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This work focuses on the antiperiodic problem of nonautonomous semilinear parabolic evolution equation in the form 𝑢󸀠(𝑡) =

𝐴(𝑡)𝑢(𝑡)+𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ R, 𝑢(𝑡+𝑇) = −𝑢(𝑡), 𝑡 ∈ R, where (𝐴 (𝑡))
𝑡∈R (possibly unbounded), depending on time, is a family of closed

and densely defined linear operators on a Banach space𝑋. Upon making some suitable assumptions such as the Acquistapace and
Terreni conditions and exponential dichotomy on (𝐴 (𝑡))

𝑡∈R, we obtain the existence results of antiperiodic mild solutions to such
problem. The antiperiodic problem of nonautonomous semilinear parabolic evolution equation of neutral type is also considered.
As sample of application, these results are applied to, at the end of the paper, an antiperiodic problem for partial differential equation,
whose operators in the linear part generate an evolution family of exponential stability.

1. Introduction and Motivation

Antiperiodic problems have recently proved to be valuable
tools in the modelling of many phenomena in physical
processes. For the background on this class of problems we
refer the reader to [1–3] and the references therein. For this
reason, much attention is attracted by questions of existence
of antiperiodic solutions to the various antiperiodic problems
represented by linear and nonlinear abstract evolution equa-
tions since the work of Okochi [4] in 1988 (see also [5, 6]).
The literature related to such problems is quite extensive; see,
for instance, Haraux [7] for nonlinear first order evolution
equations in Hilbert spaces and Aftabizadeh et al. [8] and
Aizicovici and Pavel [9] for second order evolution equa-
tions in Hilbert and Banach spaces. In particular, using the
maximal monotone property of the derivative operator with
antiperiodic conditions and the theory of pseudomonotone
perturbations of maximal monotone mappings, Liu [10]
recently studied the antiperiodic problem for nonlinear evo-
lution equation with nonmonotone perturbation of the form

𝑢
󸀠
(𝑡) + 𝐴𝑢 (𝑡) + 𝐺𝑢 (𝑡) = 𝑓 (𝑡) , a.e. 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑇) = −𝑢 (0)

(1)

in a real reflexive Banach space 𝑉, where 𝐴 is monotone
and 𝐺 is not. For more details about development and
applications along this line, see, for example, [1, 11–13] and
the references therein. Let us note that equations in the
research mentioned above are all autonomous.

Motivated by these works, in this paper we will carry out
our investigation to the semilinear nonautonomous parabolic
evolution equation having the form

𝑢
󸀠
(𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (2)

subject to antiperiodic condition

𝑢 (𝑡 + 𝑇) = −𝑢 (𝑡) , 𝑡 ∈ R (3)

in the Banach space 𝑋. Here, R stands for the set of real
numbers, (𝐴(𝑡))

𝑡∈R (possibly unbounded), depending on
time, is a family of closed and densely defined linear operators
on𝑋 and has domains (𝐷(𝐴(𝑡)))

𝑡∈R, and𝑓 is a given function
to be specified later.

Note also that the problem (2)-(3) has been considered
by Wang [14] under different situations, in which the author
proved the existence of antiperiodic mild (strict) solutions in
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the case of (2) being a mild (strict) dissipative differential
equation by using the modular degree theorem. The line,
which we will go along in this study, is that we establish
some results concerning the existence of antiperiodic mild
solutions to the problem (2)-(3) under new criteria (without
the assumption of (2) being dissipative). Then, we also
consider the antiperiodic mild solutions to nonautonomous
semilinear parabolic evolution equation of neutral type

𝑑

d𝑡
[𝑢 (𝑡) − 𝐹 (𝑡, 𝑢 (𝑡))] = 𝐴 (𝑡) 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R.

(4)

Finally, as a sample of possible applications, we give a result
on the existence of antiperiodic mild solutions to a partial
differential equation with homogeneous Dirichlet boundary
condition, whose operator in the linear part generates an
evolution family of exponential stability. As can be seen,
our results extend and unify many existing results in this
area. Banach’s contraction principle, Schauder’s fixed point
theorem, and Krasnoselskii’s fixed point theorem, as well
as the theory of evolution families such as exponential
dichotomy techniques, are employed in our approach. Note
also that the conditions we used in this paper are quite
different from those in [14].

We organize this paper as follows. We present some
definitions and preliminary facts in Section 2. In Section 3,
starting with introducing the assumptions that are needed
in the proofs of our main results, we then establish some
existence theorems of antiperiodic mild solutions to the
problem (2)-(3). In Section 4, we extend the result obtained
in Section 3 to the neutral problem (4). An example is given
to illustrate the theorem in Section 5.

2. Preliminaries

Throughout this paper, 𝑋 is assumed to be a Banach space
with norm ‖ ⋅ ‖ and L(𝑋) stands for the Banach space of
all bounded linear operators from 𝑋 to 𝑋 equipped with its
natural topology. Denote by 𝐶

𝑏
(R; 𝑋) the Banach space of all

bounded, continuous functions from R to 𝑋 equipped with
the sup norm

‖𝑢‖
𝐶𝑏(R;𝑋)

= sup {‖𝑢 (𝑡)‖ ; 𝑡 ∈ R} , (5)

by 𝐿(0, 𝑇;𝑋) the Banach space of all Bocher integrable
functions from [0, 𝑇] to𝑋 equipped with the norm

‖𝑢‖
𝐿(0,𝑇;𝑋)

= ∫

𝑇

0

‖𝑢 (𝑡)‖ d𝑡, (6)

and by 𝐿 loc(R; 𝑋) the set of all locally Bocher integrable
functions from R to𝑋.

A function 𝑢 ∈ 𝐶
𝑏
(R; 𝑋) is said to be 𝑇-antiperiodic if

𝑢 (𝑡 + 𝑇) = −𝑢 (𝑡) , ∀𝑡 ∈ R. (7)

By 𝑃
𝑇𝐴
(R; 𝑋), we denote the set of all 𝑇-antiperiodic

functions from R to 𝑋. It is easy to see that 𝑃
𝑇𝐴
(R; 𝑋),

equipped with the sup norm, is a Banach space. For every
𝑟 > 0, write

Ω
𝑟
= {𝑢 ∈ 𝑃

𝑇𝐴
(R, 𝑋) ; ‖𝑢‖

𝑃𝑇𝐴(R;𝑋)
≤ 𝑟} , (8)

which is convex closed subset of 𝑃
𝑇𝐴
(R, 𝑋).

The following lemma provides some useful information
on compactness criterion, which can be regarded as an
extension of the known Arzéla-Ascoli theorem.

Lemma 1 (see [15, Lemma 3.1]). A set 𝐷 ⊆ 𝑃
𝑇𝐴
(R; 𝑋) is

relatively compact in 𝑃
𝑇𝐴
(R; 𝑋) if𝐷 is equicontinuous and the

set 𝐷(𝑡) := {𝑢(𝑡); 𝑢 ∈ 𝐷} is relatively compact in 𝑋 for every
𝑡 ∈ R.

Definition 2. A family of bounded linear operators 𝑈 =

{𝑈(𝑡, 𝑠)}
𝑡≥𝑠

on a Banach space 𝑋 is called a strongly contin-
uous evolution family if

(1) 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) = 𝑈(𝑡, 𝑠) and 𝑈(𝑡, 𝑡) = 𝐼 for all 𝑡 ≥ 𝑟 ≥ 𝑠

and 𝑡, 𝑟, 𝑠 ∈ R,
(2) the map (𝑡, 𝑠) 󳨃→ 𝑈(𝑡, 𝑠)𝑥 is continuous for all 𝑥 ∈ 𝑋,

𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R.

