𝑝
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(−𝑘

1
𝑠

2
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(13)

Similarly, if 𝑥̇ < 0, that is, 𝑥 > 0, the following equations can
be derived:

̇
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1
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Equations (13) and (14) can be represented as

̇

𝑉 (𝑠) = −

1

𝑝

|𝑥̇|

((1/𝑝)−1)

(𝑘

1
𝑠

2

+ 𝛼 |𝑠|) . (15)

Here, ̇

𝑉(𝑠) < 0 if |𝑥̇| ̸= 0 and 𝑠 ̸= 0.
If |𝑥̇| = 0, from (1) and (11), the following equation can be

obtained:

𝑥̈ =

𝑑𝑥̇

𝑑𝑡

= −𝑘

1
𝑠 − 𝑘

2
sgn (𝑠) + 𝑔 ⋅ 𝑑

(16)

which implies that

𝑠

𝑑𝑥̇

𝑑𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨 ̇𝑥=0

≤ −𝑘

1
𝑠

2

− 𝛼 |𝑠| . (17)

Thus, it is clear that if |𝑥̇| = 0 and 𝑠 ̸= 0, 𝑥̇ deviates from zero;
that is, the set of points, |𝑥̇| = 0 and 𝑠 ̸= 0, is not an attractor.
In phase space, these points are all points on the horizontal
axis that save the origin.

Therefore, we can conclude that 𝑠 goes to zero.

Remark 5. Since the proposed controller (11) has a term
|𝑥̇|

(2−(1/𝑝)), it is clear that in order to avoid the singularity
problem one should choose the control parameter, 𝑝, such
that 1/2 ≤ 𝑝 < 1, even though the finite time convergence
can be obtained for 0 < 𝑝 < 1 in (6).

3. Examples

To show the validity of the proposed method, the simulation
results for the following system are given:

𝑥̈ = 20 𝑥̇ |𝑥̇| + 10 sin (5𝑡)
√
|𝑥| + 10 (𝑢 + 𝑑) ,

(18)

where 𝑑(𝑥, 𝑥̇, 𝑡) = 2√𝑥 + sin(10𝑡). The control parameters
were chosen as follows: 𝑐 = 5, 𝑘

1
= 2, 𝑘

2
= 10(2

√
|𝑥| + 1 +

𝛼), and 𝛼 = 1. When the initial condition is 𝑥(0) = 1, from
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Figure 2: Sliding variable (𝑠).
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Figure 3: Phase portrait (𝑥 versus 𝑥̇).

(18), 𝑝 = 1/2 is obtained for the minimum relaxation time.
Clearly,𝑝 = 1/2 is out of a conventional nonsingular terminal
sliding surface. In the following figures, 𝑥

1
, 𝑥

2
represent 𝑥, 𝑥̇,

respectively.
Figures 2–5 show the simulation results. Figure 2 repre-

sents the profile of the sliding variable, 𝑠. It is shown that
the system state stayed on the nonsingular terminal sliding
surface all the time after it hit the sliding surface for the first
time.

It is clear that the sliding mode existence condition, 𝑠 ⋅ ̇𝑠 <

0, was satisfied all the time and it was also known from the
phase portrait given in Figure 3.

Figure 4 shows that the output zeroed in finite time.
The control input signal can be seen in Figure 5.
To show the nonsingular property, we simulated the

system with the initial condition near the vertical axis in
the phase space because, from (4), a set of singular points
for the conventional terminal sliding surface is a vertical
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Figure 5: Control input (𝑢) for signum function.

axis in the phase space. Figures 6 and 7 show the results.
Figure 6 represents that the system state zeroed even though
it crossed over the vertical axis, a set of singular points
for a conventional terminal sliding surface. In the proof of
Theorem 4, we showed that the horizontal axis is not an
attractor so that the system state on this axis moves out of
the axis. This is also verified from Figure 6, since the system
state also crossed the horizontal axis. The control input is
shown in Figure 7. It can be seen that it did not suffer from
the singularity problem.

In addition, we also applied the proposed method to
the actual DC motor system. For the control unit in the
experimental system, a TMS320F2812 DSP processor was
used. The sampling time was set to 1msec. The following
model was used for the DC motor system:

𝑥̈ = −40.65𝑥̇ + 46.67𝑢. (19)

Figure 8 shows that the motor position converges zero in
finite time.
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Figure 9: Control input (𝑢).
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Figure 10: Phase portrait (𝑥 versus 𝑥̇).

The control input signal is given in Figure 9. It represents
that the control signal is bounded all the time.

Figure 10 shows a phase portrait. It is clear that the sliding
mode existence condition, 𝑠 ⋅ ̇𝑠 < 0, was satisfied all the time.

4. Conclusions

In this paper, the extended nonsingular terminal sliding sur-
face for second-order nonlinear systems has been proposed.
It has been shown that the proposed nonsingular terminal
sliding surface guarantees finite time convergence and is
singularity-free. Furthermore, the exponent of the power
function in the proposed sliding surface can be a real number
in contrast to conventional nonsingular terminal sliding
surfaces where the exponent should be a rational number
with an odd numerator and odd denominator. Simulation
and experimental results have shown the validity of the main
result.
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