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We introduce nabla type Laplace transform and Sumudu transform on general time scale. We investigate the properties and the
applicability of these integral transforms and their efficiency in solving fractional dynamic equations on time scales.

1. Introduction

It is known that themethods connected to the employment of
integral transforms are very useful in mathematical analysis.
Those methods are successfully applied to solve differential
and integral equations, to study special functions, and to
compute integrals. One of the more widely used integral
transforms is the Laplace transform defined by the following
formula:

L {𝑓} (𝑧) = 𝐹 (𝑧) = ∫
∞

0

𝑓 (𝑡) 𝑒−𝑧𝑡𝑑𝑡, 𝑧 ∈ C. (1)

The function 𝐹 of a complex variable is called the Laplace
transform of the function 𝑓. Watugala [1] introduced a new
integral transform called Sumudu transform defined by the
following formula:

S {𝑓} (𝑢) =
1

𝑢
∫
∞

0

𝑓 (𝑢) 𝑒−𝑡/𝑢𝑑𝑡, 𝑢 ∈ (−𝜏
1
, 𝜏

2
) , (2)

and applied to the solution of ordinary differential equations
in the control engineering problems (see also [2]). It appeared
like the modification of the Laplace transform. The Sumudu
transform rivals the Laplace transform in problem solving.
Its main advantage is the fact that it may be used to solve
problems without resorting to a new frequency domain,
because it preserves scale and unit properties.

The theory of time scale calculus was initiated by Hilger
[3] (see also [4]).This theory is a tool that unifies the theories

of continuous anddiscrete time system. It is a subject of recent
studies in many different fields in which a dynamic process
can be described with continuous and discrete models. For
the detailed information on theory of time scale calculus, we
refer to [5, 6]. The delta Laplace transform on arbitrary time
scale (T) is introduced by Bohner and Peterson in [7] (see also
[8]) by the following formula:

L {𝑥} (𝑧) := ∫
∞

𝑡0

𝑥 (𝑡) 𝑒
⊖𝑧
(𝜎 (𝑡) , 𝑡

0
) Δ𝑡, 𝑧 ∈ D {𝑥} , (3)

whereD{𝑥} consists of all complex numbers 𝑧 ∈ C for which
the improper integral exists and for which 1 + 𝜇(𝑡)𝑧 ̸= 0 for
all 𝑡 ∈ T . In a similar fashion, Agwa et al. in [9] introduce the
Sumudu transform on arbitrary time scale T , by the following
formula:

S {𝑥} (𝑧) :=
1

𝑧
∫
∞

𝑡0

𝑥 (𝑡) 𝑒𝜎
⊖(1/𝑧)

(𝑡, 𝑡
0
) Δ𝑡, (4)

for 𝑧 ∈ D{𝑥}, where D{𝑥} consists of all complex numbers
𝑧 ∈ C for which the improper integral exists and for which
1 + 𝜇(𝑡)/𝑧 ̸= 0 for all 𝑡 ∈ T . Note that if T = R (for real
analysis), (3) ⇒ (1) and (4) ⇒ (2) at 𝑡

0
= 0. In the case of

T = Z (for discrete analysis), we have

L {𝑥} (𝑧) =
𝑍 {𝑥} (𝑧 + 1)

𝑧 + 1
, (5)

where 𝑍{𝑥}(𝑧) = ∑∞

𝑡=0
𝑥(𝑡)𝑧−𝑡 is the classical 𝑍-transform,

which will be used to solve higher order linear forward
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difference equations (see [7]). Similarly, formula (3) can also
be extended to other particular discrete settings such as T =
𝑞Z, 𝑞 > 1 (which has important applications in quantum
theory), T = ℎZ (in ℎ-calculus) (see [10]), and also T = T

𝑡0

(𝑞,ℎ)

(in (𝑞, ℎ)-calculus) (see [11]). Likewise, the delta Sumudu
transform on time scales not only can be applied on ordinary
differential equations when T = R and on forward difference
equations when T = ℎ𝑍 (ℎ > 0) but also can be applied for
𝑞-difference equations when T = 𝑞Z and on different types
of time scales like T = ℎZ and T = T

𝑛
; for the space of the

harmonic numbers, see [9].
Continuous fractional calculus is a field of mathematic

study that grows out of the traditional definitions of the
calculus integral and derivative operators. Fractional differ-
entiation has played an important role in various areas rang-
ing from mechanics to image processing. Their fundamental
results have been surveyed, for example, in the monographs
[12, 13]. On the other hand, discrete fractional calculus is a
very new area for scientists. Foundation of this theory were
formulated in pioneering works by Agarwal [14] and Dı́az
and Osler [15, 16], where basic approach, definitions, and
properties of the theory of fractional sums and differences
were reported (see also [17, 18]). Recently, a series of papers
continuing this research has appeared (see e.g., [19–26] and
the references cited therein).