Throughout the paper, we assume that (𝐴(𝑡))
𝑡∈R is a

family of closed and densely defined operators on 𝑋, which
satisfies the conditions of Acquistapace and Terreni (AT

1
)

and (AT
2
).

(AT
1
) 𝐴(𝑡) are linear operators on𝑋 and there are constants
𝜆
0
≥ 0, 𝜃 ∈ ((𝜋/2), 𝜋), and𝐾

1
≥ 0 such that Σ

𝜃
∪{0} ⊂

𝜌(𝐴(𝑡) − 𝜆
0
) and for all 𝜆 ∈ Σ

𝜃
∪ {0} and 𝑡 ∈ R,

󵄩
󵄩
󵄩
󵄩
𝑅 (𝜆, 𝐴 (𝑡) − 𝜆

0
)
󵄩
󵄩
󵄩
󵄩L(𝑋)

≤

𝐾
1

1 + |𝜆|

. (9)

(AT
2
) There are constants 𝐾

2
≥ 0 and 𝛼, 𝛽 ∈ (0, 1] with

𝛼 + 𝛽 > 1 such that for all 𝜆 ∈ Σ
𝜃
and 𝑡, 𝑠 ∈ R

󵄩
󵄩
󵄩
󵄩
(𝐴 (𝑡) − 𝜆

0
) 𝑅 (𝜆, 𝐴 (𝑡) − 𝜆

0
)

× [𝑅 (𝜆
0
, 𝐴 (𝑡)) − 𝑅 (𝜆

0
, 𝐴 (𝑠))]

󵄩
󵄩
󵄩
󵄩L(𝑋)

≤

𝐾
2
|𝑡 − 𝑠|

𝛼

|𝜆|
𝛽

.

(10)

Here Σ
𝜃
:= {𝜆 ∈ C \ {0}; |𝜆| ≤ 𝜃}.

Conditions (AT
1
) and (AT

2
), which are initiated by

Acquistapace and Terreni [16, 17] for 𝜆
0

= 0, are well
understood and widely used in the literature.

Remark 3. It should be mentioned that when (𝐴(𝑡))
𝑡∈R has

a constant domain 𝐷(𝐴(𝑡)), (AT
2
) can be replaced with the

following: there exist constants𝐾
2
> 0, 0 < 𝜇 ≤ 1 such that

󵄩
󵄩
󵄩
󵄩
(𝐴 (𝑡) − 𝐴 (𝑠)) 𝑅 (𝜆

0
, 𝐴 (𝑟))

󵄩
󵄩
󵄩
󵄩L(𝑋)

≤ 𝐾
2
|𝑡 − 𝑠|

𝜇 (11)

for all 𝑠, 𝑡, 𝑟 ∈ R (see, e.g., [18, 19]).

By an obvious rescaling from [16, Theorem 2.3] and [20,
Theorem 2.1] (see also [17, 21]), it follows that conditions
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(AT
1
) and (AT

2
) ensure that there exists a unique evolution

family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

on𝑋 such that

(I) 𝑈(⋅, 𝑠) ∈ 𝐶
1
((𝑠,∞),L(𝑋)), 𝜕𝑈(𝑡, 𝑠)/𝜕𝑡 = 𝐴(𝑡)𝑈(𝑡, 𝑠)

for 𝑡 > 𝑠, and
󵄩
󵄩
󵄩
󵄩
󵄩
𝐴(𝑡)

𝑘
𝑈 (𝑡, 𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

≤ 𝐶(𝑡 − 𝑠)
−𝑘
; (12)

for 0 < 𝑡 − 𝑠 ≤ 1, 𝑘 = 0, 1;
(II) 𝜕+𝑈(𝑡, 𝑠)𝑥/𝜕𝑠 = −𝑈(𝑡, 𝑠)𝐴(𝑠)𝑥 for 𝑡 > 𝑠 and 𝑥 ∈

𝐷(𝐴(𝑠)) with 𝐴(𝑠)𝑥 ∈ 𝐷(𝐴(𝑠)).

In this case we say that (𝐴(𝑡))
𝑡∈R generates the evolution

family 𝑈.

Definition 4. An evolution family 𝑈 = {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

is called
hyperbolic (or has exponential dichotomy) if there are projec-
tions P(𝑡), 𝑡 ∈ R, that are uniformly bounded and strongly
continuous in 𝑡, and constants𝑁, 𝛿 > 0 such that

(a) 𝑈(𝑡, 𝑠)P(𝑠) = P(𝑡)𝑈(𝑡, 𝑠) for all 𝑡 ≥ 𝑠;
(b) the restriction 𝑈Q(𝑡, 𝑠) : Q(𝑠)𝑋 → Q(𝑡)𝑋 is

invertible for all 𝑡 ≥ 𝑠 (and we set 𝑈Q(𝑠, 𝑡) =

𝑈Q(𝑡, 𝑠)
−1);

(c) ‖𝑈(𝑡,𝑠)P(𝑠)‖L(𝑋)
≤𝑁𝑒

−𝛿(𝑡−𝑠) and ‖𝑈Q(𝑠, 𝑡)Q(𝑡)‖L(𝑋)
≤

𝑁𝑒
−𝛿(𝑡−𝑠) for all 𝑡 ≥ 𝑠.

Here and below Q = 𝐼 − P. Specially, if P(𝑡) = 𝐼 for 𝑡 ∈ R,
then 𝑈 is said to be exponentially stable.

Exponential dichotomy is a classical concept in the study
of the long-term behavior of evolution equations; see [22–24]
and references therein.

3. The Existence of Antiperiodic
Mild Solutions

In this section we establish some existence theorems of
antiperiodic mild solutions to the problem (2)-(3).

To prove our main results, we introduce the following
assumptions. For sake of brevity, put 𝐵

𝑟
:= {𝑥 ∈ 𝑋; ‖𝑥‖ ≤ 𝑟}

for some 𝑟 > 0.

(H
1
) The evolution family 𝑈 = {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, generated by

(𝐴(𝑡))
𝑡∈R, is hyperbolic.Moreover,𝑈(𝑡+𝑇, 𝑠+𝑇)P(𝑠+

𝑇) = 𝑈(𝑡, 𝑠)P(𝑠) for all 𝑡 ≥ 𝑠, and𝑈Q(𝑡+𝑇, 𝑠+𝑇)Q(𝑠+
𝑇) = 𝑈Q(𝑡, 𝑠)Q(𝑠) for all 𝑡 ≤ 𝑠.

(H
2
) The function 𝑓 : R × 𝑋 → 𝑋 satisfies the following
conditions.

(i) 𝑓(⋅, 𝑢) is measurable for each 𝑢 ∈ 𝑋 and 𝑓(𝑡 +

𝑇, −𝑢) = −𝑓(𝑡, 𝑢) for all 𝑡 ∈ R, 𝑢 ∈ 𝑋.
(ii) There exists a constant 𝐿

𝑓
> 0 with 2𝑁𝐿

𝑓
< 𝛿

such that
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)󵄩󵄩󵄩

󵄩
≤ 𝐿

𝑓
‖𝑢 − V‖ (13)

for a.e. 𝑡 ∈ [0, 𝑇] and all 𝑢, V ∈ 𝑋.

(H
3
) (i) The function 𝑓 : R×𝑋 → 𝑋 is a Carathéodory

function; that is, for every 𝑢 ∈ 𝑋, 𝑓(⋅, 𝑢)
is measurable and for a.e. 𝑡 ∈ R, 𝑓(𝑡, ⋅) is
continuous, and 𝑓(𝑡 + 𝑇, −𝑢) = −𝑓(𝑡, 𝑢) for all
𝑡 ∈ R, 𝑢 ∈ 𝑋.

