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In Internet traffic modeling, many authors presented models based on particular fractal shot noise representations. The
inconvenience of these approaches is the multitude of assumptions and the lack of tools to check them. In this paper we propose a
unifiedmodel based on a general Poisson shot noise representation for the cumulative input process (CIP).We present a procedure
of approximation of this process; then we give a procedure for controlling the bandwidth of Internet providers. The approximation
and control go via limit theorems for functionals of the CIP, namely, the supremum process, the right inverse, and the storage
mapping.

1. Introduction

The aim of this paper is to present a method for approx-
imating the traffic that accumulates in an Internet server.
We suppose that a unique server deals with an infinite
sized source that sends data over independent transmissions
to the server according to a stationary Poisson process.
We are interested in the cumulative input of work to the
server (also called total accumulated work). This stochastic
process generated by the traffic of the transmission over an
interval of time [0, 𝑡] is denoted by 𝐴

𝑡
and called cumulative

input process (briefly CIP). The terminology work could be
understood as a portion of bandwidth that has to be allocated
in order to evacuate the traffic. We also used on purpose
the terminology transmission because we will see that the
approximation we propose could be applied for the traffic
of packets upstream and/or packets downstream, or even to
more global objects related to the traffic such as downloads
from the Internet. The approximation we propose works
for fixed and single type of transmissions. Different types
of transmissions simply induce the superposition of their
corresponding CIP.

In the specialized literature, it seems that the rules are to
assume a mechanism of evolution in time of this CIP [1–6].
The inconvenience of these assumptions on the evolution in
time is that they are quite impossible to check.

In [7], we presented a model based on a general Poisson
shot noise representation without imposing any such a
mechanism.Withminimal technical assumptions we showed
that theCIP can be approximated in a certain sense by a nicely
tractable stochastic process, namely, a stable process with
only positive jumps.The sense is the weak convergence in law
of a modified version of the CIP to the stable process. This
sense is extremely useful because it allows some functionals
of the CIP to converge to appropriate functionals of the stable
process. This will be the central key for forecasting the band-
width allocation via stable processes. A widespread literature
is devoted to stable processes and powerful statistical meth-
ods are available; see [8].The procedure of approximation for
the CIP is resumed as follows: within an interval of time [0, 𝑡]
large enough, we observe a certain number of transmissions
ordered according to the first arrived. In Internet traffic each
transmission can be traced by its related packets and several
data can be extracted for each transmission.We showed in [7]
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with Theorem 1, stated below, that the nice approximation of
the CIP holdsweakly in lawwith limit 𝑆, a strict stable process
totally skewed to the right,

(
𝐴

𝑐𝑡
− 𝑡𝛿

𝑐

𝜌
𝑐

)
𝑡≥0

W
→ (𝑆

𝑡
)

𝑡≥0
, (1)

for some correcting terms 𝛿
𝑐
, 𝜌

𝑐
. The latter holds under these

three easily checkable properties:

(1) the arrivals of the transmissions form a Poisson
process (eventually with intensity increasing at large
time scales);

(2) the size of each transmission is heavy tailed with
infinite variance. In probabilistic terminology, the
right tail of their distribution is regularly varying
with index −𝛼 for some 𝛼 ∈ (0, 2). This parameter
of heaviness gives the index of self-similarity of the
stable process;

(3) the length of each transmission has finite expectation
(other alternative weaker assumptions are feasible).

A comparative study with several of the existing models
is also provided in our paper [7] and illustrates why our
assumptions are weaker and more tractable.

In the present paper we start in Section 2 by presenting
the model for the CIP. In Section 3 we give its corresponding
limit theorem. In Section 4 an approximation procedure for
functionals of the CIP, namely,

(1) the supremum process corresponding to the maxi-
mum input of work;

(2) the right inverse, corresponding to the first passage
time process over critical barriers;

(3) the storage mapping, corresponding to the process
solution of a storage equation.

We will see that we obtain limit theorems similar to those
obtained in [7] and no additional assumption is needed
for achieving this goal. The following result is stated in
Theorem 3 under the same formalism thanTheorem 1, take 𝜙
any of the mappings behind the previous functionals. Then,
there exist correcting terms 𝛿⋆

𝑐
, 𝜌

⋆

𝑐
and a companionmapping

𝜙
⋆ of 𝜙 such that

(
𝜙(𝐴)

𝑐𝑡
− 𝑡𝛿

⋆

𝑐

𝜌⋆

𝑐

)
𝑡≥0

W
→ (𝜙

⋆
(𝑆)

𝑡
)

𝑡≥0
. (2)

Section 5 is devoted to the proofs.The tools we used there are
based on the monograph of Whitt [9].

2. The Model

Through all the following, we assume that a unique server
deals with an infinite sized source. Transmissions arrive to
the server according to a homogeneous Poisson process onR
labeled by its points (𝑇

𝑘
)

𝑘∈Z so that ⋅ ⋅ ⋅ 𝑇
−1
< 𝑇

0
< 0 < 𝑇

1
⋅ ⋅ ⋅

and hence {−𝑇
0
, 𝑇

1
, (𝑇

𝑘+1
− 𝑇

𝑘
, 𝑘 ̸= 0)} are i.i.d. exponentially

distributed random variables with parameter 𝜆

𝑇
𝑘
is considered as the time of initiation of the 𝑘th

transmission.

Let the counting measure 𝑁(d𝑠) = ∑
𝑘∈Z 𝜀𝑇𝑘(d𝑠) and

define the Poisson process𝑁 by

𝑁
𝑡
= 𝑁 [0, 𝑡] if 𝑡 ≥ 0, 𝑁

𝑡
= 𝑁 [𝑡, 0) if 𝑡 < 0. (3)

The quantity 𝑁
𝑡
represents the number of transmissions

started between time 𝑠 = 0 and time 𝑠 = 𝑡.We are interested in
the cumulative input process (CIP) generated over an interval
of time [0, 𝑡] and denoted by 𝐴

𝑡
. It corresponds to the size of

the files transmitted by the source. There are many ways to
model it (from themost trivial way to themost sophisticated).
Specification of the source behavior could be taken into
account adding more andmore parameters. In order to avoid
this intricacy, most of the authors [2–6] have a macroscopic
approach strongly connected with times of initiation of the
transmissions, their duration, and their rate. As we will see,
this paper confirms the pertinence of this approach, and we
show that it is sufficient for having the required control on the
cumulative input process.

