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The problem of impulse elimination for descriptor system by derivative output feedback is investigated in this paper. Based on a
novelly restricted system equivalence between matrix pencils, the range of dynamical order of the resultant closed loop descriptor
system is given.Then, for the different dynamical order, sufficient conditions for the existence of derivative output feedback to ensure
the resultant closed loop system to be impulse free are derived, and the corresponding derivative output feedback controllers are
provided. Finally, simulation examples are given to show the consistence with the theoretical results obtained in this paper.

1. Introduction

Descriptor systems are also referred to as singular systems,
implicit systems, differential algebraic systems, semistate sys-
tems, or generalized state space systems. Descriptor systems’
models are more convenient and natural than standard state
space systems’ models in describing practical systems, such
as interconnected large-scale systems, economic systems,
networks, power systems, and biological systems [1, 2]. Due
to this reason, the control of descriptor systems has been
extensively studied in past years and a great number of results
based on the theory of standard state space systems have been
generalized to descriptor systems [1–5].

The main feature of descriptor systems is regularity and
impulsive behavior, which is different from standard state
space systems. The regularity guarantees the existence and
uniqueness of state responses of descriptor systems. The
impulsive behavior may cause degradation in performance
or even destroy the systems. Therefore, it is essentially
important to use feedback control to eliminate the impulse
for descriptor systems. Recently, robust impulse elimina-
tion control problems for uncertain descriptor system were
investigated in [6], where it is established that an arbitrarily
large impulse margin may be specified by output feedback
if and only if the descriptor system is both controllable and
observable at infinity in the sense of Rosenbrock. In some

cases, derivative feedback is able to eliminate the impulse
while the proportional feedback fails to do it. Now let us
take an example to illustrate this fact; a three-dimensional
descriptor system is given by

𝐸�̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥, (1)

where

𝐸 = [

[

1 0 0

0 0 1

0 0 0

]

]

, 𝐴 = [

[

−1 0 0

0 1 0

0 0 1

]

]

,

𝐵 = [

[

0

1

0

]

]

, 𝐶 = [0 0 1] .

(2)

The system possesses impulse behavior and is not impul-
sive controllable. Obviously, the impulse will not be elimi-
nated by any proportional feedback.However, one can choose
derivative output feedback 𝑢 = ̇𝑦 to eliminate the impulse. In
this case, the resultant closed loop system turns to be

[

[

1 0 0

0 0 0

0 0 0

]

]

�̇� = [

[

−1 0 0

0 1 0

0 0 1

]

]

𝑥. (3)
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It is easily seen that the resultant closed loop system is impulse
free; that is, the impulse is eliminated by the derivative output
feedback.

On the other hand, in some practical control, it is conve-
nient to use derivative feedback. For instance, in controlling
the suppression of vibration in mechanical systems, the
derivative state signals are easier to obtain than the pro-
portional state signals. Because derivative coefficient matrix
𝐸 can only be altered by derivative feedback, derivative
feedback has an advantage over the proportional feedback
in certain status of both theoretical analysis and practical
application. It is especially effective to use derivative feedback
in control of descriptor systems.

Up to now, lots of results regarding derivative feed-
back have been proposed. A derivative feedback controller
for standard state space systems was designed via linear
matrix inequalities technique to make the resultant closed
loop system stable in [7]. Pole placement problems of the
systems were discussed by derivative state feedback in [8–
10]. The regularization of descriptor systems was discussed
via derivative feedback and proportional plus derivative
state feedback, respectively, in [11–13]. Robust derivative
state feedback LMI-based designs for linear time invariant
systems were recently proposed in [14]. Dynamical order
assignment for linear descriptor systems was discussed in
[15]. Using proportional plus derivative state feedback and
proportional plus derivative output feedback, the normaliza-
tion and stabilization problems for descriptor systems were
investigated in [16]. Robust normalization and guaranteed
cost control for a class of uncertain descriptor systems were
investigated in [17]. Robust derivative state feedback for
linear descriptor systems was studied through LMIs in [18].
Sufficient conditions for existence of derivative state feedback
controllers were proposed in [19] to guarantee the resultant
closed loop systems to be impulse free from minimum to
maximum dynamical order. Based on orthogonal matrix
decomposition, proportional and derivative state feedbacks
were constructed in [20] such that the resultant closed
loop systems are impulse free under various controllability
conditions. On the basis of condensed forms, several nec-
essary and sufficient conditions were derived to ensure the
resultant closed loop system to be regular and impulse free by
proportional and derivative output feedback [21–24], and the
corresponding proportional and derivative output feedbacks
can be resolved in a numerically stable way.

As we mentioned above, in some cases, elimination of
the impulse will not be realized by proportional feedback,
but it could be realized by derivative feedback under some
conditions. It should be pointed out that derivative feedback
will eliminate the impulse if proportional feedback can
eliminate it. Although eliminating impulse by proportional
and derivative output feedback has been investigated by [13,
20–24], the matrix factorizations used in these papers are
complex and creative; this paper aims to address the effect
of derivative output feedback on the impulsiveness alone
and provide a tractable and alternative method to design the
derivative output feedback. Motivated by the above analy-
sis, the problems of eliminating the impulse of descriptor
system by derivative output feedback are investigated in

this paper. Combined with the advantage of dynamic model
in overcoming the uncertain factors and disturbances, the
descriptor systems with arbitrarily possibly dynamical order
are investigated, and the sufficient conditions are established
by which the resultant closed loop systems with any possibly
dynamical order are impulse free; then the relevant derivative
output feedback controllers are designed.The design method
is theoretically effective and practically applicable.

This paper is structured as follows. In Section 2, some
notations, definitions, and lemmas are recalled for later use.
Section 3 gives the minimum rank 𝜏min and related theorems
to describe it. In Section 4, according to the different scope of
the possibly dynamical order, some theorems by which the
derivative output feedback controllers can be designed are
proposed to ensure the resultant closed loop system to be
impulse free. The effectiveness and merits of the main results
are illustrated in Section 5 through several examples. Finally,
remarking conclusion is made in Section 6.

2. Preliminaries

Consider a linear time invariant descriptor system of the
following form:

𝐸�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(4)

where 𝑥(𝑡) ∈ R𝑛 is state vector, 𝑢(𝑡) ∈ R𝑚 is control input,
and 𝑦(𝑡) ∈ R𝑙 is controlled output, 𝐸 ∈ R𝑛×𝑛 is singular
matrix with rank𝐸 = 𝑛

1
≤ 𝑛, and 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑙×𝑛 are

full column rank and full row rank, respectively. System (4) is
assumed to be regular; that is, det(𝑠𝐸−𝐴) ̸= 0. In this case, the
state response of system (4) exists uniquely for any admissible
initial state.

As we know, the rank of derivative coefficient matrix 𝐸

equals the dynamical order of the system. To improve the sys-
temperformance, it is often required to change the dynamical
order, that is, the rank of matrix 𝐸, which can only be done
by derivative feedback under certain conditions. It is also
mentioned in the above section that the derivative feedback is
an efficient tool to eliminate the impulse.Therefore, the main
purpose of this paper is to use derivative output feedback
to eliminate the impulse and make the resultant closed loop
system regular.