(ii) There exists a function Φ
𝑟
(⋅) ∈ 𝐿(0, 𝑇;R+

) such
that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑢)

󵄩
󵄩
󵄩
󵄩
≤ Φ

𝑟
(𝑡) (14)

for a.e. 𝑡 ∈ [0, 𝑇] and all 𝑢 ∈ 𝐵
𝑟
, and

lim inf
𝑟→+∞

∫

𝑇

0
Φ

𝑟
(𝑡) d𝑡
𝑟

= 𝜎
1

(15)

with𝑁𝜎
1
< 1 − 𝑒

−𝛿𝑇.

(H
4
) 𝑈(𝑡, 𝑠) is compact for 𝑡 > 𝑠.

Remark 5. From (H
1
) it is clear that 𝑈(𝑡 + 𝑇, 𝑠 + 𝑇) = 𝑈(𝑡, 𝑠)

for all 𝑡 ≥ 𝑠.

Definition 6. Amild solution to (2) is a function𝑢 ∈ 𝐶
𝑏
(R; 𝑋)

satisfying the integral equation

𝑢 (𝑡) = 𝑈 (𝑡, 𝑠) 𝑢 (𝑠) + ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏 (16)

for all 𝑡 > 𝑠 and 𝑠 ∈ R.

Before stating the existence theorem, we first prove the
following lemma.

Lemma 7. Let the assumption (𝐻
1
) be satisfied. Given 𝑔 ∈

𝐿
𝑙𝑜𝑐
(R; 𝑋), suppose that 𝑔(𝑠+𝑇) = −𝑔(𝑠) for a.e. 𝑠 ∈ R. Define

(Φ𝑔) (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑔 (𝜏) d𝜏

− ∫

+∞

𝑡

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑔 (𝜏) d𝜏, 𝑡 ∈ R.

(17)

Then (Φ𝑔)(𝑡) is well defined for each 𝑡 ∈ R and Φ𝑔 belongs to
𝑃
𝑇𝐴
(R; 𝑋).

Proof. From (c) and our assumptions on 𝑔 it follows that for
each 𝑡 ∈ R,

󵄩
󵄩
󵄩
󵄩
(Φ𝑔) (𝑡)

󵄩
󵄩
󵄩
󵄩
≤ ∫

𝑡

−∞

󵄩
󵄩
󵄩
󵄩
𝑈 (𝑡, 𝜏)P (𝜏) 𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩
d𝜏

+ ∫

+∞

𝑡

󵄩
󵄩
󵄩
󵄩
𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩
d𝜏

≤ 𝑁∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜏) 󵄩

󵄩
󵄩
󵄩
𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩
d𝜏

+ 𝑁∫

+∞

𝑡

𝑒
𝛿(𝑡−𝜏) 󵄩

󵄩
󵄩
󵄩
𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩
d𝜏
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≤

𝑁

1 − 𝑒
−𝛿𝑇

(∫

𝑡

𝑡−𝑇

󵄩
󵄩
󵄩
󵄩
𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩
d𝜏 + ∫

𝑡+𝑇

𝑡

󵄩
󵄩
󵄩
󵄩
𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩
d𝜏)

=

2𝑁

1 − 𝑒
−𝛿𝑇

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿((0,𝑇);𝑋)

,

(18)

which implies that (Φ𝑔)(𝑡) is well defined for 𝑡 ∈ R and Φ𝑔

is bounded.
To prove Φ𝑔 belongs to 𝑃

𝑇A(R; 𝑋), we first verify the
continuity of Φ𝑔. For fixed 𝑡

0
∈ R and ℎ ∈ R, we obtain

upon changing of variables that

(Φ𝑔) (𝑡
0
+ ℎ) − (Φ𝑔) (𝑡

0
)

= ∫

𝑡0

−∞

𝑈 (𝑡
0
+ ℎ, 𝜏 + ℎ)P (𝜏 + ℎ) 𝑔 (𝜏 + ℎ) d𝜏

− ∫

+∞

𝑡0

𝑈Q (𝑡0 + ℎ, 𝜏 + ℎ)Q (𝜏 + ℎ) 𝑔 (𝜏 + ℎ) d𝜏

− ∫

𝑡0

−∞

𝑈(𝑡
0
, 𝜏)P (𝜏) 𝑔 (𝜏) d𝜏

+ ∫

+∞

𝑡0

𝑈Q (𝑡0, 𝜏)Q (𝜏) 𝑔 (𝜏) d𝜏.

(19)

Thus, we have
󵄩
󵄩
󵄩
󵄩
(Φ𝑔) (𝑡

0
+ ℎ) − (Φ𝑔) (𝑡

0
)
󵄩
󵄩
󵄩
󵄩

≤ ∫

𝑡0

−∞

󵄩
󵄩
󵄩
󵄩
𝑈 (𝑡

0
+ ℎ, 𝜏 + ℎ)P (𝜏 + ℎ) (𝑔 (𝜏 + ℎ) − 𝑔 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

+ ∫

+∞

𝑡0

󵄩
󵄩
󵄩
󵄩
𝑈Q (𝑡0 + ℎ, 𝜏 + ℎ)Q (𝜏 + ℎ)

× (𝑔 (𝜏 + ℎ) − 𝑔 (𝜏))
󵄩
󵄩
󵄩
󵄩
d𝜏

+ ∫

𝑡0

−∞

󵄩
󵄩
󵄩
󵄩
(𝑈 (𝑡

0
+ ℎ, 𝜏 + ℎ)P (𝜏 + ℎ) − 𝑈 (𝑡, 𝜏)P (𝜏))

×𝑔 (𝜏)
󵄩
󵄩
󵄩
󵄩
d𝜏

+ ∫

+∞

𝑡0

󵄩
󵄩
󵄩
󵄩
(𝑈Q (𝑡0 + ℎ, 𝜏 + ℎ)Q (𝜏 + ℎ) − 𝑈 (𝑡

0
, 𝜏)Q (𝜏))

×𝑔 (𝜏)
󵄩
󵄩
󵄩
󵄩
d𝜏

:= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(20)

Noticing that ‖𝑈(𝑡
0
+ℎ, 𝜏+ℎ)P(𝜏+ℎ)‖ ≤ 𝑁𝑒

−𝛿(𝑡0−𝜏), we have

𝐼
1
≤

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑔 (𝑠 + ℎ) − 𝑔 (𝑠)

󵄩
󵄩
󵄩
󵄩
d𝑠, (21)

which yields lim
ℎ→0

𝐼
1
= 0. An analogue argument shows

lim
ℎ→0

𝐼
2
= 0.

Since

{(𝑡, 𝜏) : −∞ < 𝜏 ≤ 𝑡 < +∞} ∋ (𝑡, 𝜏) 󳨀→ 𝑈 (𝑡, 𝜏)P (𝜏)

(22)

is strongly continuous, we obtain

lim
ℎ→0

𝑈(𝑡
0
+ ℎ, 𝜏 + ℎ)P (𝜏 + ℎ) 𝑔 (𝜏) = 𝑈 (𝑡

0
, 𝜏)P (𝜏) 𝑔 (𝜏)

(23)

for all 𝜏 ≤ 𝑡
0
, 𝜏 ∈ R. This, together with (c), yields that

󵄩
󵄩
󵄩
󵄩
(𝑈 (𝑡

0
+ ℎ, 𝜏 + ℎ)P (𝜏 + ℎ) − 𝑈 (𝑡

0
, 𝜏)P (𝜏)) 𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩

≤ 2𝑁𝑒
−𝛿(𝑡0−𝜏)󵄩󵄩

󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐶𝑏(R;𝑋)

(24)

for all 𝜏 ≤ 𝑡
0
, 𝜏 ∈ R. Now, using the Lebesgue dominated

convergence theorem we obtain lim
ℎ→0

𝐼
3
= 0. Similarly, we

can show that lim
ℎ→0

𝐼
4
= 0.