The extension of basic notions of fractional calculus
to other discrete settings was performed in [27, 28]. In
these papers, the authors often preferred the power function
notation based on the time scales theory, which easily exposes
similarities among the results in 𝑞-calculus, ℎ-calculus, (𝑞, ℎ)-
calculus, and the continuous case. However, this notationwas
employed only formally, since there was no general time scale
definition of the power function and therefore the achieved
results could not be generalized to other time scales. On
this account, some ideas regarding fundamental properties
which should be met by power functions on time scales were
outlined in [29]. In [30], the authors introduced fractional
derivatives and integrals on time scales via the generalized
Laplace transform. However, this approach suffers by some
technical difficulties, connected to the inverse Laplace trans-
form (see [8]). Recently, in [31, 32] (see also [33]), the authors
independently suggested an axiomatic definition of power
functions on arbitrary time scale.

The aim of this paper is to introduce the nabla type
Laplace transform and Sumudu transform, their properties,
and applicability and its efficiency in solving fractional
dynamic equations on arbitrary time scale. Of course, it is
possible to consider also the delta type Laplace and Sumudu
transforms (3) and (4), respectively; however, the nabla
version seems be more suitable for fractional calculus as
outlined, for example, in [27, 28, 34].

This paper is organized as follows. In Section 2, we
recall basics of the time scale theory and the foundation of
fractional calculus on time scales. Section 3 is devoted to
nabla Laplace transform, its properties, convolution theorem,
and examples of solution of fractional dynamic equations
on time scales in terms of Mittag-Leffler function. Finally,
in Section 4, we introduce nabla Sumudu transform and

its properties on arbitrary time scales. A close relation-
ship between nabla Sumudu transform and nabla Laplace
transform and several important results were obtained. This
section ended up with solving some fractional dynamic
equation with nabla Sumudu transform method.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the
real numbers R. The most well-known examples are T = R,
Z, and 𝑞Z := {𝑞𝑛 : 𝑛 ∈ Z} ∪ {0}, where 𝑞 > 1. Let T
have a right-scattered minimum𝑚 and define T

𝜅
:= T − {𝑚};

otherwise, set T
𝜅
= T . If 𝑎, 𝑏 ∈ T with 𝑎 < 𝑏, we denote by

[𝑎, 𝑏]T the closed interval [𝑎, 𝑏] ∩ T .
The backward jump operator 𝜌 : T → T is defined by

𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} , (6)

and the backward graininess function ] : T
𝜅
→ [0,∞) is

defined by ](𝑡) := 𝑡 − 𝜌(𝑡). For details and advancement on
time scales, see the monographs [3, 5, 7, 35–37].

For 𝑓 : T → R and 𝑡 ∈ T
𝜅
, the nabla-derivative

(briefly, the ∇-derivative) [21] of 𝑓 at 𝑡, denoted by 𝑓∇(𝑡), is
the number (provided it exists) with the property that, given
any 𝜖 > 0, there exists a neighborhood 𝑈 of 𝑡 such that

󵄨󵄨󵄨󵄨󵄨𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠) − 𝑓∇ (𝑡) (𝜌 (𝑡) − 𝑠)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖 󵄨󵄨󵄨󵄨𝜌 (𝑡) − 𝑠󵄨󵄨󵄨󵄨 ∀𝑠 ∈ 𝑈.

(7)

For T = R, 𝑓∇(𝑡) = 𝑓󸀠(𝑡)) is the usual derivative; for T = Z,
the ∇-derivative is the backward difference operator, 𝑓∇(𝑡) =
𝑓(𝑡) − 𝑓(𝑡 − 1) = ∇𝑓(𝑡).