To this end, the derivative output feedback in a general
form can be described as

𝑢 (𝑡) = −𝐿 ̇𝑦 (𝑡) + V (𝑡) , (5)

where 𝐿 ∈ R𝑚×𝑙 is the gain matrix to be determined and V(𝑡)
is the new control input with appropriate dimension.

Applying the feedback controller (5) to system (4), the
resultant closed loop system is obtained as

(𝐸 + 𝐵𝐿𝐶) �̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵V (𝑡) . (6)

Consequently, our task now is to establish the criteria to
ensure the resultant closed loop system to be impulse free
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with arbitrarily possibly dynamical order. To fulfil our task,
we need the following statement and several lemmas.

For system (4), it is easy to prove that there exist four
nonsingular matrices 𝑃, 𝑄, �̃�, and 𝑄 such that

𝐸 = 𝑃 [
𝐸
1

0

0 0
] 𝑄, 𝐴 = 𝑃 [

𝐴
1

𝐴
2

𝐴
3

𝐴
4

] 𝑄,

𝐵 = 𝑃 [
𝐵
1

𝐵
2

] 𝑄, 𝐶 = �̃� [𝐶
1

𝐶
2
] 𝑄,

(7)

where 𝐸
1

∈ R𝑛1×𝑛1 is nonsingular, 𝐴
4

∈ R𝑛2×𝑛2 , and 𝑛
1

+ 𝑛
2

=

𝑛, and

𝐴
1

= [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐴
2

= [
𝐴
13

𝐴
14

𝐴
23

𝐴
24

] ,

𝐵
1

= [
0 𝐼
2

0 0
] , 𝐴

3
= [

𝐴
31

𝐴
32

𝐴
41

𝐴
42

] ,

𝐴
4

= [
𝐴
33

𝐴
34

𝐴
43

𝐴
44

] , 𝐵
2

= [
𝐼
1

0

0 0
] ,

𝐶
1

= [
0 0

𝐼
4

0
] , 𝐶

2
= [

𝐼
3

0

0 0
] ,

(8)

where 𝐼
1
, 𝐼
2
, 𝐼
3
, and 𝐼

4
are 𝑚
1
-dimensional, 𝑚

2
-dimensional,

𝑙
1
-dimensional, and 𝑙

2
-dimensional identitymatrices, respec-

tively, and 𝑚
1

+ 𝑚
2

= 𝑚, 𝑙
1

+ 𝑙
2

= 𝑙. Specifically, when 𝐵 is a
column vector, either of𝐵

1
and𝐵

2
is in the form [1, 0, . . . , 0]

𝑇,
and the other is in the form [0, 0, . . . , 0]

𝑇. Likewise, if 𝐶 is a
row vector, the result follows immediately.

Lemma 1 (see [2]). System (4) is impulse free if and only if

rank [
𝐸 𝐴

0 𝐸
] = 𝑛 + rank𝐸. (9)

According to Lemma 1, together with (7), system (4) is
regular and impulse free if and only if rank 𝐴

4
= 𝑛
2
.

Lemma 2 (see [2]). System (6) is impulse free if and only if

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
] = 𝑛 + rank (𝐸 + 𝐵𝐿𝐶) . (10)

Lemma 3 (see [2]). For arbitrary matrices 𝑋 ∈ R𝑛×𝑟, 𝑌 ∈

R𝑛×𝑚, and 𝑍 ∈ R𝑙×𝑟, the equality

𝑔
�̇�

𝑟 [𝑋 + 𝑌𝑈𝑍] = min{rank [𝑋 𝑌] , rank [
𝑋

𝑍
]} (11)

holds, where 𝑔
�̇�

𝑟[∗] is the maximal rank of matrix pencil [∗]

with parameter matrix 𝑈 ∈ R𝑚×𝑙.

3. Minimum Rank

In this section, we will give the minimal rank of matrix
pencils. In order to obtain this result, we first need to derive
the subsequent theorem.

Theorem 4. For arbitrary matrices 𝐺 ∈ R𝑛×𝑟, 𝐻 ∈ R𝑛×𝑙, and
𝑆 ∈ R𝑚×𝑟, there exists matrix 𝑇 ∈ R𝑚×𝑙 such that

min
𝑇

rank [
𝐺 𝐻

𝑆 𝑇
] = rank [𝐺 𝐻] + rank [

𝐺

𝑆
] − rank𝐺.

(12)

Proof. For arbitrary matrix 𝐺, there exist invertible matrices
𝑃 and 𝑄 such that

𝑃𝐺𝑄 = [
𝐼 0

0 0
] ,

rank [
𝐺 𝐻

𝑆 𝑇
]

= rank[

[

𝐼 0 𝐻
1

0 0 𝐻
2

𝑆
1

𝑆
2

𝑇

]

]

= rank[

[

𝐼 0 0

0 0 𝐻
2

0 𝑆
2

𝑇 − 𝑆
1
𝐻
1

]

]

= rank𝐺 + rank [
0 𝐻

2

𝑆
2

𝑇 − 𝑆
1
𝐻
1

]

min

𝑇 = 𝑆
1
𝐻
1
rank𝐺

+ rank𝐻
2

+ rank 𝑆
2
,

(13)

where 𝑃𝐻 = [
𝐻
1

𝐻
2

], 𝑆𝑄 = [𝑆
1

𝑆
2
].

From the above fact, it follows that

min
𝑇

rank [
𝐺 𝐻

𝑆 𝑇
] = rank [𝐺 𝐻] + rank [

𝐺

𝑆
] − rank𝐺.

(14)

This completes the proof.

Now, we are in a position to derive representation for the
minimal rank of matrix pencil.

Theorem 5. For matrix pencil (𝐸 + 𝐵𝐿𝐶) with a parameter
matrix 𝐿, the equality

min
𝐿

rank (𝐸 + 𝐵𝐿𝐶) = rank𝐸 − rank𝐶
1
𝐸
−1

1
𝐵
1 (15)

holds.

Proof. If we choose

𝐿 = 𝑄
−1

[
𝐿
11

𝐿
12

𝐿
21

𝐿
22

] �̃�
−1

, (16)

where 𝐿
𝑖𝑗

∈ R𝑚𝑖×𝑙𝑗 (𝑖, 𝑗 = 1, 2), combined with (7) and (8),
then

𝐸 + 𝐵𝐿𝐶 = 𝑃

[
[
[
[

[

𝐸
1

+ [
𝐿
22

0

0 0
] [

𝐿
21

0

0 0
]

[
𝐿
12

0

0 0
] [

𝐿
11

0

0 0
]

]
]
]
]

]

𝑄. (17)

To obtain the minimal rank of (17), suppose that 𝐿
11

= 0,
𝐿
12

= 0, 𝐿
21

= 0, and 𝐸
1

= [
𝐸
11
𝐸
12

𝐸
21
𝐸
22

]; then we can have

min
𝐿

rank (𝐸 + 𝐵𝐿𝐶) = min
𝐿
22

rank [
𝐸
11

+ 𝐿
22

𝐸
12

𝐸
21

𝐸
22

] . (18)
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ByTheorem 4, it follows that

min
𝐿

rank (𝐸 + 𝐵𝐿𝐶)

= rank [𝐸
21

𝐸
22

] + rank [
𝐸
12

𝐸
22

] − rank𝐸
22

.

