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Multiaxis machines errormodeling is set in the context of modern differential geometry and linear algebra.We apply special classes
of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the
classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the
calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

1. Introduction

The concepts of multiaxis machines error modeling can be
found in classical literature [1, 2], including the appropriate
methodology. For the process description, the homogeneous
transformation matrices (HTM) are used as the crucial
mathematical tool for the error models; see [3, 4].

The complex multiaxis machine positioning is repre-
sented by a kinematic chain.Thus, bymeans of the product of
the transformations between successive coordinate systems
associated to themechanisms elements, from the absolute ref-
erence system to the tool reference system, the global trans-
formation matrix 𝑇 ∈ Mat

4
(R) is obtained. The basic setting

takes place in the affine extension of vector space R3. This
approach appears quite often inmodern literature withminor
modifications; see [5–8]; for a rare attempt to use modern
advanced mathematical structures such as the algebra of
quaternions, see [9].

Themain uncertainty sources in the design and construc-
tion of machine tools are geometric and kinematic errors,
thermal errors, stiffness error, and errors addressed to the
deflection of cutting tools. Those mentioned above are the
known sources. Their consequences are complex, but tech-
niques to evaluate them or compensate their effects have
being developed; see [10, 11]. In our paper we work with geo-
metric and kinematic errors in any machine component
which can be considered in the kinematic model as a new
parameter.

For example, the coordinate transformationmatrices and
the corresponding error matrices for three-axis machines are
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where𝛿
𝑖𝑖
denotes the linear errors along the 𝑖th axis,𝛿

𝑖𝑗
, 𝑖 ̸= 𝑗 is

the straightness errors in the 𝑖th axis direction when moving
along the 𝑗th axis, 𝜖

𝑖𝑗
is the angular errors around the 𝑖th axis

when moving along the 𝑗th axis, and 𝑆
𝑖𝑗
is the squareness

errors between the corresponding axes.
Our goal is to set the methodology of multiaxis machines

geometric error in the context of modern theory of Weil
algebras [12]. In this paper, we essentially useWeil algebraD1

1

and in the final section we present the directions of further

research and discuss the advantages of employing more
general Weil algebras into the error analysis. When assem-
bling the kinematic chain containing geometric errors, we
embed the errormatrix corresponding to any kinematic joint,
that is, the errors of joint translation or rotation. In particular,
for the translation in the vector (𝑥, 𝑦, 𝑧) direction or for the
rotation around the 𝑧 axis by the angle 𝛾, the following error
matrices apply, respectively:

(

1 −𝛼 𝛽 𝑥

𝛼 1 𝛾 𝑦

−𝛽 −𝛾 1 𝑧

0 0 0 1

)(

1 −𝛼 cos (𝜃 + 𝛾) − 𝛽 sin (𝜃 + 𝛾) 𝛼 sin (𝜃 + 𝛾) − 𝛽 cos (𝜃 + 𝛾) 0

𝛼 cos (𝜃 + 𝛾) − sin (𝜃 + 𝛾) 0

−𝛽 sin (𝜃 + 𝛾) cos (𝜃 + 𝛾) 0

0 0 0 1

) . (2)

The parameters 𝛼, 𝛽, and 𝛾 represent the error rotations
around the axes 𝑧, 𝑦, and 𝑥, respectively, and 𝜃 gives the
proper rotation around axis 𝑧. The error matrices were
derived from the rotation matrices around particular axes by
approximation. More precisely, for the translation of the
rotation around axis 𝑥, error matrix is approximated as
follows:

(

1 0 0 0

0 cos𝛼 − sin𝛼 0

0 sin𝛼 cos𝛼 0

0 0 0 1

) 󴁄󴀼 (

1 0 0 0

0 1 −𝛼 0

0 𝛼 1 0

0 0 0 1

) . (3)

Thus cos𝑥 󴁄󴀼 1 and sin𝑥 󴁄󴀼 𝑥. In case two approximations
are multiplied, the whole term vanishes. This is caused by
the assumption that the errors are by order smaller than the
proper rotation parameters. The above mentioned represen-
tation is a standard description of the error matrices to be
embedded into the kinematic chain.