A function 𝑓 : T → C is left-dense continuous or ld-
continuous provided it is continuous at left-dense points in
T and its right-sided limits exist (finite) at right-dense points
in T . If T = R, then 𝑓 is ld-continuous if and only if 𝑓 is
continuous.

The set of ld-continuous functions 𝑓 : T → C will be
denoted by𝐶ld(T ,C) and the set of functions𝑓 : T → C that
are ∇-differentiable and whose derivatives are ld-continuous
is denoted by 𝐶1

ld(T ,C).
It is known from [5] that if𝑓 ∈ 𝐶ld(T ,C), then there exists

a function𝐹 such that𝐹∇(𝑡) = 𝑓(𝑡). In this case, we define the
Cauchy integral by

∫
𝑏

𝑎

𝑓 (𝑡) ∇𝑡 = 𝐹 (𝑏) − 𝐹 (𝑎) , for 𝑎, 𝑏 ∈ T . (8)

Let [𝑎, 𝑏] ⊆ T and 𝑓 ∈ 𝐶ld(T ,C). If T = R, then

∫
𝑏

𝑎

𝑓 (𝑡) ∇𝑡 = ∫
𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡, (9)

where the right-hand side integral is the Riemann integral
from calculus and if T = Z, then

∫
𝑏

𝑎

𝑓 (𝑡) ∇𝑡 =
𝑏

∑
𝑡=𝑎+1

𝑓 (𝑡) . (10)
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For 𝑓, 𝑔 ∈ 𝐶ld(T ,C) and 𝑎, 𝑏 ∈ T , the integration by parts
formula is given by

∫
𝑏

𝑎

𝑓 (𝜌 (𝑡)) 𝑔∇ (𝑡) ∇𝑡 = [𝑓 (𝑡) (𝑡)]
𝑏

𝑎
− ∫

𝑏

𝑎

𝑓∇ (𝑡) 𝑔 (𝑡) ∇𝑡. (11)

A function 𝑓 ∈ 𝐶ld(T ,C) is called ]-regressive if 1 −
]𝑓 ̸= 0 on T

𝜅
and positively ]-regressive if it is real valued

and 1 − ]𝑓 > 0 on T
𝜅
. The set of ]-regressive functions

and the set of positively ]-regressive functions are denoted
by R](T ,C) and R+

] (T ,C), respectively, and R−

] (T ,C) is
defined similarly. For simplicity, we denote by

𝑐
R](T ,C) the

set of complex ]-regressive constants and, similarly, we define
the sets

𝑐
𝑅+] (T ,C) and 𝑐

𝑅−] (T ,C).
Let 𝑓 ∈ 𝐶ld(T ,C). The the nabla exponential function

𝑒
𝑓
(⋅, 𝑠) is defined to be the unique solution of the following

initial value problem:

𝑥∇ = 𝑓𝑥 on T
𝜅
,

𝑥 (𝑠) = 1
(12)

for some fixed 𝑠 ∈ T . Let ℎ > 0; set

C
ℎ
:= {𝑧 ∈ C : 𝑧 ̸=

1

ℎ
} ,

Z
ℎ
:= {𝑧 ∈ C : −

𝜋

ℎ
< Im (𝑧) ≤

𝜋

ℎ
} ,

(13)

and C
0
:= Z

0
:= C. For ℎ > 0, the Hilger real part and

imaginary part of a complex number are given by

R
ℎ
(𝑧) :=

1

ℎ
(1 − |1 − ℎ𝑧|) , (14)

I
ℎ
(𝑧) :=

1

ℎ
Arg (1 − ℎ𝑧) , (15)

respectively, where Arg denotes the principle argument func-
tion; that is, Arg : C → (−𝜋, 𝜋]R, and letR

0
(𝑧) : R(𝑧) and

I
0
(𝑧) := I(𝑧). For any fixed complex number 𝑧, the Hilger

real partR
ℎ
(𝑧) is a nondecreasing function of ℎ ∈ [0,∞) (see

[38]).
For ℎ ≥ 0, we define the ]-cylinder transformation 𝜉

ℎ
:

C
ℎ
→ Z

𝑏
by

𝜉
ℎ
(𝑧) :=

{
{
{

𝑧, ℎ = 0,

−
1

ℎ
Log (1 − ℎ𝑧) , ℎ > 0

(16)

for 𝑧 ∈ C
ℎ
. Then, the nabla exponential function can also be

written in the following form:

𝑒
𝑓
(𝑡, 𝑠) := exp{∫

𝑡

𝑠

𝜉](𝜏) (𝑓 (𝜏)) ∇𝜏} for 𝑠, 𝑡 ∈ T . (17)

It is known that the nabla exponential function 𝑒
𝑓
(⋅, 𝑠) is

strictly positive on T , provided 𝑓 ∈ R+

] (T ,C) (see Theorem
3.18 [6]). For 𝑓, 𝑔 ∈ R](T ,C), the ]-circul plus and the ]-
circle minus are defined by

𝑓⊕]𝑔 := 𝑓 + 𝑔 − ]𝑓𝑔, 𝑓⊖]𝑔 :=
𝑓 − 𝑔

1 − ]𝑔
, (18)

respectively. For further details on nabla exponential func-
tion, we refer to [5].

We recall the notion of Taylor monomials introduced in
[39] (see also [7]).These monomials ℎ̂

𝑛
: T ×T → C, 𝑛 ∈ N

0
,

are defined recursively as follows:

ℎ̂
0
(𝑡, 𝑠) = 1 ∀𝑠, 𝑡 ∈ T (19)

and, given ℎ̂
𝑛
for 𝑛 ∈ N

0
, we have

ℎ̂
𝑛+1

(𝑡, 𝑠) = ∫
𝑡

𝑠

ℎ̂
𝑛
(𝜏, 𝑠) ∇𝜏 ∀𝑠, 𝑡 ∈ T . (20)

Example 1. For the case T = R, we have

ℎ̂
𝑛
(𝑡, 𝑠) =

(𝑡 − 𝑠)𝑘

𝑘!
, ∀𝑠, 𝑡 ∈ R. (21)

For the case T = Z, we have

ℎ̂
𝑛
(𝑡, 𝑠) =

(𝑡 − 𝑠)(𝑛)

𝑛!
=
∏𝑛−1

𝑗=0
(𝑡 − 𝑠 − 𝑗)

𝑛!
, ∀𝑠, 𝑡 ∈ Z, (22)

where 𝑡(𝑛) = 𝑡(𝑡 + 1)(𝑡 + 2) ⋅ ⋅ ⋅ (𝑡 + 𝑛 − 1).
For the time scale T = 𝑞Z for some 𝑞 > 1, we have

ℎ̂
𝑛
(𝑡, 𝑠) =

𝑛−1

∏
𝑘=0

𝑞𝑘𝑡 − 𝑠

∑𝑘

𝑗=0
𝑞𝑗
, ∀𝑠, 𝑡 ∈ 𝑞Z. (23)

Lemma 2 (nabla Cauchy formula [37]). Let 𝑛 ∈ Z+, 𝑎, 𝑏 ∈ T ,
and let 𝑓 : T → C be ∇-integrable on T̃ := [𝑎, 𝑏] ∩ T . If 𝑡 ∈ T̃ ,
then

𝑎
∇
−𝑛𝑓 (𝑡) = ∫

𝑡

𝑎

ℎ̂
𝑛−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏. (24)

The formula (24) is a corner stone in the introduction of
the nabla fractional integral

𝑎
∇−𝛼𝑓(𝑡) for 𝛼 > 0. However,

it requires a reasonable and natural extension of a discrete
system of monomials (ℎ̂

𝑛
, 𝑛 ∈ N

0
) to a continuous system

(ℎ̂
𝛼
, 𝛼 ∈ R+). However, the calculation of ℎ̂

𝑛
for 𝑛 > 1 is

a difficult task which seems to be answerable only in some
particular cases (see Example 1).

Recently, [31, 32] independently suggested quite similar
axiomatic definitions of time scales power functions. In
[40], the author have considered the power functions and
essentials of fractional calculus on isolated time scales. The
definitions below follow from [31].