(19)

On one hand, we have

rank [
𝐸
1

𝐵
1

𝐶
1

0
] = rank 𝐵

1
+ rank𝐶

1
+ rank𝐸

22
. (20)

On the other hand, since 𝐸
1
is nonsingular, it follows that

rank [
𝐸
1

𝐵
1

𝐶
1

0
] = rank [

𝐸
1

0

𝐶
1

−𝐶
1
𝐸
−1

1
𝐵
1

]

= rank𝐸
1

+ rank𝐶
1
𝐸
−1

1
𝐵
1
.

(21)

Thus, the aforementioned fact means that

min
𝐿

rank (𝐸 + 𝐵𝐿𝐶) = rank𝐸 − rank𝐶
1
𝐸
−1

1
𝐵
1
. (22)

This completes the proof.

For convenience, the following notation is used: for a
givenmatrix𝑀 ∈ R𝑠×𝑡, the right zero divisor of𝑀 is denoted
by 𝑆
𝑀
, which satisfies 𝑀𝑆

𝑀
= 0 with rank 𝑆

𝑀
= 𝑡 − rank𝑀.

Similarly, the left zero divisor of matrix 𝑀 is denoted by 𝑇
𝑀
,

satisfying 𝑇
𝑀

𝑀 = 0 with rank𝑇
𝑀

= 𝑠 − rank𝑀.

4. Main Results

In this section, derivative output feedback controllers are
designed tomake the resultant closed loop system regular and
impulse free.

It is pointed out in [25] that derivative feedback will
eliminate the impulses of descriptor systems if it can be done
by proportional feedback. Therefore, the derivative output
feedback

𝑢 (𝑡) = −𝐿 ̇𝑦 (𝑡) (23)

is used and then the resultant closed loop system

(𝐸 + 𝐵𝐿𝐶) �̇� (𝑡) = 𝐴𝑥 (𝑡) (24)

is obtained, where 𝐿 ∈ R𝑚×𝑙 is the feedback gain to be
determined.

According to the different scope of dynamical order of the
resultant closed loop system (24), we divide our main results
into four subsections.

4.1. Impulse Elimination with Maximal Dynamical Order 𝜏max

Theorem 6. If

rank [𝐸 𝐵] > rank [𝐸
𝑇

𝐶
𝑇

] , (25)

rank [
𝑇
𝐿
11

𝐴
34

𝐴
44

] = 𝑛 − rank [
𝐸

𝐶
] , (26)

then there exists a derivative output feedback of the following
form:

𝑢 = −𝑄
−1

[
𝐿
11

0

0 0
] �̃�
−1

̇𝑦, (27)

such that the resultant closed loop system (24) is regular and
impulse free and achieves its maximal dynamical order 𝜏max =

rank[𝐸
𝑇

𝐶
𝑇

], where 𝐿
11

∈ R𝑚1×𝑙1 is anymatrix of full column
rank.

Proof. It follows from Lemma 2 that the resultant closed loop
system (24) is regular and impulse free if and only if there
exists matrix 𝐿 such that

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
] = 𝑛 + rank (𝐸 + 𝐵𝐿𝐶) . (28)

Assuming that (25) holds, with the help of (11) in
Lemma 3, we can have rank 𝐼

1
= 𝑚
1

> rank 𝐼
3

= 𝑙
1
and

the maximal dynamical order of the system (24) is 𝜏max =

rank [
𝐸

𝐶
].

Substituting 𝐿 = 𝑄
−1

[
𝐿
11
0

0 0
] �̃�
−1 into the left-hand side of

(28), matrix manipulation gives

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
]

= rank

[
[
[
[
[
[
[

[

𝐸
1

0 𝐴
1

𝐴
2

0 [
𝐿
11

0

0 0
] 𝐴
3

𝐴
4

0 0 𝐸
1

0

0 0 0 [
𝐿
11

0

0 0
]

]
]
]
]
]
]
]

]

= rank

[
[
[
[
[
[
[

[

𝐸
1

0 0 0

0 [
𝐿
11

0

0 0
] 0 [

0 𝐴
34

0 𝐴
44

]

0 0 𝐸
1

0

0 0 0 [
𝐿
11

0

0 0
]

]
]
]
]
]
]
]

]

= 2 rank [
𝐸

𝐶
] + rank [

𝑇
𝐿
11

𝐴
34

𝐴
44

] .

(29)

It is concluded from (26) and (28) that the resultant closed
loop system (24) is regular and impulse free when (25) holds.
The corresponding derivative output feedback is provided by
(27). This completes the proof.

Theorem 7. If rank[𝐸 𝐵] > rank[𝐸
𝑇

𝐶
𝑇

] and a matrix
𝐿
12

∈ R𝑚1×𝑙2 satisfies

rank[

[

𝑇
𝐿
11

(𝐴
34

− [𝐿
12

0] 𝐸
−1

1
[
𝐴
14

𝐴
24

])

𝐴
44

]

]

= 𝑛 − rank [
𝐸

𝐶
] ,

(30)

then there exists a derivative output feedback of the following
form:

𝑢 (𝑡) = −𝑄
−1

[
𝐿
11

𝐿
12

0 0
] �̃�
−1

̇𝑦 (𝑡) , (31)
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such that the resultant closed loop system (24) is regular and
impulse free and achieves its maximal dynamical order 𝜏max =

rank[𝐸
𝑇

𝐶
𝑇

], where 𝐿
11
is any matrix of full column rank.

Proof. Proceeding as in the proof ofTheorem 6, the left-hand
side of (28) is equal to

rank

[
[
[
[
[
[
[

[

𝐸
1

0 𝐴
1

𝐴
2

[
𝐿
12

0

0 0
] [

𝐿
11

0

0 0
] [

𝐴
31

𝐴
32

𝐴
41

𝐴
42

] [
𝐴
33

𝐴
34

𝐴
43

𝐴
44

]

0 0 𝐸
1

0

0 0 [
𝐿
12

0

0 0
] [

𝐿
11

0

0 0
]

]
]
]
]
]
]
]

]

= rank

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐸
1

0 0 [
0 𝐴
14

0 𝐴
24

]

[
𝐿
12

0

0 0
] [

𝐿
11

0

0 0
] 0 [

0 𝐴
34

0 𝐴
44

]

0 0 𝐸
1

0

0 0 0 [
𝐿
11

0

0 0
]

]
]
]
]
]
]
]
]
]
]
]
]

]

= 𝑛
1

+ [
𝐸

𝐶
] + rank[

[

𝐿
11

𝐴
34

− [𝐿
12

0] 𝐸
−1

1
[
𝐴
14

𝐴
24

]

0 𝐴
44

]

]

.

(32)

The property of left zero divisor, together with the above
discussion, yields that (30) can guarantee regularity and
nonimpulsiveness of system (24) in the case that rank[𝐸 𝐵] >

rank[𝐸
𝑇

𝐶
𝑇

]. This completes the proof.

Remark 8. Theorems 6 and 7 propose the sufficient condi-
tions under which the resultant closed loop system (24) is
regular and impulse free and has the maximal dynamical
order in the case of rank[𝐸 𝐵] > rank[𝐸

𝑇

𝐶
𝑇

]. Intuitively,
the condition in Theorem 7, to some extent, relaxes that in
Theorem 6 by introducing a parameterizedmatrix. As proved
in the case of rank[𝐸 𝐵] > rank[𝐸

𝑇

𝐶
𝑇

], the results for
the case of rank[𝐸 𝐵] ≤ rank[𝐸

𝑇

𝐶
𝑇

], which integrate the
results for the maximal dynamical order case, can also be
obtained. For the sake of simplicity, the proof is omitted here.