For example, in case of two-axis machines with two
translation joints, we obtain the following kinematic chain:

(

1 −𝛼
1

𝛽
1

𝑥
1

𝛼
1

1 𝛾
1

𝑦
1

−𝛽
1

−𝛾
1

1 𝑧
1

0 0 0 1

)(

1 0 0 𝑥

0 1 0 0

0 0 1 0

0 0 0 1

)

×(

1 −𝛼
2

𝛽
2

𝑥
2

𝛼
2

1 𝛾
2

𝑦
2

−𝛽
2

−𝛾
2

1 𝑧
2

0 0 0 1

)(

1 0 0 0

0 1 0 𝑦

0 0 1 0

0 0 0 1

) .

(4)

If the above mentioned identities 𝛼
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(5)

and the corresponding kinematic equations which are to be
solved within the error analysis. Generally, in case of the
system of linear equations, we proceed by Gauss elimination;
for nonlinear systems we use Gröbner bases. In our setting,
we compute with the matrices using the identities 𝛼

𝑖
𝛽
𝑗
= 0,

𝛼
𝑖
𝛾
𝑗
= 0 and 𝛽

𝑖
𝛾
𝑗
= 0 for all 𝑖, 𝑗 ∈ {1, 2}, which resemble the

identities for the imaginary parts of the dual numbers.Thus it
makes sense for the whole theory to use the homogeneous
transformation matrices over the dual numbers. Our further
approach to error calculations will thus be based on the dual
numbers calculus; more generally we use aWeil algebra.This
gives us a formal setting for the geometric errors modeling.

2. Matrices over Dual Numbers

As we are going to calculate with matrices over a structure
different from real or complex numbers,moreover a structure
which is not a field but a ring only, we have to guarantee that
the calculations within the inverse kinematics make sense. In
mathematical language, we need the dual numbers to form
the so-called Euclidean domain.

By an Euclidean domain 𝑅 we understand an integral
domain which is endowed with at least one Euclidean func-
tion, that is, function of the form𝑓 : 𝑅−{0

𝑅
} → Z+

0
satisfying

the following property: if 𝑎, 𝑏 ∈ 𝑅 and 𝑏 ̸= 0
𝑅
, then there are 𝑞

and 𝑟 ∈ 𝑅 such that 𝑎 = 𝑏𝑞 + 𝑟 and either 𝑟 = 0
𝑅
or

𝑓(𝑟) < 𝑓(𝑏).
Let us recall that for any field we shall define 𝑓(𝑥) = 1

for any nonzero 𝑥 and thus any field is Euclidean. The most
important property of the Euclidean domain is that the
Euclidean algorithm can be used to find the greatest common
divisor of its two elements (i.e., one can easily see that any
Euclidean domain is a principal ideal domain—PID). This
leads to the fact that in Euclidean domains the Gauss elim-
inationmethod for solving systems of linear equations can be
applied.

As an example of Euclidean domain, let us recall three
well-known extensions of real numbers.
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C = {𝑎 + 𝑏𝑖𝑎, 𝑏 ∈ R, 𝑖
2
= −1} ,

D = {𝑎 + 𝑏𝑖𝑎, 𝑏 ∈ R, 𝑖
2
= 0} ,

P = {𝑎 + 𝑏𝑖𝑎, 𝑏 ∈ R, 𝑖
2
= 1} .

(6)

Rings C,D, and P can be obtained as factor rings of R[𝑥] :

C = R[𝑥]/(𝑥
2
+ 1), D = R[𝑥]/(𝑥

2
), and P = 𝑅[𝑥]/(𝑥

2
− 1).

Only𝑥2+1 is irreducible overR; therebyC is a field.NeitherD
nor P are integral domains: we have 𝑎𝑖 × 𝑏𝑖 = 0 for D and
(𝑎 + 𝑎𝑖) × (𝑏 − 𝑏𝑖) = 0 for P (by equations also presented all
zero divisors of these rings).