Definition 3. Let 𝑠, 𝑡 ∈ T and 𝛼, 𝛽 > −1. The time scales
power functions ℎ̂

𝛼
(𝑡, 𝑠) are defined as a family of nonnegative

functions satisfying

(i) ∫𝑡
𝑠

ℎ̂
𝛼
(𝑡, 𝜌(𝜏))ℎ̂

𝛽
(𝜏, 𝑠)∇𝜏 = ℎ̂

𝛼+𝛽+1
(𝑡, 𝑠) for 𝑡 ≥ 𝑠;

(ii) ℎ̂
0
(𝑡, 𝑠) = 1 for 𝑡 ≥ 𝑠;

(iii) ℎ̂
𝛼
(𝑡, 𝑡) = 0 for 𝛼 ∈ (0, 1).

Further, we have the following.
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Definition 4. Let 𝛼 ≥ 0, 𝛽 > 0, and 𝑎, 𝑏 ∈ T . Then for 𝑓 ∈
𝐶ld([𝑎, 𝑏]T ,C) one defines the following.

(i) The fractional integral of order 𝛼 > 0 with the lower
limit 𝑎 as

(
𝑎
∇
−𝛼𝑓) (𝑡) := ∫

𝑡

𝑎

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏 (25)

and for 𝛼 = 0 one puts (
𝑎
∇0𝑓)(𝑡) = 𝑓(𝑡).

(ii) The Riemann-Liouville fractional derivative of order
𝛽 > 0 with lower limit 𝑎 as

(
𝑎
∇
𝛽𝑓) (𝑡) := [

𝑎
∇
−(𝑚−𝛽)𝑓]

∇
𝑚

(𝑡) , 𝑡 ∈ [𝜎 (𝑎) , 𝑏]T , (26)

where𝑚 = [𝛽] + 1.
(iii) The Caputo fractional derivative 𝐶

𝑎
∇
𝛾

𝑓(𝑡) (𝛾 > 0)
on [𝜎(𝑎), 𝑏]T is defined via the Riemann-Liouville fractional
derivative by

𝐶

𝑎
∇
𝛾

𝑓 (𝑡) := (
𝑎
∇
−(𝑚−𝛾)𝑓∇

𝑚

) (𝑡) , (27)

where𝑚 = [𝛾] + 1.

3. Nabla Laplace Transform

Note that below we assume that 𝑧∈
𝑐
R]; then (⊖]𝑧)∈𝑐R] and

therefore 𝑒
⊖]𝑧

(⋅, 𝑡
0
) is well defined on T . From now on we

assume that T is unbounded above.
The following theorem is concerning the asymptotic

nature of the nabla exponential function. To this end, we
define the minimal graininess function ]

∗
: T → [0,∞)

by

]
∗
(𝑠) := inf

𝜏∈[𝑠,∞)T

] (𝜏) for 𝑠 ∈ T , (28)

and for ℎ ≥ 0 and 𝜆 ∈ R, we define

C
ℎ
(𝜆) := {𝑧 ∈ C

ℎ
: R

ℎ
(𝑧) > 𝜆} . (29)

Theorem 5 (decay of the nabla exponential function). Let

𝑠 ∈ T , 𝜆∈
𝑐
𝑅+] ([𝑠,∞)T ,C) . (30)

Then, for any 𝑧 ∈ C]∗(𝑠)(𝜆), we have the following properties:

(i) |𝑒
𝜆⊖]𝑧

(𝑡, 𝑠)| ≤ 𝑒
𝜆⊖]R]∗(𝑠)(𝑧)

(𝑡, 𝑠) for all 𝑡 ∈ [𝑠,∞)T ,

(ii) lim
𝑡→∞

𝑒
𝜆⊖]R]∗(𝑠)(𝑧)

(𝑡, 𝑠) = 0,

(iii) lim
𝑡→∞

𝑒
𝜆⊖]𝑧

(𝑡, 𝑠) = 0.

Proof. The proof is similar to Theorem 3.4 of [38].

Definition 6 (exponential order). Let 𝑠 ∈ T . A function 𝑓 ∈
𝐶ld(T ,C) has exponential order 𝛼 on [𝑠,∞)T , if

(i) 𝛼 ∈
𝑐
𝑅+] ([𝑠,∞)T ,C),

(ii) there exists 𝐾 > 0, such that |𝑓(𝑡)| ≤ 𝐾𝑒
𝛼
(𝑡, 𝑠) for all

𝑡 ∈ [𝑠,∞)T .