Theorem 9. If

rank [𝐸 𝐵] ≤ rank [𝐸
𝑇

𝐶
𝑇

] ,

rank [𝐴
43

𝑆
𝐿
11

𝐴
44

] = 𝑛 − rank [𝐸 𝐵]

(33)

then there exists a derivative output feedback of the following
form:

𝑢 = −𝑄
−1

[
𝐿
11

0

0 0
] �̃�
−1

̇𝑦, (34)

such that the resultant closed loop system (24) is regular and
impulse free and achieves its maximal dynamical order 𝜏max =

rank[𝐸 𝐵], where 𝐿
11
is any matrix of full row rank.

Theorem 10. If

rank [𝐸 𝐵] ≤ rank [𝐸
𝑇

𝐶
𝑇

] (35)

and a matrix 𝐿
21

∈ R𝑚2×𝑙1 satisfies

rank [(𝐴
43

− [𝐴
41

𝐴
42

] 𝐸
−1

1
[
𝐿
21

0
]) 𝑆
𝐿
11

𝐴
44

]

= 𝑛 − rank [𝐸 𝐵]

(36)

then there exists a derivative output feedback of the following
form:

𝑢 (𝑡) = 𝑄
−1

[
𝐿
11

0

𝐿
21

0
] �̃�
−1

̇𝑦 (𝑡) , (37)

such that the resultant closed loop system (24) is regular and
impulse free and achieves its maximal dynamical order 𝜏max =

rank[𝐸 𝐵], where 𝐿
11
is any matrix of full row rank.

4.2. Impulse EliminationwithMinimal Dynamical Order 𝜏min.
To facilitate the subsequent development and without loss of
generality, 𝐸

1
is assumed to be in the following form:

𝐸
1

= [

[

𝐸
11

[𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

, (38)

where the dimension of 𝐸
11
is consistent with that of 𝐿

22
, 𝐸
12

is full column rank, and 𝐸
21
is full row rank.

Remark 11. It should be mentioned that 𝐸
1
can be trans-

formed to form (38) by proper matrix transformations which
will not change the structures of𝐵

1
and𝐶

1
. In order to explain

this statement clearly, let 𝐸
1
be partitioned as follows:

𝐸
1

= [
𝐸
11

𝐸
12

𝐸
21

𝐸
22

] . (39)

Since 𝐸
1
is nonsingular, we can have that [𝐸

21
𝐸
22

] is of full
row rank; then there exists a nonsingular matrix 𝑃

1
such that

𝑃
1

[𝐸
21

𝐸
22

] = [
𝐸
21

𝐸
2

0 𝐸
3

] . (40)

Thus 𝐸
3
is of full row rank; then there exist nonsingular

matrices 𝑃
2
and 𝑄

1
such that

𝑃
2
𝐸
3
𝑄
1

= [0 𝐼] , 𝐸
2
𝑄
1

= [𝐸
22

𝐸
23

] ,

𝐸
12

𝑄
1

= [𝐸
12

𝐸
13

] ,

(41)

which yields that

[

[

𝐼 0 0

0 𝐼 0

0 0 𝑃
2

]

]

[
𝐼 0

0 𝑃
1

] 𝐸
1

[
𝐼 0

0 𝑄
1

] = [

[

𝐸
11

𝐸
12

𝐸
13

𝐸
21

𝐸
22

𝐸
23

0 0 𝐼

]

]

. (42)
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Consequently, somepropermatrix transformations show that

𝐸 → [

[

𝐸
11

𝐸
12

𝐸
13

𝐸
21

𝐸
22

𝐸
23

0 0 𝐼

]

]

→ [

[

𝐸
11

𝐸
12

0

𝐸
21

𝐸
22

0

0 0 𝐼

]

]

. (43)

The nonsingularity of 𝐸
1
implies that [𝐸

21
𝐸
22

] is of full
row rank and [

𝐸
12

𝐸
22

] is of full column rank. Repeat the
aforementioned step; then the process will terminate if and
only if 𝐸

1
can be transformed to

[
[

[

𝐸
11

[𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]
]

]

(44)

in which 𝐸
12

is full column rank, and 𝐸
21

is full row rank.
Otherwise, 𝐸

1
will have the following form:

[
𝐸
11

0

0 𝐼
] . (45)

Since𝐸
11
may be rectangular and𝐸

1
is square, the above form

does not always hold. Thus, by proper matrix transforma-
tions, 𝐸

1
can be transformed into

[
[

[

𝐸
11

[𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]
]

]

. (46)

Inwhat follows, it will be found that some results benefit from
this special form of 𝐸

1
.

Actually, from the proof ofTheorem 5, it is shown that the
minimal dynamical order of the system (24) is

𝜏min = rank[
[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]
]

]

. (47)

To admit theminimal dynamical order, we present a sufficient
condition as follows.

Theorem 12. If the condition

rank[
[

[

𝑇
𝐸
12

𝐴
11

𝑆
𝐸
21

𝑇
𝐸
12

[𝐴
13

𝐴
14

]

[
𝐴
31

𝐴
41

] 𝑆
𝐸
21

𝐴
4

]
]

]

= 𝑛 − 𝜏min (48)

holds and system (4) is impulse free, then there exists a
derivative output feedback of the form

𝑢 (𝑡) = −𝑄
−1

[
0 0

0 −𝐸
11

] �̃�
−1

̇𝑦 (𝑡) (49)

such that the resultant closed loop system (24) is regular and
impulse free and achieves its minimal dynamical order 𝜏min.

Proof. Substituting 𝐿 = 𝑄
−1

[
0 0

0 −𝐸
11

] �̃�
−1 into (28) yields

rank

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

0 [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] [
𝐴
13

𝐴
14

𝐴
23

𝐴
24

]

0 0 [
𝐴
31

𝐴
32

𝐴
41

𝐴
42

] 𝐴
4

0 0 [

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

0

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= rank

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

0 [
𝐴
11

0

0 0
] [

𝐴
13

𝐴
14

0 0
]

0 0 [
𝐴
31

0

𝐴
41

0
] 𝐴

4

0 0 [

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

0

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 𝑛 + rank[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

.

(50)
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Hence, (28) holds if the condition

rank
[
[
[

[

𝑇
𝐸
12

𝐴
11

𝑆
𝐸
21

𝑇
𝐸
12

[𝐴
13

𝐴
14

]

[
𝐴
31

𝐴
41

] 𝑆
𝐸
21

𝐴
4

]
]
]

]

= 𝑛 − 𝜏min (51)

is satisfied. This completes the proof.

In particular, if the 𝐴
4
is nonsingular, condition (48)

turns to be

rank {𝑇
𝐸
12

(𝐴
11

− [𝐴
13

𝐴
14

] 𝐴
−1

4
[
𝐴
31

𝐴
41

]) 𝑆
𝐸
21

}

= 𝑛
1

− 𝜏min.