In particular, the dual numbers extend the real numbers
by adjoining one new element 𝜖with the property 𝜖2 = 0 (𝜖 is
nilpotent). The collection of dual numbers forms a particular
two-dimensional commutative unital associative algebra over
the real numbers. Every dual number has the form

𝑧 = 𝑎 + 𝑏𝜖 (7)

with 𝑎 and 𝑏 uniquely determined real numbers. Division of
dual numbers is defined when the real part of the denomina-
tor is nonzero. The division process is analogous to complex
division in that the denominator ismultiplied by its conjugate
in order to cancel the nonreal parts.

We define the following class of matrices over dual
numbers:

Mat
𝑛
D = {𝐴 + 𝜖𝐵 | 𝐴, 𝐵 ∈ Mat

𝑛
R} (8)

and the group of orthogonal matrices over dual numbers:

𝑂 (𝑛,D) = {𝐶 ∈ Mat
𝑛
D | 𝐶
𝑇
𝐶 = 𝐸} . (9)

Indeed, the set 𝑂(𝑛,D) with standard matrix multipli-
cation is a group as it is closed under the operation, more
precisely (𝐴𝐵)

𝑇
𝐴𝐵 = 𝐵

𝑇
𝐴
𝑇
𝐴𝐵 = 𝐵

𝑇
𝐵 = 𝐸; the inverse to

the matrix𝐴 is the matrix𝐴𝑇 and the unitary matrix is of the
form 𝐸 + 𝜖0.

Theorem 1. An element 𝐴 + 𝜖𝐵 ∈ Mat
𝑛
D lies in 𝑂(𝑛,D) if

𝐴 ∈ 𝑂(𝑛) = 𝑂(𝑛,R) and 𝐵 satisfies the identity

𝐴
𝑇
𝐵 = −𝐵

𝑇
𝐴. (10)

Proof. (𝐴 + 𝜖𝐵)
𝑇
(𝐴 + 𝜖𝐵) = (𝐴

𝑇
+ 𝜖𝐵
𝑇
)(𝐴 + 𝜖𝐵) = 𝐴

𝑇
𝐴 +

𝜖(𝐴
𝑇
𝐵 + 𝐵
𝑇
𝐴) and thus 𝐴𝑇𝐴 = 𝐸 a𝐴𝑇𝐵 + 𝐵

𝑇
𝐴.

Definition 2. Let 𝐴 ∈ 𝑂(𝑛). Then the set

𝑂
𝐴
= {𝐴 + 𝐵𝜖 | 𝐴

𝑇
𝐵 + 𝐴𝐵

𝑇
= 0} (11)

is called the dual extension of the matrix 𝐴 and the set

𝐼
𝐴
= {𝐵 | 𝐴

𝑇
𝐵 + 𝐴𝐵

𝑇
= 0} (12)

of the imaginary parts of the matrices within the class 𝑂𝐴 is
called the 𝐴-admissible error class or shortly the error class.

Let us note that in the special case𝐴 = 𝐸, the error class 𝐼𝐸
is a Lie algebra s𝑜(𝑛).

Lemma 3. The error class 𝐼𝐴 is a Lie algebra with respect to
the commutator operation [𝐹, 𝐺] = 𝐹𝐺−𝐺𝐹 if and only if 𝐴 is
symmetric, that is, 𝐴𝑇 = 𝐴.

Proof. For𝐴 ∈ 𝑂(𝑛), 𝐵, 𝐶 ∈ 𝐼
𝐴 holds the following:𝐴𝑇[𝐵,𝐶] =

𝐴
𝑇
(𝐵𝐶 − 𝐶𝐵) = 𝐴

𝑇
𝐵𝐶 − 𝐴

𝑇
𝐶𝐵 = −𝐵

𝑇
𝐴𝐶 + 𝐶

𝑇
𝐴𝐵 =

𝐵
𝑇
𝐶
𝑇
𝐴
𝑇
−𝐶
𝑇
𝐵
𝑇
𝐴
𝑇
= ((𝐶𝐵)

𝑇
−(𝐵𝐶)

𝑇
)𝐴
𝑇
= (𝐶𝐵 − 𝐵𝐶)

𝑇
𝐴
𝑇
=

[𝐶, 𝐵]
𝑇
𝐴
𝑇
= −[𝐵, 𝐶]

𝑇
𝐴
𝑇.