Lemma 7. Let 𝑠 ∈ T and 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C) be a function of

exponential order 𝛼. Then,

lim
𝑡→∞

𝑓 (𝑡) 𝑒
⊖]𝑧

(𝑡, 𝑠) = 0, (31)

where 𝑧 ∈ C]∗(𝑠)(𝛼).

Proof. It follows that
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡) 𝑒

⊖]𝑧
(𝑡, 𝑠)

󵄨󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒
𝛼
(𝑡, 𝑠) 󵄨󵄨󵄨󵄨𝑒⊖𝑧 (𝑡, 𝑠)

󵄨󵄨󵄨󵄨 = 𝐾 󵄨󵄨󵄨󵄨𝑒𝛼⊖𝑧 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 (32)

for all 𝑡 ∈ [𝑠,∞)T and some 𝐾 > 0. By Theorem 5(iii) and
letting 𝑡 → ∞ in (32), we get (31). This completes the proof.

Definition 8. Let 𝑓 ∈ 𝐶ld(T ,C) be a function. Then, the ∇-
Laplace transform

𝑠
L

∇
{𝑓}(⋅) about the point 𝑠 ∈ T of the

function 𝑓 is defined by

𝑠
L

∇
{𝑓} (𝑧) := ∫

∞

𝑠

𝑒
⊖]𝑧

(𝜌 (𝑡) , 𝑠) 𝑓 (𝑡) ∇𝑡 for 𝑧 ∈ D] {𝑓} ,

(33)

where D]{𝑓} consists of all complex numbers 𝑧 ∈ R](T ,C)
for which the improper integral exists.

Theorem 9. Let 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C) be of exponential order

𝛼.Then, the∇-Laplace transform
𝑠
L

∇
{𝑓}(⋅) exists onC]∗(𝑠)(𝛼)

and converges absolutely.

Proof. The proof is similar to Theorem 5.1 in [38].

Theorem 10 (linearity of the transform). Let 𝑓
1
, 𝑓

2
∈

𝐶
𝑙𝑑
([𝑠,∞)T ,C) be of exponential order 𝛼

1
, 𝛼

2
, respectively.

Then, for any 𝑐
1
, 𝑐
2
∈ R, we have

𝑠
L

∇
{𝑐
1
𝑓
1
+ 𝑐

2
𝑓
2
} (𝑧) = 𝑐

1 𝑠
L

∇
{𝑓

1
} (𝑧) + 𝑐

2 𝑠
L

∇
{𝑓

2
} (𝑧)
(34)

for all 𝑧 ∈ C]∗(𝑠)(max{𝛼
1
, 𝛼

2
}).

Proof. The proof follows from the linearity property of the∇-
integral (see Theorem 8.47(i) in [5]).

Theorem 11 (transform of derivative). Let 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,

C) be a function of exponential order 𝛼. Then, one has

𝑠
L

∇
{𝑓∇} (𝑧) = 𝑧𝐹 (𝑧) − 𝑓 (𝑠) , (35)

for all 𝑧 ∈ C]∗(𝑠)(𝛼), where 𝐹 denotes
𝑠
L

∇
{𝑓}.

Proof. By using integration by parts formula (11), we get

𝑠
L

∇
{𝑓∇} (𝑧)

= ∫
∞

𝑠

𝑒
⊖]𝑧

(𝜌 (𝑡) , 𝑠) 𝑓∇ (𝑡) ∇𝑡

= [𝑒
⊖]𝑧

(𝑡, 𝑠)𝑓(𝑡)]
∞

𝑠

+ 𝑧∫
∞

𝑠

𝑒
⊖]𝑧

(𝜌 (𝑡) , 𝑠) 𝑓 (𝑡) ∇𝑡

= −𝑓 (𝑠) + 𝑧𝐹 (𝑧) ,

(36)

for all 𝑧 ∈ C]∗(𝑠)(𝛼). This completes the proof.

By induction, we have the following result.



Abstract and Applied Analysis 5

Corollary 12. Let 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C) be a function of

exponential order 𝛼. Then for any 𝑛 ∈ N, one has

𝑠
L

∇
{𝑓∇
𝑛

} (𝑧) = 𝑧𝑛𝐹 (𝑧) −
𝑛−1

∑
𝑘=0

𝑧𝑛−𝑘−1𝑓∇
𝑘

(𝑠) (37)

for all 𝑧 ∈ C]∗(𝑠)(𝛼).