Next, it remains to prove that Φ𝑔 is 𝑇-antiperiodic.
Noting that 𝑔(𝜏 + 𝑇) = −𝑔(𝜏) for a.e. 𝜏 ∈ R, we have

(Φ𝑔) (𝑡 + 𝑇) = ∫

𝑡+𝑇

−∞

𝑈 (𝑡 + 𝑇, 𝜏)P (𝜏) 𝑔 (𝜏) d𝜏

− ∫

+∞

𝑡+𝑇

𝑈Q (𝑡 + 𝑇, 𝜏)Q (𝜏) 𝑔 (𝜏) d𝜏

= − ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑔 (𝜏) d𝜏

+ ∫

+∞

𝑡

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑔 (𝜏) d𝜏

= − (Φ𝑔) (𝑡)

(25)

for any 𝑡 ∈ R. Therefore, we can conclude thatΦ𝑔 belongs to
𝑃
𝑇𝐴
(R; 𝑋). This completes the proof.

Now we are ready to state the first main result.

Theorem 8. Let (𝐻
1
) and (𝐻

2
) hold.Then the problem (2)-(3)

has a unique 𝑇-antiperiodic mild solution.

Proof. Set, for 𝑢 ∈ 𝑃
𝑇𝐴
(R; 𝑋), 𝑔(⋅) = 𝑓(⋅, 𝑢(⋅)). It easily

follows from (H
2
) that the function 𝑔 satisfies the conditions

of Lemma 7. From this, we obtain that themapping Γ, defined
by

(Γ𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

+∞

𝑡

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏,

𝑡 ∈ R, 𝑢 ∈ 𝑃
𝑇𝐴

(R; 𝑋) ,

(26)

is well defined and maps 𝑃
𝑇𝐴
(R; 𝑋) into itself.
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To prove the theorem, we first show that Γ has a unique
fixed point in 𝑃

𝑇𝐴
(R, 𝑋). Let 𝑢, V ∈ 𝑃

𝑇𝐴
(R; 𝑋). Then, by (H

2
)

we have

‖(Γ𝑢) (𝑡) − (ΓV) (𝑡)‖

≤ ∫

𝑡

−∞

󵄩
󵄩
󵄩
󵄩
𝑈 (𝑡, 𝜏)P (𝜏) (𝑓 (𝜏, 𝑦 (𝜏)) − 𝑓 (𝜏, V (𝜏)))󵄩󵄩󵄩

󵄩
d𝜏

+ ∫

+∞

𝑡

󵄩
󵄩
󵄩
󵄩
𝑈Q (𝑡, 𝜏)Q (𝜏) (𝑓 (𝜏, 𝑢 (𝜏)) − 𝑓 (𝜏, V (𝜏)))󵄩󵄩󵄩

󵄩
d𝜏

≤

2𝑁𝐿
𝑓

𝛿

‖𝑢 − V‖
𝑃𝑇𝐴(R;𝑋)

.

(27)

Consequently,

‖Γ𝑢 − ΓV‖
𝑃𝑇𝐴(R;𝑋)

≤

2𝑁𝐿
𝑓

𝛿

‖𝑢 − V‖
𝑃𝑇𝐴(R;𝑋)

, (28)

which, together with our assumption 2𝑁𝐿
𝑓
< 𝛿, implies that

Γ is a strict contraction on 𝑃
𝑇𝐴
(R; 𝑋).Thus, using the Banach

contraction principle we conclude that Γ has a unique fixed
point in 𝑃

𝑇𝐴
(R, 𝑋).

To the end of the proof, we will prove that 𝑢 ∈ 𝑃
𝑇𝐴
(R, 𝑋)

is a mild solution of (2) if and only if it is a fixed point of Γ.
We first suppose that 𝑢 ∈ 𝑃

𝑇𝐴
(R; 𝑋) is a mild solution of

(2); that is, 𝑢 satisfies the integral equation

𝑢 (𝑡) = 𝑈 (𝑡, 𝑠) 𝑢 (𝑠) + ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏 (29)

for all 𝑡 > 𝑠 and 𝑠 ∈ R. From this and (c), it immediately
follows that

P (𝑡) 𝑢 (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏, 𝑡 ∈ R,

Q (𝑡) 𝑢 (𝑡) = ∫

𝑡

+∞

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏, 𝑡 ∈ R.

(30)

So, one has

𝑢 (𝑡) = (P (𝑡) + Q (𝑡)) 𝑢 (𝑡)

= ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

+∞

𝑡

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏, 𝑡 ∈ R.

(31)

This proves that 𝑢 is a fixed point of Γ.
Conversely, if 𝑢 ∈ 𝑃

𝑇𝐴
(R; 𝑋) is a fixed point of Γ, then 𝑢

satisfies the integral equations

𝑢 (𝑠) = ∫

𝑠

−∞

𝑈 (𝑠, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

+∞

𝑠

𝑈Q (𝑠, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏, 𝑠 ∈ R.

(32)

For any 𝑡 > 𝑠, 𝑠 ∈ R, we obtain upon multiplying both sides
of (32) by 𝑈(𝑡, 𝑠) that

𝑈 (𝑡, 𝑠) 𝑢 (𝑠) = ∫

𝑠

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

+∞

𝑠

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

= ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏)P (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

+∞

𝑡

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

𝑡

𝑠

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

= 𝑢 (𝑡) − ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏,

(33)

which implies that 𝑢 is a mild solution to problem (2).
Now, according to the discussed above we deduce that the

problem (2)-(3) has a unique 𝑇-antiperiodic mild solution.
The proof is completed.

Now we are in a position to prove our second existence
result of antiperiodic mild solutions for the problem (2)-(3).

Theorem 9. Let (𝐻
1
), (𝐻

3
), and (𝐻

4
) hold withP(𝑡) = 𝐼 for

𝑡 ∈ R. Then the problem (2)-(3) has at least one 𝑇-antiperiodic
mild solution.

Proof. Let us define the mapping Γ by

(Γ𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏, 𝑡 ∈ R,

𝑢 ∈ 𝑃
𝑇𝐴

(R; 𝑋) .

(34)

We first notice, thanks to assumptions (H
1
) and (H

3
) (i) and

Lemma 7, that Γ is well defined and maps 𝑃
𝑇𝐴
(R; 𝑋) into

itself.
Next, by applying Schauder’s fixed point theoremwe show

that Γ has at least one fixed point in 𝑃
𝑇𝐴
(R, 𝑋). From (H

3
) (ii)

it is easy to see that there exists some 𝑘
0
> 0 such that

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏 ≤ 𝑘

0
. (35)
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Using this, a direct calculation yields that, for every 𝑢 ∈ Ω
𝑘0

and all 𝑡 ∈ R,

‖(Γ𝑢) (𝑡)‖ ≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑁∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜏) 󵄩

󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏 ≤ 𝑘

0
,

(36)

which implies that Γ𝑢 ∈ Ω
𝑘0
for every 𝑢 ∈ Ω

𝑘0
.

In the sequel, we show that Γ is completely continuous on
Ω

𝑘0
. The proof will be divided into two steps.