(52)

4.3. Impulse Elimination with Dynamical Order in [𝜏min, 𝑛
1
]

Theorem 13. If 𝐿
Ω
1
⋅Ω
2

satisfies

rank

[
[
[
[
[
[
[
[
[
[

[

𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
11

𝑆
𝐸
21

𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
[𝐴
12

[
𝐼
6

0
] 𝐴
13

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
14

𝐴
31

𝑆
𝐸
21

[𝐴
32

[
𝐼
6

0
] 𝐴
33

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
34

𝐴
41

𝑆
𝐸
21

[𝐴
42

[
𝐼
6

0
] 𝐴
43

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
44

]
]
]
]
]
]
]
]
]
]

]

= 𝑛 − rank
[
[
[

[

0 [𝐿
Ω
1

𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]
]
]

]

− 𝜏

(53)

then there exists a derivative output feedback of the form

𝑢 = −𝑄
−1

[
0 0

𝐿
Ω
1
,Ω
2

−𝐸
11

] �̃�
−1

̇𝑦 (54)

such that the resultant closed loop system (24) is regular and
impulse free and has the dynamical order

𝜏 + rank[

[

0 [𝐿
Ω
1

𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

, (55)

which takes values in the interval [𝜏min, 𝑛
1
], where [

𝐼
6

0
] is

the right zero divisor of [
0 0

0 𝐼
5
]. Sets Ω

1
, Ω


2
are, respectively,

contained in sets {1, 2, . . . , 𝑚
2
}, {1, 2, . . . , 𝑙

1
}. Ω
1
, Ω


2
are the

complement of sets Ω
1
, Ω


2
relative to sets {1, 2, . . . , 𝑚

2
},

{1, 2, . . . , 𝑙
1
}, respectively. 𝐿

Ω
1
⋅Ω


2

is the 𝑚
2

× 𝑙
1
-dimensional

matrix whose elements are 1 only in the corresponding rows and
columns belonging to the sets Ω

1
, Ω
2
, the remaining elements

are 0, and 𝐿
Ω
1

is the 𝑚
2

× 𝑚
2
-dimensional matrix where the

main diagonal elements whose rows belong to Ω
1
are specified

to 1 and others are 0. Obviously, 𝐿
Ω
1

is the left zero divisor of
𝐿
Ω
1
⋅Ω


2

. Note that rank 𝐿
Ω
1
,Ω


2

= 𝜏.

Proof. Combining (54) into (28) gives

rank

[
[
[
[
[
[
[
[
[
[
[
[

[

[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

[
𝐿
Ω
1
,Ω


2

0

0 0
] 𝐴

1
𝐴
2

0 0 𝐴
3

𝐴
4

0 0 [

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

[
𝐿
Ω
1
,Ω


2

0

0 0
]

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]
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= rank

[
[
[
[
[
[
[
[
[
[
[
[
[

[

[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

[
𝐿
Ω
1
,Ω


2

0

0 0
] [

𝐴
11

𝐴
12

0 0
] [

𝐴
13

𝐴
14

0 0
]

0 0 [
𝐴
31

𝐴
32

𝐴
41

𝐴
42

] [
𝐴
33

𝐴
34

𝐴
43

𝐴
44

]

0 0 [

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

[
𝐿
Ω
1
,Ω


2

0

0 0
]

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

= rank

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

[
𝐿
Ω
1
,Ω


2

0

0 0
] [

[

𝐴
11

𝐴
12

[
𝐼
6

0

0 0
]

0 0

]

]

[
𝐴
13

𝐴
14

0 0
]

0 0

[
[
[

[

𝐴
31

𝐴
32

[
𝐼
6

0

0 0
]

𝐴
41

𝐴
42

[
𝐼
6

0

0 0
]

]
]
]

]

[
𝐴
33

𝐴
34

𝐴
43

𝐴
44

]

0 0 [

[

0 [𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]

]

[
𝐿
Ω
1
,Ω


2

0

0 0
]

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 2 rank
[
[
[

[

0 [𝐸
12

0] 𝐿
Ω
1
,Ω


2

[
𝐸
21

0
] [

0 0

0 𝐼
5

] 0

]
]
]

]

+ rank

[
[
[
[
[
[
[
[

[

𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
11

𝑆
𝐸
21

𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
[𝐴
12

[
𝐼
6

0
] 𝐴
13

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
14

𝐴
31

𝑆
𝐸
21

[𝐴
32

[
𝐼
6

0
] 𝐴
33

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
34

𝐴
41

𝑆
𝐸
21

[𝐴
42

[
𝐼
6

0
] 𝐴
43

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
44

]
]
]
]
]
]
]
]

]

= 𝑛 + rank
[
[
[

[

0 [𝐸
12

0] 𝐿
Ω
1
,Ω


2

[
𝐸
21

0
] [

0 0

0 𝐼
5

] 0

]
]
]

]

(56)

which is equivalent to

rank

[
[
[
[
[
[
[
[

[

𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
11

𝑆
𝐸
21

𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
[𝐴
12

[
𝐼
6

0
] 𝐴
13

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝑇
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
14

𝐴
31

𝑆
𝐸
21

[𝐴
32

[
𝐼
6

0
] 𝐴
33

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
34

𝐴
41

𝑆
𝐸
21

[𝐴
42

[
𝐼
6

0
] 𝐴
43

] 𝑆
[𝐸
12
𝐿
Ω1,Ω


2

]
𝐴
44

]
]
]
]
]
]
]
]

]

= 𝑛 − rank
[
[
[

[

0 [𝐿
Ω
1

𝐸
12

0]

[
𝐸
21

0
] [

0 0

0 𝐼
5

]

]
]
]

]

− 𝜏.

(57)

This completes the proof.
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4.4. Impulse Elimination with Dynamical Order in [𝑛
1
,𝜏max]

Theorem 14. If 𝐿
Ω


1
,Ω


2

satisfies

rank [

𝐿
Ω



1

𝐴
33

𝐿
Ω



2

𝐿
Ω



1

𝐴
34

𝐴
43

𝐿
Ω



2

𝐴
44

] = 𝑛
2

− 𝜏 (58)

then there exists a derivative output feedback of the form

𝑢 = −𝑄
−1

[
𝐿
Ω


1
,Ω


2

0

0 0
] �̃�
−1

̇𝑦 (59)

such that the resultant closed loop system (24) is regular and
impulse free and has the dynamical order 𝑛

1
+ 𝜏, where

sets Ω


1
, Ω


2
are, respectively, contained in sets {1, 2, . . . , 𝑚

1
},

{1, 2, . . . , 𝑙
1
}. Ω
1
, Ω


2
are the complement of sets Ω



1
, Ω


2
relative

to sets {1, 2, . . . , 𝑚
1
} and {1, 2, . . . , 𝑙

1
}, respectively. 𝐿

Ω


1
⋅Ω


2

is the
𝑚
1

× 𝑙
1
-dimensional matrix whose elements are 1 only in the

corresponding rows and columns belonging to the sets Ω


1
and

Ω


2
, the remaining elements are 0, and 𝐿

Ω
1

is the 𝑚
1

× 𝑚
1
-

dimensional matrix where the main diagonal elements whose
rows belong to Ω



1
are specified to 1 and others are 0. Obviously,

𝐿
Ω



1

is the left zero divisor of 𝐿
Ω


1
⋅Ω


2

. Similarly, 𝐿
Ω



2

is the right
zero divisor of 𝐿

Ω


1
⋅Ω


2

. Note rank 𝐿
Ω


1
⋅Ω


2

= 𝜏.