Definition 13 (see [41]). For a given 𝑓 : [𝑡
0
,∞)T → C, the

solution of the shifting problem

𝑢∇𝑡 (𝑡, 𝜌 (𝑠)) = −𝑢∇𝑠 (𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , 𝑡 ≥ 𝑠 ≥ 𝑡
0
,

𝑢 (𝑡, 𝑡
0
) = 𝑓 (𝑡) , 𝑡 ∈ T , 𝑡 ≥ 𝑡

0

(38)

is denoted by 𝑓 and is called the shift (or delay) of 𝑓.

In this section, we will assume that the problem (38) has
a unique solution 𝑓 for a given initial function 𝑓 and that the
functions 𝑓, 𝑔, and the complex number 𝑧 are such that the
operations fulfilled are valid.

Definition 14 (see [41]). For given functions 𝑓, 𝑔 : T → C,
their convolution 𝑓 ∗ 𝑔 is defined by

𝑓 (𝑡) ∗ 𝑔 (𝑡) = ∫
𝑡

𝑠

𝑓 (𝑡, 𝜌 (𝜏)) 𝑔 (𝜏) ∇𝜏, 𝑠, 𝑡 ∈ T , (39)

where 𝑓 is the shift of 𝑓 introduced in Definition 8.

We state the following results without proof, since the
proofs of them are similar to those in [6].

Theorem 15. The convolution is associative; that is,

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ) . (40)

Theorem 16. If 𝑓 is ∇-differentiable, then

(𝑓 ∗ 𝑔)
∇

= 𝑓∇ ∗ 𝑔 + 𝑓 (𝑠) 𝑔 (41)

and if 𝑔 is 𝑛𝑎𝑏𝑙𝑎-differentiable, then

(𝑓 ∗ 𝑔)
∇

= 𝑓 ∗ 𝑔∇ + 𝑓𝑔 (𝑠) . (42)

Corollary 17. The following formula holds:

∫
𝑡

𝑠

𝑓 (𝑡, 𝜌 (𝜏)) ∇𝜏 = ∫
𝑡

𝑠

𝑓 (𝜏) ∇𝜏. (43)

Theorem 18 (convolution theorem). Suppose 𝑓, 𝑔 : T → R

are locally ∇-integrable functions on T and their convolution
𝑓 ∗ 𝑔 is defined by (39). Then,

𝑠
L

∇
{𝑓 ∗ 𝑔} (𝑧) =

𝑠
L

∇
{𝑓} (𝑧) ⋅

𝑠
L

∇
{𝑔} (𝑧) ,

𝑧 ∈ D] {𝑓} ∩D] {𝑔} .
(44)

LetΦ
𝛼
(𝑡) = ℎ̂

𝛼−1
(𝑡, 𝑠).Then, bymeans of convolution, the

nabla operators in Definition 4 can be restated as

(
𝑎
∇
−𝛼𝑓) (𝑡) = Φ

𝛼
(𝑡) ∗ 𝑓 (𝑡) ,

(
𝑎
∇
𝛽𝑓) (𝑡) = (Φ

𝑚−𝛽
(𝑡) ∗ 𝑓 (𝑡))

∇
𝑛

, 𝑚 = [𝛽] + 1,

( 𝐶
𝑎
∇
𝛾

𝑓) (𝑡) = Φ
𝑚−𝛾

(𝑡) ∗ 𝑓∇
𝑚

, 𝑚 = [𝛾] + 1.

(45)

It is known [5, 7] that, for all 𝑘 ∈ N
0
and 𝑧 ∈ D],

𝑡0
L

∇

{ℎ̂
𝑘
(⋅, 𝑡

0
)} (𝑧) =

1

𝑧𝑘+1
. (46)

In general, we have

Theorem 19. For 𝛼 > 0 and 𝑧 ∈ D],

𝑠
L

∇
{ℎ̂

𝛼
(𝑡, 𝑠)} (𝑧) =

1

𝑧𝛼+1
(47)

holds.