Step 1. Γ is continuous onΩ
𝑘0
.

Take 𝑢
1
, 𝑢

2
∈ Ω

𝑘0
. Then it follows from (H

3
) (i) that

󵄩
󵄩
󵄩
󵄩
(Γ𝑢

1
) (𝑡) − (Γ𝑢

2
) (𝑡)

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑈 (𝑡, 𝜏) (𝑓 (𝜏, 𝑢
1
(𝜏)) − 𝑓 (𝜏, 𝑢

2
(𝜏))) d𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑁∫

𝑡

−∞

𝑒
−𝛿(t−𝜏) 󵄩

󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢

1
(𝜏)) − 𝑓 (𝜏, 𝑢

2
(𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢

1
(𝜏)) − 𝑓 (𝜏, 𝑢

2
(𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏.

(37)

This, together with the Lebesgue dominated convergence
theorem and the continuity of 𝑓 with respect to second
variable, shows that

󵄩
󵄩
󵄩
󵄩
(Γ𝑢

1
) (𝑡) − (Γ𝑢

2
) (𝑡)

󵄩
󵄩
󵄩
󵄩

≤

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢

1
(𝜏)) − 𝑓 (𝜏, 𝑢

2
(𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏 󳨀→ 0

as 𝑢
1
󳨀→ 𝑢

2
,

(38)

which implies the continuity of Γ.

Step 2. Γ is a compact operator onΩ
𝑘0
.

For each 𝜀 > 0, set

(Γ
𝜀
𝑢) (𝑡) = ∫

𝑡−𝜀

−∞

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏, 𝑢 ∈ Ω
𝑘0
. (39)

From (H
4
) it follows that, for each 𝑡 ∈ R and 𝜀 > 0, the set

{∫

𝑡−𝜀

−∞

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏; 𝑢 ∈ Ω
𝑘0
}

= {𝑈 (𝑡, 𝑡 − 𝜀) ∫

𝑡−𝜀

−∞

𝑈 (𝑡 − 𝜀, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏; 𝑢 ∈ Ω
𝑘0
}

(40)

is relatively compact in𝑋. Thus, for each 𝑡 ∈ R and 𝜀 > 0, the
set {(Γ

𝜀
𝑢)(𝑡); 𝑢 ∈ Ω

𝑘0
} is also relatively compact in 𝑋. Then,

for every 𝑢 ∈ Ω
𝑘0
and 𝑡 ∈ R, as

󵄩
󵄩
󵄩
󵄩
(Γ𝑢) (𝑡) − (Γ

𝜀
𝑢) (𝑡)

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

𝑡−𝜀

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝜀 󳨀→ 0

(41)

in 𝑋, we conclude, in view of the total boundedness, that for
each 𝑡 ∈ R, the set {(Γ𝑢)(𝑡); 𝑢 ∈ Ω

𝑘0
} is relatively compact in

𝑋.
Next, we will show that {Γ𝑢; 𝑢 ∈ Ω

𝑘0
} ⊂ 𝑃

𝑇𝐴
(R; 𝑋) is

equicontinuous. Taking 𝑡, 𝑠 ∈ R with 𝑡 > 𝑠, we have

(Γ𝑢) (𝑡) − (Γ𝑢) (𝑠)

= ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝑠

+ ∫

𝑠

𝑠−𝜅

(𝑈 (𝑡, 𝜏) − 𝑈 (𝑠, 𝜏)) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

+ ∫

𝑠−𝜅

𝑡−𝑀

(𝑈 (𝑡, 𝜏) − 𝑈 (𝑠, 𝜏)) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

+ ∫

𝑡−𝑀

−∞

(𝑈 (𝑡, 𝜏) − 𝑈 (𝑠, 𝜏)) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

= 𝐽
1
+ 𝐽

2
+ 𝐽

3
+ 𝐽

4
,

(42)

where 𝜅,𝑀 are positive constants yet to be determined.
Given 𝜖 > 0. We first note that there exist 𝜂

1
> 𝜅, 𝜅 > 0

small enough such that

󵄩
󵄩
󵄩
󵄩
𝐽
1

󵄩
󵄩
󵄩
󵄩
≤ ∫

𝑡

𝑠

Φ
𝑘0
(𝜏) d𝜏 ≤

𝜖

4

whenever 𝑡 − 𝑠 ≤ 𝜂
1
,

󵄩
󵄩
󵄩
󵄩
𝐽
2

󵄩
󵄩
󵄩
󵄩
≤ 2𝑁∫

𝑠

𝑠−𝜅

Φ
𝑘0
(𝜏) d𝜏 ≤

𝜖

4

.

(43)

For 𝐽
4
, one can take a 𝑀 > (𝜂

1
+ 𝜅) big enough which is

independent of 𝑡 and 𝑠 such that

󵄩
󵄩
󵄩
󵄩
𝐽
4

󵄩
󵄩
󵄩
󵄩
≤ ∫

𝑡−𝑀

−∞

‖(𝑈 (𝑡, 𝜏) − 𝑈 (𝑠, 𝜏))‖L(𝑋)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤ 𝑁∫

𝑡−𝑀

−∞

(𝑒
−𝛿(𝑡−𝜏)

+ 𝑒
−𝛿(𝑠−𝜏)

)Φ
𝑘0
(𝜏) d𝜏

≤

𝑁(1 + 𝑒
𝛿𝜂1

) 𝑒
−𝛿𝑀

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏 ≤

𝜖

4

.

(44)

For such fixed 𝜅,𝑀, it is easy to find that there exists a 𝑑 big
enough such that |𝑀 − 𝜅| ≤ 𝑑𝑇, which, together with (H

3
)

(ii) and (c), yields that

∫

𝑠−𝜅

𝑡−𝑀

‖𝑈 (𝑠 − 𝜅, 𝜏)‖L(𝑋)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏 ≤ d𝑁∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏.

(45)
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Therefore, from the continuity of 𝑈(𝑡, 𝑠) for 𝑡 > 𝑠 in the
uniform operator topology it follows that

󵄩
󵄩
󵄩
󵄩
𝐽
3

󵄩
󵄩
󵄩
󵄩
≤ ∫

𝑠−𝜅

𝑡−𝑀

‖(𝑈 (𝑡, 𝜏) − 𝑈 (𝑠, 𝜏))‖L(𝑋)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤ ∫

𝑠−𝜅

𝑡−𝑀

‖(𝑈 (𝑡, 𝑠 − 𝜅) − 𝑈 (𝑠, 𝑠 − 𝜅))‖L(𝑋)

× ‖𝑈 (𝑠 − 𝜅, 𝜏)‖L(𝑋)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤ 𝑑𝑁‖(𝑈 (𝑡, 𝑠 − 𝜅) − 𝑈 (𝑠, 𝑠 − 𝜅))‖L(𝑋)
∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏

≤

𝜖

4

(46)

whenever 𝑡 − 𝑠 ≤ 𝜂
2
, where 𝜂

2
is small enough.

Thus, from the arguments above one can deduce that
there exist 𝜂 = min{𝜂

1
, 𝜂

2
} such that

‖(Γ𝑢) (𝑡) − (Γ𝑢) (𝑠)‖ ≤ 𝜖 (47)

whenever 𝑡 − 𝑠 ≤ 𝜂 and 𝑢 ∈ Ω
𝑘0
, which implies that the set

{Γ𝑢; 𝑢 ∈ Ω
𝑘0
} is equicontinuous. Consequently, Γ is compact

operator onΩ
𝑘0
due to Lemma 1.