Proof. Substitute 𝐿 = 𝑄
−1

[
𝐿
Ω


1
,Ω


2

0

0 0

] �̃�
−1 into (28); then we

obtain

rank

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐸
1

0 𝐴
1

𝐴
2

0 (
𝐿
Ω


1
,Ω


2

0

0 0
) 𝐴
3

𝐴
4

0 0 𝐸
1

0

0 0 0 (
𝐿
Ω


1
,Ω


2

0

0 0
)

]
]
]
]
]
]
]
]
]
]
]
]

]

= 𝑛 + 𝑛
1

+ 𝜏

(60)

which is equivalent to

rank[

[

𝐿
Ω



1

𝐴
33

𝐿
Ω



2

𝐿
Ω



1

𝐴
34

𝐴
43

𝐿
Ω



2

𝐴
44

]

]

= 𝑛
2

− 𝜏. (61)

This completes the proof.

5. Illustrative Examples

This section presents three numerical examples to verify the
effectiveness of the results obtained in this paper.

Example 1. Consider the circuit depicted in Figure 1, which
is taken form [26]. As shown, besides an independent voltage
source, a capacitor, and an inductor, the circuit also includes
a current-controlled current source.

ref

L

Cu(t)

il

iu
s(t)iu

e

Figure 1: A circuit system.

By referring to [26], we can formulate the system model
of the circuit system as follows:

(𝐶𝑒)


+ 𝑖
𝑙
+ (𝑠 (𝑡) − 1) 𝑖

𝑢
= 0,

(𝐿𝑖
𝑙
)


− 𝑒 = 0,

𝑒 = 𝑢 (𝑡) .

(62)

It should be noticed that when the input of the system is
the step function, pulse current phenomenon will appear and
the circuit may be damaged.Thus, eliminating the impulse of
the system is necessary. By normalizing𝐶 = 𝐿 = 1 and letting
𝑎 = 𝑠(𝑡) − 1 ̸= 0, provided that we define 𝑥

𝑇

= [𝑒
𝑇

𝑖
𝑇

𝑙
𝑖
𝑇

𝑢
] and

𝑦 = 𝑖
𝑢
, then the system (62) can be written in the descriptor

form
𝐸�̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 (63)

with

𝐸 = [

[

1 0 0

0 1 0

0 0 0

]

]

, 𝐴 = [

[

0 1 𝑎

1 0 0

−1 0 0

]

]

,

𝐵 = [

[

0

0

1

]

]

, 𝐶 = [0 0 1] .

(64)

Indeed, some matrix computations give the following
facts:

(1)

det (𝐸 − 𝐴) = det[

[

1 −1 𝑎

1 1 0

−1 0 0

]

]

̸= 0, (65)

means that system (63) is regular;
(2)

rank [
𝐸 𝐴

0 𝐸
] = rank

[
[
[
[
[
[
[

[

1 0 0 0 1 𝑎

0 1 0 −1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

= 4 < 5 = 𝑛 + rank𝐸,

(66)

therefore system (63) is impulsive;
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(3)

rank𝐸 = rank[

[

1 0 0

0 1 0

0 0 0

]

]

= 2, (67)

thus the dynamic order is 2.

It is easy to verify that the coefficient matrices of (63)
fall into the case of Theorem 9, and it follows that the
derivative output feedback of the form 𝑢 = −𝐿 ̇𝑦 with a
nonzero scalar 𝐿 can eliminate the impulsive behavior and
furthermore make the resultant closed loop system possess
maximal dynamical order. After applying the above feedback
controller, the resultant closed loop system is

[

[

1 0 0

0 1 0

0 0 𝐿

]

]

�̇� = 𝐴𝑥. (68)

From Lemma 2, it is shown that

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
]

= rank

[
[
[
[
[
[
[

[

1 0 0 0 1 𝑎

0 1 0 1 0 0

0 0 𝐿 −1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 𝐿

]
]
]
]
]
]
]

]

= 6

= 𝑛 + rank (𝐸 + 𝐵𝐿𝐶)

(69)

which means that the resultant closed loop system (68) is
impulse free.

Actually, for the resultant closed loop system (68), if scalar
𝐿 = 0, then the resultant closed loop system (68) possesses
dynamical order 2 (theminimal dynamical order by referring
to Lemma 3). It is easy to find that the resultant closed loop
systems by any derivative output feedback whose dynamical
order is 2 are impulsive.

In order to compare our results with [24], the parameters
that arise in Corollary 3 of [24] are shown as

𝑟
𝑒𝛾

= 3, 𝑟
𝑒𝑏

= 3, 𝑟
𝑒𝑏𝛾

= 3, 𝑇
𝑒𝑏

= [

[

0

0

0

]

]

,

𝑆
𝑒𝛾

= [

[

0

0

0

]

]

, �̃�
𝑒𝛾

= [

[

0

0

1

]

]

, 𝑆
𝑒𝑏

= [

[

0

0

1

]

]

,

(70)

where Γ = 𝐶 with 𝐶 defined in this paper.
Combining (63) with (70), we can have

rank (�̃�
𝑇

𝑒𝛾
𝐴𝑆
𝑒𝑏

) = 0, rank (�̃�
𝑇

𝑒𝛾
𝐴𝑆
𝑒𝛾

) = 0,

rank (𝑇
𝑇

𝑒𝑏
𝐴𝑆
𝑇

𝑒𝑏
) = 0, rank (𝑇

𝑇

𝑒𝑏
𝐴𝑆
𝑒𝛾

) = 0,

rank((�̃�
0

𝑒𝛾
)
𝑇

[
𝐴

𝐶
] 𝑆
𝑒𝛾

) = 0.

(71)

After a little manipulation, it is easily checked that the
parameters in this case satisfy the conditions of Corollary 3 in
[24], from which only the dynamical order 3 can be achieved
such that resultant closed loop system is both regular and
impulse free by derivative output feedback. Although the
criteria in this paper are only sufficient, from this example,
it can be observed that our results are not more conservative
to use the derivative output feedback to eliminate impulse
than Corollary 3 in [24]. Compared with [24], the design
process for derivative output feedback is not guaranteed in a
numerically stable way, but thismethodmay provide a simple
way to realize regularity and nonimpulsiveness under certain
circumstance.

Example 2. Consider a descriptor system

𝐸�̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 (72)

with the following parameters:

𝐸 =

[
[
[

[

1 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

]
]
]

]

, 𝐴 =

[
[
[

[

−1 2 3 4

3 1 4 −1.5

1.5 −1 1 −2

−2.5 0 0 −1

]
]
]

]

,

𝐵 =

[
[
[

[

1 −2

−0.5 1

−3 2

0 0

]
]
]

]

, 𝐶 = [0 −1 0 1] .

(73)

Simple manipulations show that

(1)

det (𝐸 − 𝐴) =

[
[
[

[

2 −2 −3 −4

−3 −1 −4 2.5

−1.5 1 −1 2

2.5 0 0 1

]
]
]

]

̸= 0, (74)

implies that system (72) is regular;

(2)

rank [
𝐸 𝐴

0 𝐸
] = rank

[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 −1 2 3 4

0 0 0 1 3 1 4 −1.5

0 0 0 0 1.5 −1 1 −2

0 0 0 0 −2.5 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

= 5 < 6 = 𝑛 + rank𝐸,

(75)

thus system (72) is impulsive;

(3) the dynamic order is 2;
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rank [
𝐸 𝐴 𝐵

0 𝐸 0
]

= rank

[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 −1 2 3 4 1 −2

0 0 0 1 3 1 4 −1.5 −0.5 1

0 0 0 0 1.5 −1 1 −3 2 0

0 0 0 0 −2.5 0 0 −1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

= 5 < 6 = 𝑛 + rank𝐸,

(76)

yields that the system (72) is not impulse controllable.
Consequently, we cannot use the state feedback to
eliminate the impulse.