Example. Another possible choice of the matrix 𝐴 such that
𝐼
𝐴 is an algebra is 𝐴 = 𝐸, where

𝐸 = (
0 𝐸

𝐸 0
) ∈ Mat

2𝑛
R, (13)

where𝐸 is an identity 𝑛×𝑛matrix. Indeed, for anothermatrix
(
𝑀 𝑁

𝑂 𝑃
) ∈ 𝐼
𝐸 with𝑀,𝑁,𝑂, 𝑃 ∈ Mat

𝑛
R we obtain

(
0 𝐸

𝐸 0
)(

𝑀 𝑁

𝑂 𝑃
) = −(

𝑀 𝑂

𝑁 𝑃
)(

0 𝐸

𝐸 0
) (14)

and thus

𝐼
𝐸
= (

𝑀 0

0 −𝑀
) ≅ Mat

𝑛
R. (15)

Furthermore, the set

𝑆𝑂 (𝑛,D) = {𝐴 + 𝜖𝐵 ∈ 𝑂 (𝑛,D) | 𝐴 ∈ 𝑆𝑂 (𝑛)} (16)

will be called the class of the special orthogonal matrices over
D.

Lemma 4. Let 𝐴 + 𝐵𝜖 ∈ 𝑆𝑂(2,D). Then 𝐴 + 𝐵𝜖 is of the form

(
cos (𝜑) − 𝑘tg (𝜑) 𝜖 − sin (𝜑) − 𝑘𝜖

sin (𝜑) + 𝑘𝜖 cos (𝜑) − 𝑘tg (𝜑) 𝜖) , (17)

where 𝜑 ∈ ⟨0, 2𝜋⟩, and 𝑘 ∈ R.

Proof. Because 𝐴 ∈ 𝑆𝑂(2), it has to be of the form

𝐴 = (
cos (𝜑) − sin (𝜑)

sin (𝜑) cos (𝜑) ) . (18)

Furthermore, let us consider a matrix 𝐵 in the general form
(
𝑎 𝑏

𝑐 𝑑
). As 𝐴 + 𝐵𝜖 ∈ 𝑆𝑂(2,D), the identity (10) has to be

fulfilled:

(
cos (𝜑) sin (𝜑)

− sin (𝜑) cos (𝜑))(
𝑎 𝑏

𝑐 𝑑
)

= −(
𝑎 𝑐

𝑏 𝑑
)(

cos (𝜑) − sin (𝜑)

sin (𝜑) cos (𝜑) ) .

(19)

This leads to the following equations:

𝑎 cos (𝜑) + 𝑐 sin (𝜑) = −𝑎 cos (𝜑) − 𝑐 sin (𝜑) ,

𝑏 cos (𝜑) + 𝑑 sin (𝜑) = 𝑎 sin (𝜑) − 𝑐 cos (𝜑) ,

−𝑎 sin (𝜑) + 𝑐 cos (𝜑) = −𝑏 cos (𝜑) − 𝑑 sin (𝜑) ,

−𝑏 sin (𝜑) + 𝑑 cos (𝜑) = 𝑏 sin (𝜑) − 𝑑 cos (𝜑) .

(20)
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From the first and the last one we obtain identities 𝑎 =

−𝑐𝑡𝑔(𝜑) and 𝑑 = 𝑏𝑡𝑔(𝜑). If we substitute these into the rest
of the equalities, we obtain the following calculations:

𝑏 cos (𝜑) + 𝑏𝑡𝑔 (𝜑) sin (𝜑) = − 𝑐𝑡𝑔 (𝜑) sin (𝜑) − 𝑐 cos (𝜑) ,

𝑏(cos (𝜑))2 + 𝑏 (sin (𝜑)
2

) = − 𝑐(sin (𝜑))
2

− 𝑐(cos (𝜑))2,

𝑏 = − 𝑐.