Now, applying Schauder’s fixed point theorem, we deduce
that Γ has at least one fixed point 𝑢 ∈ 𝑃

𝑇𝐴
(R, 𝑋). Moreover,

following from the same idea as the last part of the proof in
Theorem 8, we obtain that 𝑢 is a 𝑇-antiperiodic mild solution
of the problem (2)-(3). This completes the proof.

Remark 10. Theorems 8 and 9 generalize corresponding
results for antiperiodic problems due to [12]. Note in partic-
ular that Theorems 8 and 9 cover results in [12].

Remark 11. (i) It can be easily shown that if 𝑢 is antiperiodic
with period𝑇, then it is periodic with period 2𝑇. Hence, from
the arguments of Theorems 8 and 9 we can also obtain the
existence results of 2𝑇-periodic solutions of the problem (2)-
(3).

(ii) It is clear that if 𝑢 is periodic with period 2𝑇, 𝑢 may
or may not be antiperiodic with period 𝑇.

Additional information is contained in the following. We
consider the following nonautonomous semilinear parabolic
evolution equation with periodic condition

𝑢
󸀠
(𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R,

𝑢 (𝑡 + 𝑇) = 𝑢 (𝑡) , 𝑡 ∈ R.
(48)

From the arguments of Theorems 8 and 9 it is easy to see
that if

(1) the hypotheses in Theorem 8 are satisfied except that
the antiperiodic on 𝑓 is replaced by the following

𝑓 (𝑡 + 𝑇, 𝑢) = 𝑓 (𝑡, 𝑢) ∀𝑡 ∈ R, 𝑢 ∈ 𝑋, (49)

then there exists a unique 𝑇-periodic mild solution
for the problem (48);

(2) the hypotheses in Theorem 9 are satisfied except that
the antiperiodic conditions on 𝑓 are replaced by (49),
then there exists at least a𝑇-periodicmild solution for
the problem (48).

The following remark indicates one motivation of the
present paper.

Remark 12. As in [25], under certain conditions, the existence
result is valid for the case of antiperiodic solutions, while
there is no such a result in the periodic case. It is also noted
that in dealing with the existence of certain problems, there
is an essential difference between the periodic solutions and
antiperiodic solutions (see also [26] for more details).

4. Neutral Problems

In this section, it is assumed that (𝐴(𝑡))
𝑡∈R has a constant

domain 𝐷 and verifies the conditions of Acquistapace and
Terreni (AT

1
) and (AT

2
) with 𝜆

0
= 0.

If the hypothesis (H
1
) is satisfied, then it follows readily

that 𝑡 󳨃→ 𝐴(𝑡) is periodic. Also, from Remark 3 it is easy to
see that there exist constants𝐾

2
> 0, 0 < 𝜇 ≤ 1 such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴 (𝑡) 𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

≤ 1 + 𝐾
2
|𝑡|

𝜇 (50)

for all 𝑡 ∈ R. Therefore, we deduce that
󵄩
󵄩
󵄩
󵄩
󵄩
𝐴 (𝑡) 𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

≤ 1 + 𝐾
2
𝑇
𝜇 (51)

for all 𝑡 ∈ R.
Let 𝑋1 denote the Banach space 𝐷 endowed with the

graph norm ‖𝑢‖
1
= ‖𝐴(0)𝑢‖ for 𝑢 ∈ 𝑋

1. By 𝑃
𝑇𝐴
(R; 𝑋1

), we
denote the set of all 𝑇-antiperiodic functions from R to 𝑋

1.
It is clear that 𝑃

𝑇𝐴
(R; 𝑋1

), equipped with the sup norm, is a
Banach space.

In this section, we extend the result obtained in Section 3
to the antiperiodic problem of neutral type (4).

Definition 13. A mild solution to (4) is a function 𝑢 ∈

𝐶
𝑏
(R; 𝑋) satisfying the integral equation

𝑢 (𝑡) = 𝑈 (𝑡, 𝑠) [𝑢 (𝑠) − 𝐹 (𝑠, 𝑢 (𝑠))] + 𝐹 (𝑡, 𝑢 (𝑡))

+ ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏) 𝐴 (𝜏) 𝐹 (𝜏, 𝑢 (𝜏)) d𝜏

+ ∫

𝑡

𝑠

𝑈 (𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏

(52)

for all 𝑡 > 𝑠 and 𝑠 ∈ R.

Remark 14. It will be seen later that the last two terms on right
side in (52), being integrals in sense of Bocher (see [27]), are
reasonable.

To prove the existence of antiperiodic mild solutions to
the problem (4), let us introduce the following assumptions:

(H
5
) the function 𝐹 : R × 𝑋 → 𝑋

1 is continuous and
𝐹(𝑡+𝑇, −𝑢) = −𝐹(𝑡, 𝑢) for all 𝑡 ∈ R, 𝑢 ∈ 𝑋. Moreover,
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(i) there exists a constant 𝐿
𝐹
such that

‖𝐹 (𝑡, 𝑢) − 𝐹 (𝑡, V)‖
1
≤ 𝐿

𝐹
‖𝑢 − V‖ ; (53)

for all 𝑡 ∈ R, 𝑢, V ∈ 𝑋;
(ii) there exists a nondecreasing functionΨ : R+

→

R+ such that
‖𝐹(𝑡, 𝑢)‖

1
≤ Ψ (‖𝑢‖) ; (54)

for all 𝑡 ∈ R, 𝑢 ∈ 𝑋, and

lim inf
𝑟→+∞

Ψ (𝑟)

𝑟

= 𝜎
2
. (55)

(H
6
) Consider 𝐿

𝐹
‖𝐴

−1
(0)‖L(𝑋)

+ (2𝑁(1 + 𝐾
2
𝑇
𝜇
)𝐿

𝐹
+

2𝑁𝐿
𝑓
)/𝛿 < 1.

(H
7
) (‖𝐴−1

(0)‖L(𝑋)
+(𝑁(1+𝐾

2
𝑇
𝜇
))/𝛿)𝜇

󸀠
+𝑁𝜎

1
/(1−𝑒

−𝛿𝑇
) <

1, where 𝜇󸀠 := max{𝜎
2
, 𝐿

𝐹
}.

Theorem 15. Under the hypotheses (𝐻
1
), (𝐻

2
), (𝐻

5
) (i),

and (𝐻
6
), the problem (4) has a unique 𝑇-antiperiodic mild

solution.

Proof. From (H
5
) (i) note that𝐹(⋅, 𝑢(⋅)) ∈ 𝑃

𝑇𝐴
(R; 𝑋1

) for each
𝑢 ∈ 𝑃

𝑇𝐴
(R; 𝑋). Define, for 𝑢 ∈ 𝑃

𝑇𝐴
(R; 𝑋),

(Γ̃𝑢) (𝑡) := 𝐹 (𝑡, 𝑢 (𝑡))

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜏)P (𝜏) 𝐴 (𝜏) 𝐹 (𝜏, 𝑢 (𝜏)) d𝜏

− ∫

+∞

𝑡

𝑈Q (𝑡, 𝜏)Q (𝜏) 𝐴 (𝜏) 𝐹 (𝜏, 𝑢 (𝜏)) d𝜏,

𝑡 ∈ R.