Our aim is to describe, in the more general setting, the
CIP and to give an approximation of the law of functionals of
this process. Notice that theCIP describes thework generated
over the interval [0, 𝑡]. Time 𝑠 = 0 is when our “observation
starts” and 𝑠 = 𝑡 is when our “observation finishes.” Observe
that times of initiation of transmissions are either positive
or negative (before or after our observation starts). The 𝑘th
transmission starts at time 𝑇

𝑘
and continues over the interval

of time [𝑇
𝑘
, +∞).

Suppose we observed the transmissions since ever and
until time 𝑠 and we want to calculate the work generated
by the 𝑘th transmission. This work holds over the random
interval (−∞, 𝑠] ∩ [𝑇

𝑘
, +∞). The length of this interval is the

r.v.

(𝑠 − 𝑇
𝑘
)

+
= Max {0, 𝑠 − 𝑇

𝑘
} . (4)

We deduce that the work generated by the 𝑘th transmission
is given by a quantity which depends on the length (𝑠 − 𝑇

𝑘
)

+
.

We will denote this work by

𝑋
𝑘
(𝑠 − 𝑇

𝑘
) , (5)

where (𝑋𝑘
(𝑟))

𝑟∈R is a stochastic process; the random variable
𝑋

𝑘
(𝑟) is an increasing function of 𝑟, vanishing if 𝑟 ≤ 0 and

describing the quantity of work that could be generated by
the 𝑘th transmission over an interval of time of length 𝑟.

If we had observed only over the interval (𝑠, 𝑠] (instead
of (−∞, 𝑠]), the work that could be generated by the 𝑘th
transmission should be written as the difference

𝑋
𝑘
(𝑠 − 𝑇

𝑘
) − 𝑋

𝑘
(𝑠


− 𝑇

𝑘
) . (6)

Notice that 𝑡 ≥ 𝑇
𝑙
≥ 𝑇

𝑘
≥ 0 ≥ 𝑇

𝑗
≥ 𝑇

𝑖
is equivalent to

𝑁
𝑡
≥ 𝑙 ≥ 𝑘 ≥ 0 ≥ 𝑗 ≥ 𝑖. Because of the above considerations,
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we propose the followingmodel describing the CIP over [0, 𝑡]
by a “moving average type”:

𝐴
𝑡
=

𝑁𝑡

∑
𝑘=−∞

𝑋
𝑘
(𝑡 − 𝑇

𝑘
) − 𝑋

𝑘
(−𝑇

𝑘
)

=

∞

∑
𝑘=−∞

[𝑋
𝑘
(𝑡 − 𝑇

𝑘
) − 𝑋

𝑘
(−𝑇

𝑘
)] 1

(𝑇𝑘≤𝑡)
.

(7)

The processes (𝑋𝑘
)

𝑘∈Z are assumed to be an i.i.d. sequence
independent of the arrival process (𝑇

𝑛
)

𝑛∈Z. For each 𝑘 ∈ Z,
the process𝑋𝑘 has right continuous left limited sample paths,
vanishing on the negative real axis and increasing to a finite
r.v.𝑋𝑘

(∞).
We will see in the sequel that the asymptotic distribu-

tional behavior of the process (𝐴
𝑡
)

𝑡≥0
is the same as the one

of its “finite memory” part which is a Poisson shot noise (see
[10, 11]):

𝐵
𝑡
=

𝑁𝑡

∑
𝑘=1

𝑋
𝑘
(𝑡 − 𝑇

𝑘
) , 𝑡 ≥ 0. (8)

Observe that the process 𝐴 has stationary increments, while
𝐵 has not. The process 𝐵 is of a special interest because it
only takes into account the transmissions started after time
𝑠 = 0. The special structure of the process 𝐵 calls some other
comments. The problem is that at any fixed time 𝑡 we can not
“see” if the 𝑘th transmission has finished or not and what is
more we are unable to calculate during the time 𝑡 − 𝑇

𝑘
the

accumulated work𝑋𝑘
(𝑡−𝑇

𝑘
). The only available information

is the quantity

𝑋
𝑘
(∞) which is the total work required by the 𝑘th

transmission.

It is then natural to introduce the process

𝐶
𝑡
=

𝑁𝑡

∑
𝑘=1

𝑋
𝑘
(∞) , 𝑡 ≥ 0 (9)

which characterizes the total work required by all the trans-
missions started within the interval [0, 𝑡]. This process enjoys
a very special property: it is a Lévy process; that is, it has
independent and stationary increments, and is a compound
Poisson process (see the appendix and [12] for more account
on Lévy processes). This process turns out to be the principal
component of the processes𝐴 and𝐵, a component which will
give the right approximation by a stable process, as stated in
Theorem 1 below. Another special process is defined by

𝑅
𝑡
=

𝑁𝑡

∑
𝑘=−∞

𝑋
𝑘
(𝑡 − 𝑇

𝑘
) , 𝑡 ≥ 0. (10)

This process is special because it is stationary. Contrary
to the others, it has problems of definitions. Namely, the
contribution of the past (before time 0) could make the
random variables 𝑅

𝑡
be infinite. The same problem can

occur for the process 𝐴, but it is actually finite under our
assumptions. The processes 𝐵 and 𝐶 are very well defined
because they are finite sums. This is the reason why we will
only consider the processes 𝐴, 𝐵, and 𝐶. These processes are
increasing. Because these processes are closely connected to
the load of the transmissions, we will call them load processes.
We will see in next section that, when adequately modified,
they satisfy a weak limit theorem and share a common
limiting process which is a totally skewed to right stable
process.