(21)

Thus for the matrix 𝐴 we conclude that

𝐼
𝐴
= (

−𝑘𝑡𝑔 (𝜑) 𝜖 −𝑘𝜖

𝑘𝜖 −𝑘𝑡𝑔 (𝜑) 𝜖
) , 𝑘 ∈ R, (22)

which completes the proof.

Lemma 5. Let 𝐴, 𝐵 ∈ 𝑂(𝑛) then

(𝐴 + 𝐼
𝐴
𝜖) (𝐵 + 𝐼

𝐵
𝜖) = 𝐴𝐵 + 𝐼

𝐴𝐵
𝜖. (23)

Proof. (𝐴+𝐼
𝐴
𝜖)(𝐵+𝐼

𝐵
𝜖) = 𝐴𝐵+(𝐴𝐼

𝐵
+𝐼
𝐴
𝐵)𝜖 and it is easy to

see that (𝐴𝐼𝐵 + 𝐼
𝐴
𝐵) ∈ 𝐼

𝐴𝐵:

(𝐴𝐵)
𝑇
(𝐴𝐼
𝐵
+ 𝐼
𝐴
𝐵) + (𝐴𝐼

𝐵
+ 𝐼
𝐴
𝐵)
𝑇

𝐴𝐵

= 𝐵
𝑇
𝐴
𝑇
(𝐴𝐼
𝐵
+ 𝐼
𝐴
𝐵) + ((𝐼

𝐵
)
𝑇

𝐴
𝑇
+ 𝐵
𝑇
(𝐼
𝐴
)
𝑇

)𝐴𝐵

= 𝐵
𝑇
𝐼
𝐵
+ 𝐵
𝑇
𝐴
𝑇
𝐼
𝐴
𝐵 + (𝐼

𝐵
)
𝑇

𝐵 + 𝐵
𝑇
(𝐼
𝐴
)
𝑇

𝐴𝐵

= 𝐵
𝑇
𝐼
𝐵
+ (𝐼
𝐵
)
𝑇

𝐵 + 𝐵
𝑇
(𝐴
𝑇
𝐼
𝐴
+ (𝐼
𝐴
)
𝑇

𝐴)𝐵 = 0.

(24)

On the other hand, if 𝐶 ∈ 𝐼
𝐴𝐵 then one can find 𝐶

1
∈ 𝐼
𝐵 and

𝐶
2
∈ 𝐼
𝐴 such that 𝐴𝐶

1
+ 𝐶
2
𝐵 = 𝐶; for any 𝐶

2
∈ 𝐼
𝐴 we can

define 𝐶
1
= 𝐴
𝑇
𝐶 − 𝐴

𝑇
𝐶
2
𝐵, such that 𝐶

1
∈ 𝐼
𝐵:

𝐵
𝑇
(𝐴
𝑇
𝐶 − 𝐴

𝑇
𝐶
2
𝐵) + (𝐴

𝑇
𝐶 − 𝐴

𝑇
𝐶
2
𝐵)
𝑇

𝐵

= 𝐵
𝑇
𝐴
𝑇
𝐶 − 𝐵

𝑇
𝐴
𝑇
𝐶
2
𝐵 + (𝐶

𝑇
𝐴 − 𝐵

𝑇
𝐶
𝑇

2
𝐴)𝐵

= 𝐵
𝑇
𝐴
𝑇
𝐶 − 𝐵

𝑇
𝐴
𝑇
𝐶
2
𝐵 + 𝐶

𝑇
𝐴𝐵 − 𝐵

𝑇
𝐶
𝑇

2
𝐴𝐵 = 0.