(56)
Then by (c) and (51) a direct calculation gives
󵄩
󵄩
󵄩
󵄩
󵄩
(Γ̃𝑢) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ ‖𝐹 (𝑡, 𝑢 (𝑡))‖

+ ∫

𝑡

−∞

‖𝑈 (𝑡, 𝜏)P (𝜏) 𝐴 (𝜏) 𝐹 (𝜏, 𝑢 (𝜏))‖ d𝜏

+ ∫

+∞

𝑡

󵄩
󵄩
󵄩
󵄩
𝑈Q (𝑡, 𝜏)Q (𝜏) 𝐴 (𝜏) 𝐹 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

‖𝐹 (𝑡, 𝑢 (𝑡))‖
1

+ 𝑁∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝐴 (𝜏) 𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

× ‖𝐹 (𝜏, 𝑢 (𝜏))‖
1
d𝜏

+ 𝑁∫

+∞

𝑡

𝑒
𝛿(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝐴 (𝜏)𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

× ‖𝐹 (𝜏, 𝑢 (𝜏))‖
1
d𝜏

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

+

2𝑁 (1 + 𝐾
2
𝑇
𝜇
)

𝛿

)

× ‖𝐹 (⋅, 𝑢 (⋅))‖
𝑃𝑇𝐴(R;𝑋

1
)
.

(57)

This proves that (Γ̃𝑢)(𝑡) is well defined for 𝑡 ∈ R and Γ̃𝑢

is bounded. Moreover, noticing (H
5
) (i) and using a similar

argument with that in Lemma 7 one can show easily that Γ̃
maps 𝑃

𝑇𝐴
(R; 𝑋) into itself.

Let us assume that the mapping Γ is defined the same as
inTheorem 8.Then from the proof ofTheorem 8 with (H

2
) it

follows that Γ is well defined and maps 𝑃
𝑇𝐴
(R; 𝑋) into itself.

Now, consider the mapping Γ + Γ̃. We see, from the
arguments above, that Γ + Γ̃maps 𝑃

𝑇𝐴
(R; 𝑋) into itself. Also,

for 𝑢, V ∈ 𝑃
𝑇𝐴
(R; 𝑋), 𝑡 ∈ R, as

󵄩
󵄩
󵄩
󵄩
󵄩
(Γ𝑢 + Γ̃𝑢) (𝑡) − (ΓV + Γ̃V) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐿
𝐹

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

‖𝑢 (𝑡) − V (𝑡)‖

+

2𝑁 (1 + 𝐾
2
𝑇
𝜇
) 𝐿

𝐹
+ 2𝑁𝐿

𝑓

𝛿

‖𝑢 − V‖
𝑃𝑇𝐴(R;𝑋)

≤ (𝐿
𝐹

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

+

2𝑁 (1 + 𝐾
2
𝑇
𝜇
) 𝐿

𝐹
+ 2𝑁𝐿

𝑓

𝛿

)

× ‖𝑢 − V‖
𝑃𝑇𝐴(R;𝑋)

(58)

in view of (H
2
) and (H

5
) (i), we conclude that Γ + Γ̃ is a

strict contraction on 𝑃
𝑇𝐴
(R; 𝑋) due to (H

6
). This allows us to

obtain, in view of the contractionmapping principle, that Γ+Γ̃
has a unique fixed point 𝑃

𝑇𝐴
(R, 𝑋). Moreover, an application

of the same idea as the last part of the proof in Theorem 8
justifies that𝑢 ∈ 𝑃

𝑇𝐴
(R, 𝑋) is amild solution of (4) if and only

if it is a fixed point of Γ + Γ̃. The proof is then completed.

The following fixed point theorem plays a key role in the
proof of our subsequent result; see, for example, [28].

Lemma 16. Krasnoselskii’s fixed point theorem: let 𝐸 be a
Banach space and 𝐵 be a nonempty closed convex subset of 𝐸,
and let 𝐹

1
, 𝐹

2
be maps of 𝐵 into 𝐸 such that 𝐹

1
𝑥 + 𝐹

2
𝑦 ∈ 𝐵

for every pair 𝑥, 𝑦 ∈ 𝐵. If 𝐹
1
is a strict contraction and 𝐹

2
is

completely continuous, then the equation 𝐹
1
𝑥 + 𝐹

2
𝑥 = 𝑥 has a

solution on 𝐵.

Theorem 17. Under the hypotheses (𝐻
1
), (𝐻

7
), and (𝐻

3
)–(𝐻

5
)

with P(𝑡) = 𝐼 for 𝑡 ∈ R, the problem (4) has at least one 𝑇-
antiperiodic mild solution.

Proof. From our hypotheses on 𝐹, 𝑓 and (H
7
), it is easy to see

that there exists a 𝑘
0
> 0 such that

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

+

𝑁 (1 + 𝐾
2
𝑇
𝜇
)

𝛿

)Ψ (𝑘
0
)

+

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏 ≤ 𝑘

0
.

(59)
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Assume that the mapping Γ is defined as in Theorem 9.
Let us define the mapping Γ̃ by

(Γ̃𝑢) (𝑡) := 𝐹 (𝑡, 𝑢 (𝑡)) + ∫

𝑡

−∞

𝑈 (𝑡, 𝜏) 𝐴 (𝜏) 𝐹 (𝜏, 𝑢 (𝜏)) d𝜏,

𝑢 ∈ 𝑃
𝑇𝐴

(R; 𝑋) .

(60)

Note, thanks to the proofs of Theorem 9 with assumptions
(H

1
) and (H

3
) (i) and Theorem 15 with assumption (H

5
) (i),

that Γ and Γ̃ are well defined and map 𝑃
𝑇𝐴
(R; 𝑋) into itself.

Moreover, for every pair 𝑢, V ∈ Ω
𝑘0

and 𝑡 ∈ R, a direct
calculation yields

󵄩
󵄩
󵄩
󵄩
󵄩
(Γ𝑢) (𝑡) + (Γ̃V) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

‖𝐹 (𝑡, 𝑢 (𝑡))‖
1

+ 𝑁∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝐴 (𝜏)𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

× ‖𝐹 (𝜏, 𝑢 (𝜏))‖
1
d𝜏

+ 𝑁∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜏) 󵄩

󵄩
󵄩
󵄩
𝑓 (𝜏, 𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
d𝜏

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

+

𝑁 (1 + 𝐾
2
𝑇
𝜇
)

𝛿

)Ψ (𝑘
0
)

+

𝑁

1 − 𝑒
−𝛿𝑇

∫

𝑇

0

Φ
𝑘0
(𝜏) d𝜏 ≤ 𝑘

0
,

(61)

in view of (59), which implies that Γ𝑢 + Γ̃V ∈ Ω
𝑘0
for every

pair 𝑢, V ∈ Ω
𝑘0
.

To obtain the fixed points of Γ + Γ̃, we will use Krasnosel-
skii’s fixed point theorem. In what follows, we show that Γ and
Γ̃ satisfy the conditions of Lemma 16. For 𝑢, V ∈ Ω

𝑘0
, from

(H
5
) (i) we infer that
󵄩
󵄩
󵄩
󵄩
󵄩
(Γ̃𝑢) (𝑡) − (Γ̃V) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐿
𝐹

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

‖𝑢 (𝑡) − V (𝑡)‖

+

𝑁 (1 + 𝐾
2
𝑇
𝜇
) 𝐿

𝐹

𝛿

‖𝑢 − V‖
𝑃𝑇𝐴(R;𝑋)

≤ (𝐿
𝐹

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1
(0)

󵄩
󵄩
󵄩
󵄩
󵄩L(𝑋)

+

𝑁 (1 + 𝐾
2
𝑇
𝜇
) 𝐿

𝐹

𝛿

)

× ‖𝑢 − V‖
𝑃𝑇𝐴(R;𝑋)

(62)

for all 𝑡 ∈ R, which together with (H
7
) yields that Γ̃

is a contraction on Ω
𝑘0
. On the other hand, by a similar

proof with that in Theorem 9 the mapping Γ is completely
continuous on Ω

𝑘0
. Hence, applying Lemma 16 we deduce

that Γ + Γ̃ has at least one fixed point 𝑢 ∈ Ω
𝑘0
, which is a 𝑇-

antiperiodic mild solution to (4) due to the same idea as the
last part of the proof in Theorem 8. This completes the proof
of theorem.