3. Forecasting the CIP

We present here the main result obtained in [7]. This result
may appear highly theoretical.The assumptions under which
the result works are actually easy to check on real internet
data. We state the result under its theoretical form and give
right after the indications to its best exploitation.

3.1. Technical Assumptions for the Approximation of the CIP.
The next theorem shows that the load processes 𝑍 =

𝐴, 𝐵, or 𝐶, after being correctly drifted and normalized, are
approximated in law by a strict stable process totally skewed
to the right (see [7, 12] for more account on stable processes).
The main keys for proving these results were

(1) the infinite divisibility property of the load processes
𝑍;

(2) the stationary increments property of the CIP 𝐴 and
the fact that it shares the same finite-dimensional
expectations as the total work process 𝐶 : E[𝐴

𝑡
] =

E[𝐶
𝑡
] = 𝜆𝑡E[𝑋

∞
] in case E[𝑋

∞
] is finite;

(3) the stationary and independent increments property
of the process 𝐶.

3.1.1. The Assumptions. Recall that the processes 𝑋𝑘 are i.i.d.
Let

(𝑋
𝑡
)

𝑡≥0
:= (𝑋

1
(𝑡))

𝑡≥0
, 𝑋

∞
:= lim

𝑡 → ∞

𝑋
𝑡
, (11)

and the stopping time 𝜏 defined by

𝜏 := inf {𝑡 : 𝑋
𝑡
= 𝑋

∞
} . (12)

The r.v. 𝑋
∞

and 𝜏 are actually versions of the size and the
length of any transmission.

3.1.2. Behavior of the Size of a Transmission. The r.v. 𝑋
∞

is
finite and has a regularly varying tail of index −𝛼, with 𝛼 ∈
(0, 2); that is, there exists a deterministic increasing function
𝑟(𝑐), such that

lim
𝑐 → ∞

𝑐𝑃 (𝑋
∞
> 𝑟 (𝑐) 𝑥) =

1

𝑥𝛼
, 𝑥 > 0. (13)

Condition (13) is equivalent to

lim
𝑢 → ∞

𝑃 (𝑋
∞
> 𝑢𝑥)

𝑃 (𝑋
∞
> 𝑢)

= 𝑥
−𝛼 or 𝑃 (𝑋

∞
> 𝑥) =

𝐿 (𝑥)

𝑥𝛼
,

(14)
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where 𝐿 is a slowly varying function (i.e., for all 𝑥 > 0,
lim

𝑢 → ∞
𝐿(𝑢𝑥)/𝐿(𝑢) = 1). Actually, the function 𝑟(𝑐) is simply

the quantile function 𝑟(𝑐) = inf{𝑥 : P(𝑋
∞
> 𝑥)

−1
≥ 𝑐}, that

is, the generalized inverse of the function𝑥𝛼
/𝐿(𝑥). It is known

that 𝑟(𝑐) = 𝑐1/𝛼
𝑙(𝑐) for some slowly varying function 𝑙 and

we can always choose an increasing version of 𝑟. For more
account on regular variation theory, the reader is referred to
[13].

3.1.3. Assumption on the Arrivals. Notice that the intensity
parameter𝜆 of the Poisson arrival process𝑁 is not necessarily
fixed. It may depend on a scale 𝑐 and 𝜆 = 𝜆

𝑐
may go to infinity

with 𝑐 ↑ ∞ as studied by Maulik and Resnick [14] and Kaj
[1]. Through all the following, we are in the situation where
𝜆

𝑐
= 𝜆

0
is fixed or 𝜆

𝑐
is increasing to a value 𝜆

0
∈ (0,∞]

when 𝑐 goes to infinity.

3.1.4. Technical Assumptions on the Length of the Trans-
missions: Connection with the Intensity and with the Size.
Actually, at large time scales, we do not really need to
distinguish between the two cases of finite intensity (𝜆

𝑐
= 𝜆

0

or 𝜆
𝑐
↑ 𝜆

0
∈ (0,∞)) and infinite intensity (𝜆

𝑐
↑ ∞), with the

latter being obviously more technical. We will only need this
assumption:

lim
𝑐 → ∞

𝜆
𝑐
E[𝜏(

𝑋
∞

𝑟 (𝑐𝜆
𝑐
)
∧ 1)] = 0. (15)

In case of finite intensity at large scales, 𝜆 = 𝜆
0
or 𝜆 =

𝜆
𝑐
↑ 𝜆

0
∈ (0,∞), it is also obvious that condition (15) is

equivalently expressed with 𝜆
𝑐
= 1. Moreover, in this case, it

is simply implied by E[𝜏] < ∞. See [7] for more comments
on assumption (15).

Theorem 1 presented below is proved in [7]. It generalizes
many existing models (see [7] for a comparison) and treats
the complete infinite variance case𝛼 ∈ (0, 2) but also provides
more powerful approximations (the weak convergence in
law) with less conditions than what was used to be assumed
in the literature. It states that the processes 𝐴, 𝐵, and 𝐶,
when correctly drifted and normalized, are attracted in law
by a common non-Brownian 𝛼-stable process 𝑆 (the Case
𝛼 = 2 corresponding to the Standard Brownian motion will
be explicitly excluded in the sequel).

3.2. Importance of theMode of Convergence. Theconvergence
in Theorems 1 and 3 holds in the weak mode in the space
D = D(R+,R) of Càdlàg functions endowed with the
𝑀

1
-Skorohod topology. We will not get into details about

Skorohod topologies; we just say that, according to [15, 3.20
page 350], a sequence (𝑌𝑛

𝑡
)

𝑡≥0
of stochastic processes is said to

converge in law to a process (𝑌
𝑡
)

𝑡≥0
, and we denote

𝑌
𝑛 W
→ 𝑌, (16)

if and only if the limit process 𝑌 is well identified via
finite-dimensional convergence; that is, for all 𝑑 ≥ 1 and

𝑡
1
, 𝑡

2
, . . . , 𝑡

𝑑
we have convergence in distribution of the R𝑑

random variable

(𝑌
𝑛

𝑡1
, 𝑌

𝑛

𝑡2
, . . . , 𝑌

𝑛

𝑡𝑑
)

𝑑

→ (𝑌
𝑡1
, 𝑌

𝑡2
, . . . , 𝑌

𝑡𝑑
) , (17)

and the sequence of processes 𝑌𝑛 must be tight, where
tightness is a technical criterion (strongly related to the
modulus of continuity of the topology) ensuring the existence
of the limit. This paper mostly used the powerful tools on
𝑀

1
topology presented in the book of Jacod and Shiryaev

[15]. This Topology is nicely tractable, since many important
functionals are continuous and preserve convergence. This is
the aim of the next section. We stress that all convergences in
Theorem 3 also hold in the space (D,𝑀

1
).