(25)

Theorem 6. Let𝐴+𝐵𝜖 ∈ 𝑆𝑂(3,D). Then𝐴+𝐵𝜖 is of the form

𝑅
1
𝑅
2
𝑅
3
+ (𝑅
1
𝑅
2
𝐼
𝑅3 + 𝑅

1
𝐼
𝑅2𝑅
3
+ 𝐼
𝑅1𝑅
2
𝑅
3
) 𝜖, (26)

where 𝑅
1
, 𝑅
2
, and 𝑅

3
are the matrices of rotations around the

axes 𝑥, 𝑦, and 𝑧, respectively, and

𝐼
𝑅1 = (

0 −𝛼 cos (𝜑) − 𝛽 sin (𝜑) 𝛼 sin (𝜑) − 𝛽 cos (𝜑)
𝛼 −𝑘tg (𝜑) −𝑘

𝛽 𝑘 −𝑘tg (𝜑)
) ,

𝐼
𝑅2 = (

−𝑘tg (𝜑) 𝛼 −𝑘

−𝛼 cos (𝜑) − 𝛽 sin (𝜑) 0 𝛼 sin (𝜑) − 𝛽 cos (𝜑)
𝑘 𝛽 −𝑘tg (𝜑)

) ,

𝐼
𝑅3 = (

−𝑘tg (𝜑) −𝑘 𝛼

𝑘 −𝑘tg (𝜑) 𝛽

−𝛼 cos (𝜑) − 𝛽 sin (𝜑) 𝛼 sin (𝜑) − 𝛽 cos (𝜑) 0

) .

(27)

Proof. It is known that any element 𝐴 ∈ 𝑆𝑂(3) can be repre-
sented as a composition of three rotation matrices 𝑅

1
, 𝑅
2
, 𝑅
3

(around axes 𝑥, 𝑦, and 𝑧, resp.). Thus if the extension to
𝑆𝑂(3,D) is considered, we obtain

(𝑅
1
+ 𝐼
𝑅1𝜖) (𝑅

2
+ 𝐼
𝑅2𝜖) (𝑅

3
+ 𝐼
𝑅3𝜖)

= 𝑅
1
𝑅
2
𝑅
3
+ (𝑅
1
𝑅
2
𝐼
𝑅3 + 𝑅

1
𝐼
𝑅2𝑅
3
+ 𝐼
𝑅1𝑅
2
𝑅
3
) 𝜖

(28)

and 𝐴 = 𝑅
1
𝑅
2
𝑅
3
∈ 𝑆𝑂(3), according to Lemma 5.

Let us now consider the rotation around the axis 𝑥 in
particular.Thematrix𝐴will be of the form (

1 0

0 𝑀
), where𝑀 ∈

𝑆𝑂(2). If we consider a general error matrix of such type in
the form (

𝑎 𝑥

𝑦 𝑁 ), where 𝑎 ∈ R and 𝑥, 𝑦 are the dimension two
row and column vectors, respectively, from the identity (10)
we obtain

(
1 0

0 𝑀
𝑇)(

𝑎 𝑥

𝑦 𝑁
) = − (

𝑎 𝑦
𝑇

𝑥
𝑇

𝑁
𝑇)(

1 0

0 𝑀
) ,

(
𝑎 𝑥

𝑀
𝑇
𝑦 𝑀
𝑇
𝑁
) = − (

𝑎 𝑦
𝑇
𝑀

𝑥
𝑇

𝑁
𝑇
𝑀

) .

(29)

Thus 𝑎 = 0 and 𝑥 = −𝑦
𝑇
𝑀 which is equal to𝑀

𝑇
𝑦 = 𝑥

𝑇 and
the identity𝑀𝑇𝑁 = −𝑁

𝑇
𝑀 for the dimension two matrices

holds from Lemma 4. If, in addition,

𝑦 = (
𝛼

𝛽
) , (30)

then

𝑥 = ((−𝛼 cos (𝜑) − 𝛽 sin (𝜑)) (𝛼 sin (𝜑) − 𝛽 cos (𝜑))) (31)

and we obtain that

𝐼
𝑅1 = (

0 −𝛼 cos (𝜑) − 𝛽 sin (𝜑) 𝛼 sin (𝜑) − 𝛽 cos (𝜑)
𝛼 −𝑘𝑡𝑔 (𝜑) −𝑘

𝛽 𝑘 −𝑘𝑡𝑔 (𝜑)

) .