Remark 18. Let us note that inTheorems 8 and 15, exponential
dichotomy on evolution equations 𝑈 is involved. However,
as can be seen from the proofs of Theorems 9 and 17, such
condition is not enough to obtain our desired results and
therefore is replaced by the special one: 𝑈 is exponentially
stable.

5. Application

In this section, we give an example to illustrate our abstract
results, which do not aim at generality but indicate how our
theorems can be applied to concrete problem.

Consider the antiperiodic problem for partial differential
equation in the form

𝜕

𝜕𝑡

𝑢 (𝑡, 𝑥) = 𝑎 (𝑡)

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥
2

+ 𝑔 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) ,

𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

𝑢 (𝑡 + 𝑇, 𝑥) = −𝑢 (𝑡, 𝑥) , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

(63)

supplemented with homogeneous Dirichlet boundary condi-
tion 𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0 (𝑡 ∈ R), where 𝑔 : R× [0, 𝜋] ×R →

R, 𝑎 : R → R are given functions which will be specified
later.

Here, our objective is to show the existence of 𝑇-
antiperiodic solutions for the antiperiodic problem (63).

Take 𝑋 = (𝐿
2
(0, 𝜋); (⋅, ⋅)

2
) and define the operator 𝐵 :

𝐷(𝐵) ⊂ 𝑋 → 𝑋 by 𝐵𝑢 = 𝜕
2
𝑢/𝜕𝑥

2, 𝑢 ∈ 𝐷(𝐵), where

𝐷 (𝐵) = 𝐻
2
(0, 𝜋) ∩ 𝐻

1

0
(0, 𝜋) . (64)

It is well-known that 𝐵 has a discrete spectrum and its
eigenvalues are −𝑛

2
, 𝑛 ∈ N+ with the corresponding

normalized eigenvectors 𝑦
𝑛
(𝑥) = √(2/𝜋) sin(𝑛𝑥).

Assume that 𝑎 is a Hölder continuous function such that

𝑎 (𝑡 + 𝑇) = 𝑎 (𝑡) ∀𝑡 ∈ R, inf
𝑡∈R

𝑎 (𝑡) ≥ 𝑐 > 0. (65)

Take 𝑔(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) = 𝑏(𝑡) sin 𝑢(𝑡, 𝑥), where

𝑏 (𝑡 + 𝑇) = 𝑏 (𝑡) for a.e. 𝑡 ∈ R, 𝑏|
[0,𝑇]

∈ 𝐿 (0, 𝑇;R
+
) .

(66)

Define

𝐷(𝐴 (𝑡)) = 𝐷 (𝐵) , 𝑡 ∈ R,

𝐴 (𝑡) 𝑢 = 𝑎 (𝑡) 𝐵𝑢, 𝑢 ∈ 𝐷 (𝐴 (𝑡)) ,

𝑢 (𝑡) (𝑥) = 𝑢 (𝑡, 𝑥) ,

𝑓 (𝑡, 𝑢 (𝑡)) (𝑥) = 𝑔 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) .

(67)

It follows from [19, Lemma 6.1 in Chapter 7] that there are
constants 𝜃 ∈ (𝜋/2, 𝜋) and𝐾

1
≥ 0 such that 𝐴(𝑡) satisfy

Σ
𝜃
:= {𝜆 ∈ C \ {0} ; |𝜆| ≤ 𝜃} ∪ {0} ⊂ 𝜌 (𝐴 (𝑡)) ,

‖𝑅 (𝜆, 𝐴 (𝑡))‖ ≤

𝐾
1

1 + |𝜆|

(68)
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for all 𝜆 ∈ Σ
𝜃
∪ {0} and 𝑡 ∈ R. Moreover, we note that for

𝜆 ∈ Σ
𝜃
∪ {0}, 𝑡, 𝑠 ∈ R, 𝑢 ∈ 𝑋,

𝑅 (𝜆, 𝐴 (𝑡)) 𝑢 =

∞

∑

𝑛=1

1

𝜆 + 𝑛
2
𝑎 (𝑡)

(𝑢, 𝑦
𝑛
) 𝑦

𝑛
,

𝐴 (𝑡) 𝑅 (𝜆, 𝐴 (𝑡)) [𝑅 (0, 𝐴 (𝑡)) − 𝑅 (0, 𝐴 (𝑠))] 𝑢

=

∞

∑

𝑛=1

1

𝜆 + 𝑛
2
𝑎 (𝑡)

𝑎 (𝑡) − 𝑎 (𝑠)

𝑎 (𝑠)

(𝑢, 𝑦
𝑛
) 𝑦

𝑛

(69)

from which we see that for, 𝜆 ∈ Σ
𝜃
∪ {0}, 𝑡, 𝑠 ∈ R

‖𝐴 (𝑡) 𝑅 (𝜆, 𝐴 (𝑡)) [𝑅 (0, 𝐴 (𝑡)) − 𝑅 (0, 𝐴 (𝑠))]‖

≤

‖𝑅 (𝜆, 𝐴 (𝑡))‖ ⋅ |𝑎 (𝑡) − 𝑎 (𝑠)|

𝑎 (𝑠)

.

(70)

Accordingly, 𝐴(𝑡) satisfy the conditions (AT
1
) and (AT

2
).

Thus, the family (𝐴(𝑡))
𝑡∈R generates an evolution family 𝑈:

𝑈 (𝑡, 𝑠) 𝑢 =

∞

∑

𝑛=1

𝑒
−𝑛
2
∫
𝑡

𝑠
𝑎(𝜏)d𝜏

(𝑢, 𝑦
𝑛
) 𝑦

𝑛
,

for −∞ ≤ 𝑠 ≤ 𝑡 < ∞, 𝑢 ∈ 𝑋.

(71)

A direct calculation gives

‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑒
−𝑐(𝑡−𝑠) for −∞ ≤ 𝑠 ≤ 𝑡 < +∞. (72)

Also,𝑈 is compact due to the boundedness of 𝐴(𝑡)𝑈(𝑡, 𝑠)
for −∞ ≤ 𝑠 < 𝑡 < +∞ (cf. [19, Theorem 6.1 in Chapter 5]).
Moreover, it is easy to verify that 𝑈(𝑡 + 𝑇, 𝑠 + 𝑇) = 𝑈(𝑡, 𝑠) for
all 𝑡 ≥ 𝑠.

On the other hand, observe that 𝑓 : R × 𝑋 → 𝑋 is a
Carathéodory function, 𝑓(𝑡 + 𝑇, −𝑢) = −𝑓(𝑡, 𝑢) for all 𝑡 ∈ R,
𝑢 ∈ 𝑋, and

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑢)

󵄩
󵄩
󵄩
󵄩
≤ √𝜋𝑏 (𝑡) for a.e. 𝑡 ∈ [0, 𝑇] and all 𝑢 ∈ 𝑋,

(73)

which implies that hypothesis (H
3
) is satisfied with

Φ
𝑟
(𝑡) = √𝜋𝑏 (𝑡) , 𝜎

1
= 0. (74)

Therefore, the antiperiodic problem (63) can be trans-
formed into the abstract problem (2)-(3) and assumptions
(H

1
), (H

3
), and (H

4
) hold with P(𝑡) = 𝐼 for 𝑡 ∈ R. Hence,

(63) has at least one 𝑇-antiperiodic mild solution due to
Theorem 9.
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