3.3. Approximation of the CIP by a Stable Limit. Notice that
stable processes and their functionals are very studied in
the probability theory literature (see [8]). We recall that it is
defined as a Lévy process (see [12] for more account), with
no positive jumps and whose Laplace transforms are given
for every 𝑡, 𝑧 ≥ 0 by E[𝑒−𝑧𝑆𝑡] = 𝑒

𝑡Ψ(𝑧):

Ψ (𝑧) = ∫
∞

0

(𝑒
−𝑧𝑥
− 1 + 𝑧ℎ (𝑥))

𝛼

𝑥𝛼+1
d𝑥

= 𝑧
𝛼

{{{

{{{

{

Γ (1 − 𝛼) if 0 < 𝛼 < 1
log 𝑧 if 𝛼 = 1
Γ (2 − 𝛼)

𝛼 − 1
if 1 < 𝛼 < 2,

(18)

where 𝛼 ∈ (0, 2) is the index of stability and

ℎ (𝑥) =

{{

{{

{

0 if 0 < 𝛼 < 1
sin𝑥 if 𝛼 = 1
𝑥 if 1 < 𝛼 < 2.

(19)

Theorem 1. The processes 𝐴, 𝐵, and 𝐶 are attracted in law by
a common stable process [7].

Assume (13) and (15). Let 𝑍 = 𝐴, 𝐵, or 𝐶 and 𝑆 be a strict
𝛼-stable process totally skewed to the right. Define for each 𝑡 ≥ 0

𝑍
𝑐

𝑡
=
𝑍

𝑐𝑡
− 𝑡𝑑 (𝑐𝜆

𝑐
)

𝑟 (𝑐𝜆
𝑐
)

, (20)

where the function 𝑟 is given by (13), the function 𝑑 is defined
by

𝑑 (𝑢) = 𝑢𝑟 (𝑢)E [ℎ(
𝑋

∞

𝑟 (𝑢)
)] , 𝑢 > 0, (21)

and the function ℎ is given by (19). Letting 𝑐 ↑ ∞, one gets the
weak convergence in law

(𝑍
𝑐

𝑡
)

𝑡≥0

W
→ (𝑆

𝑡
)

𝑡≥0
. (22)

4. Forecasting the Bandwidth

The main idea of this work is to extend convergence (22)
and give its equivalent on functionals of the process 𝑍.
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The approximated functionals will enable to forecast the
badwidth allocation in order to avoid congestion. For this
purpose, we present three natural and important functionals
that are continuous on (D,𝑀

1
) and also weak-convergence-

preserving there. Theorem 3 provides limit theorems for
functionals of the processes 𝐴, 𝐵, and 𝐶.

4.1. Some Important Continuous Mappings on the Space
(D,𝑀

1
). Let D↑ the subset of processes that are in D and

are increasing, D
𝑢
the subset of processes in D in that are

unbounded above and null in 0 andD↑

𝑢
the subset of processes

𝑍 in that are inD↑
∩D

𝑢
and satisfy𝑍(−1)

(0) = 0. Let a process
𝑍 in D and consider for all 𝑡 ≥ 0:

(1) The right inverse or first passage time process 𝑍(−1) is
defined by

𝑍
(−1)
(𝑡) = inf {𝑠 ≥ 0 : 𝑍

𝑠
> 𝑡} . (23)

The random variable 𝑍(−1)
(𝑡) is simply the first time

that the stochastic process 𝑍 crosses some critical
barrier 𝑡 and then describes the congestion time.

(2) The supremum and the infimum processes 𝑍↑ and 𝑍↓

are defined by

𝑍
↑
(𝑡) = sup

0≤𝑠≤𝑡

𝑍
𝑠
, 𝑍

↓
(𝑡) = inf

0≤𝑠≤𝑡

𝑍
𝑠
. (24)

The r.v 𝑍↑
(𝑡) and 𝑍↓

(𝑡) are, respectively, the maxi-
mum and theminimum of the values of the process𝑍
over the interval of time [0, 𝑡] and then, they describe
the extreme workloads.

(3) The reflection mapping process is defined by 𝑍∨
(𝑡) =

𝑍
𝑡
+ 𝑅(𝑡), where 𝑅(𝑡) is given by

𝑅 (𝑡) = −min {0, 𝑍↓
(𝑡)} = max {0, (−𝑍)↑ (𝑡)} , (25)

so that 𝑍∨
(𝑡) = max{𝑍

𝑡
, sup

0≤𝑠≤𝑡
(𝑍

𝑡
− 𝑍

𝑠
)}.