(32)

The remaining rotation represented by𝑅
2
and𝑅

3
can be com-

puted similarly.
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Let us note that the matrices 𝐼𝑅𝑖 , 𝑖 ∈ {1, 2, 3} contain the
errors 𝛼, 𝛽 and if 𝜑 is understood as the sum 𝜃 + 𝛾 of the
rotation angle 𝜃 and the rotation error angle 𝛾, then all clas-
sical rotation errors are involved and the appropriate error
matrix with 𝑘 = 0 in addition corresponds to the classical
errormatrix.The geometric role of the parameter 𝑘within the
matrix

(

1 0 0

0 −𝑘𝑡𝑔 (𝜑) −𝑘

0 𝑘 −𝑘𝑡𝑔 (𝜑)

) (33)

is unknown as it does not appear in the geometric error
modeling.

3. Example

The following elementary example of two-axis machine will
show the methodology of geometric errors modeling. The
kinematic chain is described by means of the moving frame
method, where the rotation matrices 𝑅

𝑖
∈ 𝑆𝑂(𝑛) are replaced

by the matrices 𝑅
𝑖
+ 𝐼
𝑅𝑖𝜖 ∈ 𝑆𝑂(𝑛,D). It is crucial thatD is the

Euclidean domain and thus themethods ofGauss elimination
andGröbner bases can be usedwhen the inverse kinematics is
solved. We will demonstrate the process in the case of two-
axis machine with one rotation axis 𝑥 and one translation in
the direction of axis𝑦.Thus, in the following, we shall work in
the affine extension of the vector spaceR3, where vectorsX =

(𝑥, 𝑦, 𝑧)
𝑇
∈ R3 are represented as the elements (𝑥, 𝑦, 𝑧, 1)𝑇 ∈

R4. The matrix 𝐴 ∈ Mat
𝑛
(3,D) is then represented by the

matrix ( 𝐴 X
0 1

) ∈ Mat
𝑛
(3,D) ⋊ R3 ⊂ Mat

𝑛
(4,D). For 𝑇 =

(𝐴,X) ∈ Mat
𝑛
(3,D) ⋊R3 we write 𝐼𝑇 := (𝐼

𝐴
,X).

The transformation matrices

𝑇
1
= (

1 0 0 0

0 1 0 𝑦

0 0 1 0

0 0 0 1

) , 𝑇
2
= (

1 0 0 0

0 cos (𝜑) − sin (𝜑) 0

0 sin (𝜑) cos (𝜑) 0

0 0 0 1

)

(34)

are the elements of𝑂(3)⋊R3. When the errors are added, we
obtain

𝑇
1
+ 𝐼
𝑇1𝜖 = (

1 −𝛼
1
𝜖 −𝛽
1
𝜖 𝑥
1
𝜖

𝛼
1
𝜖 1 −𝛾

1
𝜖 𝑦
1
𝜖

𝛽
1
𝜖 𝛾
1
𝜖 1 𝑧

1
𝜖

0 0 0 1

) ,

𝑇
2
+ 𝐼
𝑇2

= (

1 + 𝑎𝜖 −𝛼
2
cos (𝜑) 𝜖 − 𝛽

2
sin (𝜑) 𝜖 𝛼

2
sin (𝜑) 𝜖 − 𝛽

2
cos (𝜑) 𝜖 𝑥

2
𝜖

𝛼
2
𝜖 cos (𝜑) − 𝑘𝑡𝑔 (𝜑) 𝜖 sin (𝜑) − 𝑘𝜖 𝑦

2
𝜖

𝛽
2
𝜖 sin (𝜑) + 𝑘𝜖 cos (𝜑) − 𝑘𝑡𝑔 (𝜑) 𝜖 𝑧

2
𝜖

0 0 0 1

).