Selecting

𝑃 =

[
[
[

[

1 0 0 0

0.5 1 0 0

0 0 1 0

0 0 0 1

]
]
]

]

, 𝑄 =

[
[
[

[

0 1 0 0

1 0 −1 0

0 0 0 1

1 0 0 0

]
]
]

]

�̃� = 1,

𝑄 = [
−3 2

1 −2
] ,

(77)

together with (7) and (8), then we have

𝑃𝐸𝑄 =

[
[
[

[

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

]
]
]

]

, 𝑃𝐴𝑄 =

[
[
[

[

−4 6 −2 3

1.25 2.5 −2 5.5

3 −3 1 1

−2 −1 0 0

]
]
]

]

,

𝑃𝐵𝑄 =

[
[
[

[

0 1

0 0

1 0

0 0

]
]
]

]

, �̃�𝐶𝑄 = [0 0 1 0] .

(78)

Using Lemma 3 and Theorem 5, we obtain that the range of
possibly dynamical orders of the resultant closed loop system
assigned by derivative output feedback is {2, 3}.

From (78), it is shown that

𝐴
33

= 1, 𝐴
34

= 1, 𝐴
43

= 0, 𝐴
44

= 0 (79)

choose 𝐿
Ω
1
,Ω


2

= 1 which implies 𝐿
Ω
1

= 𝐿
Ω



2

= 0; by applying
Theorem 13, we can obtain that

rank [

𝐴
33

𝐿
Ω



2

𝐴
34

𝐴
43

𝐿
Ω



2

𝐴
44

] = rank [
0 1

0 0
]

= 1 = 4 − rank [
1 0

0 1
] − 1

(80)

which satisfies condition (53); thus there exists a derivative
output feedback

𝑢 = [
5

7.5
] ̇𝑦 (81)

such that the resultant closed loop system is impulse free and
achieves its minimal dynamical order 2 at the same time.

Unfortunately, by checking the conditions in themaximal
dynamical order section, we cannot determine whether the
impulse of the resultant closed loop system can be elimi-
nated by derivative output feedback in the case of maximal
dynamical order.Therefore, substituting the derivative output
feedback of the generic form

𝑢 = −𝑄
−1

[
𝐿
1

𝐿
2

] �̃�
−1

̇𝑦 (82)

with 𝐿
1

̸= 0 into the system (72) results in the following
resultant closed loop system:

𝑃

[
[
[

[

1 0 𝐿
2

0

0 1 0 0

0 0 𝐿
1

0

0 0 0 0

]
]
]

]

𝑄�̇� = 𝐴𝑥. (83)

According to

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
]

= rank

[
[
[
[
[
[
[
[
[
[

[

1 0 𝐿
2

0 −4 6 −2 −3

0 1 0 0 1.25 2.5 −2 5.5

0 0 𝐿
1

0 3 −3 1 1

0 0 0 0 −2 −1 0 0

0 0 0 0 1 0 𝐿
2

0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 𝐿
1

0

0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

= 6 < 4 + 3 = 𝑛 + rank (𝐸 + 𝐵𝐿𝐶)

(84)

it is shown that the resultant closed loop system is not impulse
free. Therefore, the resultant closed loop system (83) cannot
achieve the maximal dynamical order and be impulse free by
any derivative output feedback simultaneously.

We are now turning to the comparison between our
results and [24]. An easy calculation gives the parameters in
[24]:

𝑟
𝑒𝛾

= 3, 𝑟
𝑒𝑏

= 3, 𝑟
𝑒𝑏𝛾

= 4,

𝑇
𝑒𝑏

=

[
[
[

[

0

0

0

1

]
]
]

]

, 𝑆
𝑒𝛾

=

[
[
[

[

0

0

1

0

]
]
]

]

, �̃�
𝑒𝛾

=

[
[
[

[

0 0

0 0

1 0

0 1

]
]
]

]

,

𝑆
𝑒𝑏

=

[
[
[

[

0 0 0

1 −1 0

0 0 1

1 0 0

]
]
]

]

(85)



12 Journal of Applied Mathematics

from which we have

rank (�̃�
𝑇

𝑒𝛾
𝐴𝑆
𝑒𝑏

) = rank [
3 1 1

−2 0 0
] = 2,

rank (�̃�
𝑇

𝑒𝛾
𝐴𝑆
𝑒𝛾

) = rank [
1

0
] = 1,

rank (𝑇
𝑇

𝑒𝑏
𝐴𝑆
𝑒𝑏

) = rank [−2 0 0] = 1,

rank (𝑇
𝑇

𝑒𝑏
𝐴𝑆
𝑒𝛾

) = 0.

(86)

By checking the conditions of Corollary 3 in [24], we
obtain that the dynamical order 2 can be assigned by
derivative output feedback, with which the resultant closed
loop system is regular and impulse free. Thus, this example
implies that both our results and Corollary 3 in [24] have the
same ability to deal with the impulse elimination problems by
derivative output feedback.

Example 3. Consider a descriptor system
𝐸�̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 (87)

with the following parameters:

𝐸 =

[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]

]

, 𝐴 =

[
[
[
[
[

[

−1 1 0 −2 0

1 0 0 0 1

1 1 0 0 0

1 0 0 0 1

2 0 0 1 0

]
]
]
]
]

]

,

𝐵
𝑇

= 𝐶 = [

[

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]

]

.

(88)

It is easy to show that
(1)

det (𝐸 − 𝐴) =

[
[
[
[
[

[

2 −1 0 2 0

−1 1 0 0 −1

−1 −1 0 0 0

−1 0 0 0 −1

−2 0 0 −1 0

]
]
]
]
]

]

̸= 0, (89)

means that the system (87) is regular;
(2)

rank [
𝐸 𝐴

0 𝐸
]

= rank

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 −1 1 0 −2 0

0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 2 0 0 1 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 6 < 7 = 𝑛 + rank𝐸

(90)

thus the system (87) is impulsive;

(3) the dynamical order is 2.

If we choose the following transformation matrices asso-
ciated with (7) and (8):

𝑃 = 𝑄 =

[
[
[
[
[

[

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

]
]
]
]
]

]

, �̃� = [

[

0 0 1

1 0 0

0 1 0

]

]

,

𝑄 = [

[

0 1 0

0 0 1

1 0 0

]

]

,

(91)

then we have

𝑃𝐸𝑄 =

[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]

]

, 𝑃𝐴𝑄 =

[
[
[
[
[

[

0 1 0 0 1

1 −1 0 −2 0

1 1 0 0 0

0 1 0 0 1

0 2 0 1 0

]
]
]
]
]

]

,

𝑃𝐵𝑄 =

[
[
[
[
[

[

0 0 1

0 0 0

1 0 0

0 1 0

0 0 0

]
]
]
]
]

]

, �̃�𝐶𝑄 = [

[

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

]

]

.