More could be said on the reflection mapping. The pair
of processes (𝑍∨

, 𝑅) is said to solve the Skorohod problem
associated with the process 𝑍 with 𝑍∨

(𝑡) ≥ 0, 𝑅(𝑡) is
nondecreasing, 𝑅(0) = 0, and the reflection condition
∫

∞

0
𝑍

∨
(𝑡)d𝑅(𝑡) = 0 holds. See [16, page 375] for more details

on Skorohod problem. For the sake of illustration of this
problem, consider the problem of a server dealing with an
input process𝑍 and serving at a constant rate 𝜃 > 0.Then, the
buffer content process denoted by 𝑍𝜃,∨ has positive paths and
solution of the following storage equation with service rate 𝜃:

d𝑋(𝑠) = d𝑍
𝑠
− 𝜃1

(𝑋(𝑠)>0)
d𝑠. (26)

Rewriting the storage equation d𝑋(𝑠) = d(𝑍
𝑠
− 𝜃𝑠) + d𝑅(𝑠)

with d𝑅(𝑠) = 𝜃1
(𝑋(𝑠)=0)

d𝑠, it is easy to see that

𝑍
𝜃,∨
(𝑡) = (𝑍

⋅
− 𝜃

⋅
)

∨

(𝑡)

= 𝑍
𝑡
− 𝜃𝑡 −min {0, min

0≤𝑠≤𝑡

(𝑍
𝑠
− 𝜃𝑠)}

(27)

which corresponds to the reflection mapping of the drifted
process (𝑍

𝑡
− 𝜃𝑡)

𝑡≥0
. For this reason we call 𝑍 → 𝑍

𝜃,∨ the
storage mapping which coincides with 𝑍 → 𝑍

∨ when 𝜃 = 0.

4.2. The Result. Having justified the importance of such
functionals of the CIP, we will apply them on 𝑍 = 𝐴, 𝐵,
or 𝐶. We will show that, correctly normalized as in (22),
these functionals of 𝑍 are approximated by a companion
functional of the limiting 𝛼-stable process 𝑆. Of course the
approximation depends on the index of stability 𝛼. This fact
is explained byTheorem 3.

Recall the functions 𝑟, ℎ, and 𝑑 given, respectively, by
(13), (21), and (19). When 1 < 𝛼 < 2, we obviously have

lim
𝑢 → +∞

𝑑 (𝑢)

𝑟 (𝑢)
= +∞. (28)

Lemma 2. Limit (28) is also true for 𝛼 = 1.

For more readability, the proofs of the last lemma and
the following theorem are postponed to Section 5. Now, recall
the first passage time processes 𝑍(−1) is given by (23), the
supremum 𝑍

↑ is given by (24), and the reflection mapping
process 𝑍∨ is given by (25).

Theorem 3. Functionals of the CIP are attracted in law by
functionals of the stable process.

Assume (13) and (15). Letting 𝑐 → ∞ one gets the fol-
lowing weak convergence.

(1) First passage time: One has

(
𝑍

(−1)
(𝑢 (𝑐) 𝑡) − V (𝑐) 𝑡
𝑤 (𝑐)

)
𝑡≥0

W
→ (𝑆

⋆

𝑡
)

𝑡≥0
, (29)

where the quadruple formed by the correcting functions
𝑢, V, and 𝑤 and the process 𝑆⋆ is given by

(𝑢 (𝑐) , V (𝑐) , 𝑤 (𝑐) , 𝑆⋆
)

:=

{{

{{

{

(𝑟 (𝑐𝜆
𝑐
) , 0, c, 𝑆(−1)

) if 0 < 𝛼 < 1

(𝑑 (𝑐𝜆
𝑐
) , 𝑐𝑟 (𝑐𝜆

𝑐
) ,
𝑐𝑟 (𝑐𝜆

𝑐
)

𝑑 (𝑐𝜆
𝑐
)
, −𝑆) if 1 ≤ 𝛼 < 2.

(30)

(2) Supremum: One has

(
𝑍

↑
(𝑐𝑡) − 𝑡𝑑 (𝑐𝜆

𝑐
)

𝑟 (𝑐𝜆
𝑐
)

)
𝑡≥0

W
→ (𝑆

𝑡
)

𝑡≥0
. (31)

(3) Storage mapping: choose 𝜃
𝑐
> 0 such that (𝑑(𝑐𝜆

𝑐
) −

𝑐𝜃
𝑐
)/𝑟(𝑐𝜆

𝑐
) admits a limit 𝐾 ∈ [−∞, +∞]. If 𝑍𝜃𝑐,∨ is

the storage functional corresponding to the rate 𝜃
𝑐
, then

(
𝑍

𝜃𝑐,∨ (𝑡)

𝑟 (𝑐𝜆
𝑐
)
)

𝑡≥0

W
→ (𝑆

⋆

𝑡
)

𝑡≥0
, (32)

where

𝑆
⋆
=

{{

{{

{

(𝑆
⋅
+ 𝐾

⋅
)

∨

𝑖𝑓 |𝐾| < ∞

𝑆 𝑖𝑓 𝐾 = +∞

0 𝑖𝑓 𝐾 = −∞.

(33)
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Remark 4. (i) Recall that the intensity 𝜆
𝑐
is allowed to depend

increasingly on a scale parameter 𝑐 > 0. Then, as 𝑐 →

∞, we have 𝑢(𝑐) → +∞ and so does its right inverse
𝑐 → 𝑢

(−1)
(𝑐). Finally, replacing 𝑐 in (29) with 𝑢(−1)

(𝑐) and
taking the compositions (V

, 𝑤

) = (V ∘ 𝑢(−1)

, 𝑤 ∘ 𝑢
(−1)
), we

equivalently have

(
𝑍

(−1)
(𝑐𝑡) − V

(𝑐) 𝑡

𝑤 (𝑐)
)

𝑡≥0

W
→ (𝑆

⋆

𝑡
)

𝑡≥0
. (34)

(ii) When 0 < 𝛼 < 1 the corresponding 𝛼-stable process
is increasing, null in 0, and then is equal to its supremum
process. When and 0 ≤ 𝐾 < ∞, the reflected process of
(𝑆

𝑡
+ 𝐾𝑡)

𝑡≥0
is also equal to itself.

(iii) With similar arguments, Theorem 3 can be gener-
alized and stated for other quantities of interest such that
the infimum functional. One could also consider the level
of congestion (at time of congestion) 𝑍(−1)

(𝑐): Let 𝑐 a critical
value fixing the quality of service of the internet provider.The
composed quantity 𝑍 ∘ 𝑍(−1)

(𝑐) determines the load reached
when the buffer content crosses the critical value 𝑐.