(35)

Now the transformation matrices became the elements of
𝑂(3,D) ⋊ R3 (note that it would make sense to consider the

calculations in the algebra𝑂(3,D) ⊗D instead, but this is not
the topic considered in this paper). The resulting matrix is
then of the form

(𝑇
1
+ 𝐼
𝐸
) (𝑇
2
+ 𝐼
𝑇2
)

= (

𝑎𝜖 − cos (𝜑) (𝛼
1
+ 𝛼
2
) 𝜖 − sin (𝜑) (𝛽

1
+ 𝛽
2
) 𝜖 − sin (𝜑) (𝛼

1
− 𝛼
2
) 𝜖 − cos (𝜑) (𝛽

1
+ 𝛽
2
) 𝜖 𝑥

1
+ 𝑥
2

(𝛼
1
+ 𝛼
2
) 𝜖 cos (𝜑) + (−𝑘𝑡𝑔 (𝜑) + 𝛾

1
sin (𝜑)) 𝜖 sin (𝜑) + (−𝑘 − 𝛾

1
cos (𝜑)) 𝜖 𝑦

1
+ 𝑦
2
+ 𝑦

(𝛽
1
+ 𝑏𝑒
2
) 𝜖 sin (𝜑) + (𝑘 + 𝛾

1
sin (𝜑)) 𝜖 cos (𝜑) + (𝑘𝑡𝑔 (𝜑) + 𝛾

1
cos (𝜑)) 𝜖 𝑧

1
+ 𝑧
2

0 0 0 1

).

(36)

This describes the case of two-axis machine completely. To
apply this approach on the three-axis machine, it is enough to
extend the kinematic chain by the term (𝑇

3
+ 𝐼
𝐸
). If, in addi-

tion, rotationmachine elements are considered, it is necessary
to employ the rotation error matrices (𝑅

𝑖
+ 𝐼
𝑅𝑖).

4. Notes on Weil Algebras

Let 𝑟, 𝑘 ∈ N and let us denote D𝑟
𝑘
the R-algebra

R
[𝑥
1
, . . . , 𝑥

𝑘
]

⟨𝑥
1
, . . . , 𝑥

𝑛
⟩
𝑟+1

, (37)
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whereR[𝑥
1
, . . . , 𝑥

𝑘
] is theR-algebra of real polynomials in 𝑘

indeterminates and ⟨𝑥
1
, . . . , 𝑥

𝑛
⟩
𝑟+1 is the (𝑟 + 1)th power of

its maximal ideals.

Definition 7. Weil algebra is an arbitrary nontrivial quotient
R-algebra of D𝑟

𝑘
. For example, for D1

1
we obtain the dual

numbers D and for D2
2
we have the set of polynomials in the

form 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥
2
+ 𝑑𝑥
2
+ 𝑒𝑥𝑦.

Furthermore, the Weil algebra W
1

= D2
2
/⟨𝑥𝑦⟩ can be

defined and the set of polynomials

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥
2
+ 𝑑𝑥
2 (38)

is obtained.
For the sake of the error analysis, the matrix class 𝑅

1
+𝐼
𝑅1

can be represented by the element ofD𝑛
4
(where 𝑛 determines

the level of accuracy of the error analysis):

𝑅
1
+ (

𝑎 − cos (𝜑) sin (𝜑)

1 0 0

0 0 0

)𝑥
1

+ (

0 − sin (𝜑) − cos (𝜑)
0 0 0

1 0 0

)𝑥
2
+ (

1 0 0

0 0 0

0 0 0

)𝑥
3

+ (

0 0 0

0 −𝑡𝑔 (𝜑) −1

0 1 −𝑡𝑔 (𝜑)

)𝑥
4
.

(39)

The choice 𝑛 = 1 neglects the interference of any two errors
and the calculations will be similar to those over the dual
numbers. In case 𝑛 = 3, the actual interference of three errors
for the term to be neglected is needed, but with the additional
choice of the Weil algebra one can determine those error
combinations which can be neglected or eventually replaced.

For instance, the choice

W =
D3
4

⟨𝑥
2

1
, 𝑥
2

2
, 𝑥
2

3
, 𝑥
2

4
, 𝑥
3
𝑥
2
, 𝑥
3
𝑥
4
, 𝑥
3
𝑥
1
, ⟩

(40)

works similarly to the classical calculations over the dual
numbers, but the interferences of two different rotation errors
are not neglected, that is, 𝑥

𝑖
𝑥
𝑗

̸= 0 for 𝑖 ̸= 𝑗.
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