(92)

Combining the above matrix with Lemma 3 and Theorem 5,
we obtain that the range of possibly dynamical orders of the
resultant closed loop system assigned by derivative output
feedback is {1, 2, 3, 4}.

Provided that dynamical order of the resultant closed
loop system is 1 or 4, corresponding to minimal dynamical
order or maximal dynamical order, respectively, by checking
the associated conditions proposed in this paper, we cannot
find a derivative output feedback to meet the need for
nonimpulsiveness in the case of minimal dynamical order
or maximal dynamical order. Actually, for this example, any
derivative output feedback cannot realize the goal both for
desirable dynamical order (minimal case or maximal case)
and for nonimpulsiveness, which is illustrated by the detailed
analysis below.

Without loss of generality, it is assumed that

𝑢 = −𝐿 ̇𝑦 = [

[

𝐿
11

𝐿
12

𝐿
13

𝐿
21

𝐿
22

𝐿
23

𝐿
31

𝐿
32

𝐿
33

]

]

̇𝑦, (93)

which gives the resultant closed loop system

[
[
[
[
[

[

1 0 0 0 0

0 1 + 𝐿
11

𝐿
12

𝐿
13

0

0 𝐿
21

𝐿
22

𝐿
23

0

0 𝐿
31

𝐿
32

𝐿
33

0

0 0 0 0 0

]
]
]
]
]

]

�̇� = 𝐴𝑥. (94)
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(1) When 𝐿 = [
−1 0 0

0 0 0

0 0 0

], the dynamical order of the
resultant closed loop system (94) is 1, and

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
]

= rank

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 −1 1 0 −2 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 2 0 0 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 5 < 5 + 1 = 𝑛 + rank (𝐸 + 𝐵𝐿𝐶)

(95)

means that the resultant closed loop system is not
impulse free. Therefore, the resultant closed loop
system (94) cannot achieve the minimal dynamical
order and be impulse free simultaneously.

(2) When 𝐿 = [
1 0 0

0 1 0

0 0 1

], the dynamical order of the
resultant closed loop system (94) is 4, whereas the
resultant closed loop system is not impulse free which
can be explained by the following fact:

rank [
𝐸 + 𝐵𝐿𝐶 𝐴

0 𝐸 + 𝐵𝐿𝐶
]

= rank

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 −1 1 0 −2 0

0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 2 0 0 1 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 8 < 5 + 4 = 𝑛 + rank (𝐸 + 𝐵𝐿𝐶) .

(96)

Therefore, the resultant closed loop system (94) cannot
achieve the maximal dynamical order and be impulse free at
the same time.

It is observed from (92) that

𝐴
11

= 0, 𝐴
13

= [0 0] ,

𝐴
14

= 1, 𝐴
31

= [
1

0
] , 𝐴

41
= 0,

𝐴
33

= [
0 0

0 0
] , 𝐴

34
= [

0

1
] , 𝐴

43
= [0 1] , 𝐴

44
= 0.

(97)

If we let 𝐿
Ω
1
,Ω


2

= [1 0], then we can have 𝐿
Ω
1

= 0, 𝐿
Ω



2

=

[
0 0

0 1
]. It follows fromTheorem 13 that

rank[

[

𝐿
Ω
1

𝐴
11

𝐿
Ω
1

𝐴
13

𝐿
Ω


2

𝐿
Ω
1

𝐴
14

𝐴
31

𝐴
33

𝐿
Ω


2

𝐴
34

𝐴
41

𝐴
43

𝐿
Ω


2

𝐴
44

]

]

= rank
[
[
[

[

0 0 0 0

1 0 0 0

0 0 0 1

0 0 1 0

]
]
]

]

= 3 = 5 − rank [
0 0

0 1
] − 1

(98)

implies that there exists a derivative output feedback of the
form

𝑢 = [

[

−1 1 0

0 0 0

0 0 0

]

]

̇𝑦 (99)

such that the resultant closed loop system is impulse free and
has dynamical order 2.

If we choose 𝐿
Ω


1
,Ω


2

= [
1 0

0 0
], which leads to 𝐿

Ω



1

= [
0 0

0 1
],

𝐿
Ω



2

= [
0 0

0 1
], then by applyingTheorem 14,

rank[

𝐿
Ω



1

𝐴
33

𝐿
Ω



2

𝐿
Ω



1

𝐴
34

𝐴
43

𝐿
Ω



2

𝐴
44

]

= rank[

[

0 0 0

0 0 1

0 1 0

]

]

= 2 = 3 − 1

(100)

implies that the derivative output feedback

𝑢 = [

[

0 0 0

0 1 0

0 0 0

]

]

̇𝑦 (101)

can ensure the resultant closed loop system whose dynamical
order is assigned to 3 to be impulse free.

Proceeding as in Examples 1 and 2, the parameters of
Corollary 3 in [24] can be obtained as

𝑟
𝑒𝛾

= 4, 𝑟
𝑒𝑏

= 4, 𝑟
𝑒𝑏𝛾

= 6, 𝑇
𝑒𝑏

=

[
[
[
[
[

[

0

0

0

0

1

]
]
]
]
]

]

,

𝑆
𝑒𝛾

=

[
[
[
[
[

[

0

0

0

0

1

]
]
]
]
]

]

, �̃�
𝑒𝛾

= 𝑆
𝑒𝑏

=

[
[
[
[
[

[

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]
]
]
]
]

]

(102)
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from which we have

rank (�̃�
𝑇

𝑒𝛾
𝐴𝑆
𝑒𝑏

) = rank
[
[
[

[

0 0 0 1

1 0 0 0

0 0 0 1

0 0 1 0

]
]
]

]

= 3,

rank (�̃�
𝑇

𝑒𝛾
𝐴𝑆
𝑒𝛾

) = rank
[
[
[

[

1

0

1

0

]
]
]

]

= 1,

rank (𝑇
𝑇

𝑒𝑏
𝐴𝑆
𝑒𝑏

) = rank [0 0 1 0] = 1,

rank (𝑇
𝑇

𝑒𝑏
𝐴𝑆
𝑒𝛾

) = 0.

(103)

It follows from Corollary 3 in [24] that the dynamical
orders which can be assigned by derivative output feedback
are 2 and 3. It can be easily observed that our results coincide
with Corollary 3 in [24], regardless of our results being
sufficient.

As shown above, derivative output feedback can enable
the resultant closed loop system to arrive at any values in
the possible range of the dynamical orders, whereas do not
always enable it to be impulse free simultaneously; that is, the
impulse cannot be completely eliminated by output derivative
feedback for all the possibly dynamical orders. In this case,
we may incorporate the proportional output feedback which
has been studied by many literatures with derivative output
feedback to overcome this.

6. Conclusions

In this paper, the problem of eliminating the impulsive
behavior for descriptor systems by derivative output feedback
has been studied. By virtue of a novelly restricted system
equivalent form of the original system, the set of possibly
dynamical order of the resultant closed loop system by
derivative output feedback is characterized; then for different
range of this set, some sufficient conditions under which the
resultant closed loop system is impulse free via derivative
output feedback are presented;moreover, the designmethods
for derivative output feedback controller are provided. The
illustrative examples have been presented to demonstrate the
applicability of the proposed approach.
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