4.3. How to Forecast? Hopefully, the reader is now convinced
that only three facts are relevant for approximating the CIP.

(1)The first assumption to test is the one of Poisson arrival
of the transmissions. After validation, we need to estimate
the intensity 𝜆. This assumption is an expected result since
the behavior of lots of individuals acting independently is
often well modeled by a Poisson process. This assumption
may fail in presence of transmissions triggered automatically
by machines. A work has to be done in order to compare
the proportion of human and machine transmissions. If the
proportion of the second kind is negligible compared to the
first, one could validate this assumption. Some statistical
methods for testing the Poisson assumption are presented in
the well-documented review of Resnick [17].

(2) Boundedness of the length of transmissions is obvious
for Internet traffic since this quantity has usually amagnitude
of a microsecond. This validates assumption (15).

(3) The parameter 𝛼 giving the index of self-similarity
can be easily computed provided that each transmission
(labeled by the number 𝑘) captured over an interval of time of
observation large enough gives the total work it requires (the
payload one can extract from headers) denoted by 𝑋𝑘

(∞).
Since these sizes form an i.i.d. sequence of r.v. then plotting a
Hill estimator is straightforward (see [17]).

(4) Since the length of transmissions has the magnitude
of a microsecond, an observation over a few minutes [0, 𝑐]
would be sufficient. Theorem 1 shows that for large time 𝑐
the distribution of the accumulated work𝐴

𝑐
over the interval

[0, 𝑐] is distributed as

𝑟 (𝑐𝜆) 𝑆
1
+ 𝑑 (𝑐𝜆) . (35)

The quantity 𝑟(⋅) is simply the quantile function of 𝑃(𝑋
∞
>

𝑥). The Function 𝑑(⋅) given in (21) is available after the
previous steps and 𝑆

1
is an 𝛼-stable r.v. totally skewed to the

right.

(5) Now, the problem of bandwidth allocation could tack-
led. Notice that Theorem 3 uses functionals like first passage
time, opposite and reflectionmapping of the stable processes.
There is awidespread literature devoted to stable distributions
and processes (see the encyclopedic web page of Nolan
[8]). We recommend the monograph of Zolotarev [18] (for
finite dimensional properties), the book of Samorodnitsky
and Taqqu [19], and the one of [12] for further trajectorial
properties.

Let the input processes 𝑍 = 𝐴, 𝐵, 𝐶 take the bandwidth
quantity 𝑐 (time or critical level depending on the functional)
big enough and consider the random variables 𝑍(−1)

(𝑐),
𝑍

↑
(𝑐), and 𝑍𝜃𝑐,∨(𝑐).
(a) The first time the traffic accumulates over the critical

bandwidth level 𝑐 is the quantity 𝑍(−1)
(𝑐). It is approximated

in distribution by

𝑍
(−1)
(𝑐)

𝑑

≃ {
V
(𝑐) + 𝑤


(𝑐) 𝑆

(−1)

1
if 0 < 𝛼 < 1,

V
(𝑐) − 𝑤


(𝑐) 𝑆

1
if 1 ≤ 𝛼 < 2.

(36)

The Functions V
, 𝑤

 given in (4) are easily computed from 𝑟
and 𝑑.

(b) Here 𝑐 is the time. 𝑍↑
(𝑐) is the maximum of the

input over the interval of time [0, 𝑐] and has the same
approximation in distribution as the proper input 𝑍

𝑐
:

𝑍
↑
(𝑐)

𝑑

≃ 𝑑 (𝑐𝜆
𝑐
) + 𝑟 (𝑐𝜆

𝑐
) 𝑆

1
. (37)

(c) Here 𝑐 is the time. 𝑍𝜃𝑐 ,∨(𝑐) is the buffer content when
the service is delivered at a rate 𝜃

𝑐
. It is approximated in

distribution by

𝑍
𝜃𝑐,∨ (𝑐)

𝑑

≃

{{

{{

{

(𝑆
⋅
+ 𝐾

⋅
)

∨

(1) if |𝐾| < ∞,
𝑆

1
if 𝐾 = +∞,

0 if 𝐾 = −∞.
(38)

5. The Proofs

Proof of Lemma 2. Write for 𝛿 > 0

𝑑 (𝑢)

𝑟 (𝑢)
= 𝑢E [sin(

𝑋
∞

𝑟 (𝑢)
)]

= 𝑢E [sin(
𝑋

∞

𝑟 (𝑢)
) 1

𝑋∞≤𝑟(𝑢)/(1+𝛿)
]

+ 𝑢E [sin(
𝑋

∞

𝑟 (𝑢)
) 1

𝑟(𝑢)/(1+𝛿)<𝑋∞≤𝑟(𝑢)
]

+ 𝑢E [sin(
𝑋

∞

𝑟 (𝑢)
) 1

𝑋∞≥𝑟(𝑢)
]

= 𝑥 (𝑢) + 𝑦 (𝑢) + 𝑧 (𝑢) .

(39)

We have 𝑥(𝑢) = 𝑢E[sin(𝑋
∞
/𝑟(𝑢))1

𝑋∞≤𝑟(𝑢)/(1+𝛿)
] ≥ 0 and

|𝑧(𝑢)| ≤ 𝑢P(𝑋
∞
≥ 𝑟(𝑢)) → 1 as 𝑢 → +∞ and then
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lim inf 𝑧(𝑢) ≥ −1. Now, use the that 𝑡 → sin 𝑡/𝑡 is decreasing
on (0, 1] and write

𝑦 (𝑢) = 𝑢E[
sin (𝑋

∞
/𝑟 (𝑢))

𝑋
∞
/𝑟 (𝑢)

𝑋
∞

𝑟 (𝑢)
1

𝑟(𝑢)/(1+𝛿)<𝑋∞≤𝑟(𝑢)
]

≥ 𝑦

(𝑢) :=

sin (1) 𝑢
𝑟 (𝑢)

E [𝑋
∞
1

𝑟(𝑢)/(1+𝛿)<𝑋∞≤𝑟(𝑢)
] .

(40)

Performing an integration by parts and a change of variable
in the r.h.s, write

𝑦

(𝑢)

sin (1)
=

𝑢

𝑟 (𝑢)
∫

𝑟(𝑢)

𝑟(𝑢)/(1+𝛿)

𝑥P (𝑋
∞
∈ d𝑥)

=
𝑢

𝑟 (𝑢)

𝑟 (𝑢)

1 + 𝛿
P(𝑋

∞
>
𝑟 (𝑢)

1 + 𝛿
)

− 𝑟 (𝑢)P (𝑋
∞
> 𝑟 (𝑢)) + ∫

𝑟(𝑢)

𝑟(𝑢)/(1+𝛿)

P (𝑋
∞
> 𝑥)

=
𝑢

1 + 𝛿
P(𝑋

∞
>
𝑟 (𝑢)

1 + 𝛿
) − 𝑢P (𝑋

∞
≥ 𝑟 (𝑢))

+ ∫
1

1/(1+𝛿)

𝑢P (𝑋
∞
> 𝑟 (𝑢) 𝑠) d𝑠.

(41)

By (13), lim
𝑢 → ∞

𝑢P(𝑋
∞
≥ 𝑟(𝑢)𝑠) = 1/𝑠 and the difference

of the two first terms in 𝑦
(𝑢)/ sin(1) go to 0. For every 𝑠 ∈

[1/(1+𝛿), 1], we have 𝑢P(𝑋
∞
≥ 𝑟(𝑢)𝑠) ≤ 𝑢P(𝑋

∞
≥ 𝑟(𝑢)/(1+

𝛿)) which is a bounded quantity, uniformly in 𝑢. Using again
(13), write

lim inf
𝑢 → +∞

𝑦

(𝑢)

sin (1)
= log (1 + 𝛿) . (42)

Finally, for arbitrary 𝛿 > 0, arrive to

lim inf
𝑢 → +∞

𝑑 (𝑢)

𝑟 (𝑢)
≥ sin (1) log (1 + 𝛿) − 1 (43)

and let 𝛿 → +∞.

Proof of Theorem 3. The procedure goes by adapting some
tools one can find in the monograph of Whitt [9]. The key
is to exploit Skorohod representation theorem: If 𝑋

𝑛
weakly

converge to 𝑋 in (D,𝑀
1
), then there exist other random

elements of (D,𝑀
1
), (𝑋

𝑛
)

𝑛≥1
, and 𝑋, defined on a common

underlying probability space, such that 𝑋
𝑛

𝑑

= 𝑋
𝑛
(for every

𝑛 ≥ 1), 𝑋 𝑑

= 𝑋, and 𝑋
𝑛

a.s.
→ 𝑋 (when 𝑛 → +∞). The idea

is to consider the situation of a central limit theorem as (22)
and we want to say something about the limits of functionals
of (𝑍𝑐

𝑡
)

𝑡≥0
or (𝑍

𝑐𝑡
)

𝑡≥0
in (22).

Preliminary of the Proof. There are two procedures allowing
to approximate functionals of the processes 𝐴, 𝐵, and 𝐶
introduced in the model.

(1)Weak convergence is trivially preserved by applying con-
tinuous mappings.This is the definition ofWeak convergence:

if 𝑋
𝑛
weakly (resp. almost surely) converge to 𝑋 in (D,𝑀

1
)

and 𝜙 is a continuous mapping on (D,𝑀
1
), then

𝜙 (𝑋
𝑛
)

W
→ 𝜙 (𝑋) (resp. 𝜙 (𝑋

𝑛
)

a.s.
→ 𝜙 (𝑋)) . (44)

Continuous functionals of the centered process (𝑍𝑐

𝑡
)

𝑡≥0
in

(22) are treated according to procedure (44).
(2)Weak convergence in central limit theorem is preserved

by applying “nice” mappings. We emphasize that this second
procedure deals with functionals of the noncentered process
(𝑍

𝑐𝑡
)

𝑡≥0
and not (𝑍𝑐

𝑡
)

𝑡≥0
. Assume that we have a central limit

theorem

(
𝑋

𝑛

𝑡
− 𝑡𝛿

𝑛

𝜌
𝑛

)
𝑡≥0

W
→ 𝑋, (45)

where 𝜌
𝑛
and 𝛿

𝑛
/𝜌

𝑛
→ +∞ when 𝑛 → ∞. Rewriting the

limit, we have that
𝛿

𝑛

𝜌
𝑛

(
𝑋

𝑛

𝛿
𝑛

− 𝐼)
W
→ 𝑋 (46)

with 𝐼 being the identity process. Since 𝛿
𝑛
/𝜌

𝑛
→ +∞, it

is immediate that 𝑋𝑛
/𝛿

𝑛

W
→ 𝐼 and then, by procedure 1,

convergence is preserved by continuous mappings, but this
not our aim. We go further with Skorohod representation
theorem: there exists a version of 𝑋𝑛 of 𝑋𝑛 and a version of
𝑋 of𝑋 such that

𝛿
𝑛

𝜌
𝑛

(
𝑋

𝑛

𝛿
𝑛

− 𝐼)
a.s.
→ 𝑋. (47)

We are willing to study “nice” mappings 𝜙 allowing

𝛿
𝑛

𝜌
𝑛

(𝜙(
𝑋

𝑛

𝛿
𝑛

) − 𝜙 (𝐼))
a.s.
→ 𝜙

⋆
(𝑋) , (48)

with some companionmapping 𝜙⋆.The procedure is finished
whenever the mapping 𝜙⋆ is well identified. Finally, “nice”
mappings 𝜙 (with companion 𝜙⋆) will be called weak-
convergence-preserving on (D,𝑀

1
) since they satisfy what we

are asking for:
𝛿

𝑛

𝜌
𝑛

(𝜙(
𝑋

𝑛

𝛿
𝑛

) − 𝜙 (𝐼))
W
→ 𝜙

⋆
(𝑋) . (49)

Completion of the Proof. Recall that 𝑑(𝑢) = 0 if 0 < 𝛼 < 1 and,
by Lemma 2 (28),

lim
+∞

𝑑 (𝑢)

𝑟 (𝑢)
= +∞ if 1 ≤ 𝛼 < 2. (50)

The proof relies on the two preceding procedures and on key
homogeneity relations: First if 𝑎, 𝑏 > 0 and 𝑡 ≥ 0, then

(
𝑍

𝑎.

𝑏
)

(−1)

(𝑡) =
𝑍

(−1)
(𝑏𝑡)

𝑎
, (51)

(
𝑍

𝑎.

𝑏
)

↑

(𝑡) =
𝑍

↑
(𝑎𝑡)

𝑏
, (52)

(
𝑍

𝑎.
− 𝑎𝜃.

𝑏
)

∨

(𝑡) =
𝑍

𝜃,∨
(𝑎 𝑡)

𝑏
, (53)
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and second, the the Identity process is preserved by the three
mappings: 𝐼(−1), 𝐼↑, and 𝐼∨

= 𝐼.
(1) The inverse functional

𝜙 : (D
𝑢
,𝑀

1
) → (D

↑

𝑢
,𝑀

1
) ,

𝑍 → 𝑍
(−1)

(54)

is Lipschitz (Corollary 13.6.3 [9]). When 0 < 𝛼 < 1

obtain (29) by applying the continuous inverse mappings on
𝑡 → 𝑍

𝑐𝑡
/𝑟(𝑐𝜆

𝑐
) and using the homogeneity relation (51).

The inverse functional is weak-convergence-preserving in the
sense of (49) with companion 𝜙⋆

(𝑍) = −𝑍 (Theorem 13.7.1
[9]). By rewriting

𝑍
𝑐𝑡
− 𝑑 (𝑐𝜆

𝑐
) 𝑡

𝑟 (𝑐𝜆
𝑐
)

=
𝑑 (𝑐𝜆

𝑐
)

𝑟 (𝑐𝜆
𝑐
)
(

𝑍
𝑐𝑡

𝑑 (𝑐𝜆
𝑐
)
− 𝑡) (55)

and using the homogeneity relations (51), we get convergence
(29) for 1 ≤ 𝛼 < 2.

(2) The supremum functional

𝜙 : (D,𝑀
1
) → (D

↑
,𝑀

1
) ,

𝑍 → 𝑍
↑

(56)

is Lipschitz (Theorem 13.4.1 [9]). When 0 < 𝛼 < 1, the
corresponding 𝛼-stable limit process is increasing and then
is equal to its supremum. We obtain (31) for 0 < 𝛼 < 1

by applying the continuous supremum mappings on 𝑡 →
𝑍

𝑐𝑡
/𝑟(𝑐𝜆

𝑐
) and using the homogeneity relation (52). The

supremum functional is weak-convergence-preserving in the
sense of (49) with companion 𝜙⋆

(𝑍) = 𝑍 (Theorem 13.4.2
[9]). Rewriting as in (55) and using the homogeneity relations
(52), we get convergence (31) for 1 ≤ 𝛼 < 2.

(3) The Storage functional is seen as the reflection
mapping

𝜙 : (D,𝑀
1
) → (D

↑
,𝑀

1
) ,

𝑍 → 𝑍
∨

(57)

applied to the drifted process (𝑍
𝑡
−𝜃𝑡)

𝑡≥0
.The reflectionmap-

ping is Lipschitz (Theorem 13.5.1. [9]). A trick for the storage
functional is needed: rewrite 𝑍𝑐

𝑡
= (𝑍

𝑐𝑡
− 𝑡𝑑(𝑐𝜆

𝑐
))/𝑟(𝑐𝜆

𝑐
) in

the form

𝑍
𝑐

𝑡
=
𝑍

𝑐𝑡
− 𝑡𝑐𝜃

𝑐

𝑟 (𝑐𝜆
𝑐
)
− 𝑡
𝑑 (𝑐𝜆

𝑐
) − 𝑐𝜃

𝑐

𝑟 (𝑐𝜆
𝑐
)

(58)

which we know, by Theorem 1, to have a stable limit. We get
convergence (32) for 0 < 𝛼 < 2 by these two cases.

(i) Case |𝐾| < ∞: a Slutsky argument on (58) shows that

(
𝑍

𝑐𝑡
− 𝑡𝑐𝜃

𝑐

𝑟 (𝑐𝜆
𝑐
)
)

𝑡≥0

W
→ (𝑆

𝑡
+ 𝐾𝑡)

𝑡≥0
. (59)

We obtain (32) with limit (𝑆.+𝐾)∨ by applying the continuous
reflection mappings on 𝑡 → (𝑍

𝑐𝑡
− 𝑡𝑐𝜃

𝑐
)/𝑟(𝑐𝜆

𝑐
) and using the

homogeneity relation (53).

(ii) Case |𝐾| = ∞: we use the fact that the supremum
functional applied on 𝑡 → (𝑍

𝑐𝑡
− 𝑡𝑐𝜃

𝑐
)/𝑟(𝑐𝜆

𝑐
) is weak-

convergence-preserving in the sense of (49) with companion

𝜙
⋆
(𝑍) =

{{{{

{{{{

{

𝑍 −min (𝑍 (0) , 0) if
𝛿

𝑛

𝜌
𝑛

→ +∞

0 if
𝛿

𝑛

𝜌
𝑛

→ −∞

(60)

(Theorem 13.5.2 [9]) together with the homogeneity relations
(53).

6. Prospects

As we have seen, under the assumption of Poisson-like
arrivals and heavy tail of the load of transmissions, we were
able to approximate many characteristics of the traffic. As a
continuation of this work, we aim to study the situation of
intermediate (of the magnitude of a second) and small time
(of themagnitude of amicrosecond) behavior of the CIP.This
is another story.
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[10] P. Brémaud, “An insensitivity property of Lundberg’s estimate
for delayed claims,” Journal of Applied Probability, vol. 37, no. 3,
pp. 914–917, 2000.
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