Proof. First, we write Definition 3(i) in convolution form;
that is,

∫
𝑡

𝑠

ℎ̂
𝛼
(𝑡, 𝜌 (𝜏)) ℎ̂

𝛽
(𝜏, 𝑠) ∇𝜏 = ℎ̂

𝛼
(𝑡, 𝑠) ∗ ℎ̂

𝛽
(𝑡, 𝑠) . (48)

Then, obviously

ℎ̂
𝛼
(𝑡, 𝑠) ∗ ℎ̂

𝛽
(𝑡, 𝑠) = ℎ̂

𝛼+𝛽+1
(𝑡, 𝑠) . (49)

We show that (47) satisfies the Laplace transform of (49).
Let 𝛽 = 0. Taking Laplace transform to the left-hand side
followed by applying convolution theorem (39) yields

𝑠
L

∇
{ℎ̂

𝛼
(𝑡, 𝑠) ∗ ℎ̂

0
(𝑡, 𝑠)} = (

1

𝑧𝛼+1
)(

1

𝑧
) =

1

𝑧𝛼+2
. (50)

But, from the right side of (50), we have

1

𝑧𝛼+2
=

1

𝑧(𝛼+1)+1
=

𝑠
L

∇
{ℎ̂

𝛼+1
(𝑡, 𝑠)} (𝑧) . (51)

Hence the result follow from (50) and (51).This completes the
proof.

From (45), knowing

𝑠
L

∇
{Φ

𝛼
} (𝑧) =

𝑠
L

∇
{ℎ̂

𝛼−1
(⋅, 𝑠)} (𝑧) =

1

𝑧𝛼
, (52)

we have (by taking 𝑠 = 𝑎) the following result.

Theorem 20. For 𝛼 > 0,

𝑎
L

∇
{
𝑎
∇
−𝛼𝑓} (𝑧) = 𝑧−𝛼𝐹 (𝑧) . (53)

For the Riemann-Liouville fractional derivative deriva-
tive (26), we have the following result.

Theorem 21. For 𝛽 > 0 and𝑚 = [𝛽] + 1,

L
∇
{
𝑎
∇
𝛽𝑓} (𝑧) = 𝑧𝛽𝐹 (𝑧) −

𝑚−1

∑
𝑘=0

𝑧𝑚−𝑘−1[
𝑎
∇
−(𝑚−𝛽)𝑓]

∇
𝑘

(𝑎) .

(54)

Proof. Write (26) as

(
𝑎
∇
𝛽𝑓) (𝑡) = 𝑔∇

𝑚

(𝑡) , where 𝑔 (𝑡) = (
𝑎
∇
−(𝑚−𝛽)𝑓) (𝑡) .

(55)
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From (53), we have

𝐺 (𝑧) = 𝑧−(𝑚−𝛽)𝐹 (𝑧) . (56)

Thus, by (37) and (56), we have

L
∇
{
𝑎
∇
𝛽𝑓} (𝑧) = L

∇
{𝑔∇
𝑚

} (𝑧)

= 𝑧𝑚𝐺 (𝑧) −
𝑚−1

∑
𝑘=0

𝑧𝑚−𝑘−1𝑔∇
𝑘

(𝑎)

= 𝑧𝛽𝐹 (𝑧) −
𝑚−1

∑
𝑘=0

𝑧𝑚−𝑘−1[
𝑎
∇
−(𝑚−𝛽)𝑓]

∇
𝑘

(𝑎) .

(57)

The Laplace transform (54) is equivalent to the following
one:

L
∇
{
𝑎
∇
𝛽𝑓} (𝑧) = 𝑧𝛽𝐹 (𝑧) −

ℓ

∑
𝑗=1

𝑧𝑗−1 (
𝑎
∇
𝛽−𝑗𝑓) (𝑎) ,

ℓ − 1 < 𝛽 ≤ ℓ.

(58)

The nabla Laplace transform of Caputo fractional deriva-
tive of order 𝛼 is given as follows.

Theorem 22. For 𝛼 > 0 and𝑚 = [𝛼] + 1,

L
∇
{ 𝐶
𝑎
∇
𝛼

𝑓} (𝑧) = 𝑧𝛼𝐹 (𝑧) −
𝑚−1

∑
𝑘=0

𝑧𝛼−𝑘−1𝑓∇
𝑘

(𝑎) . (59)

Proof. Write (27) as

( 𝐶
𝑎
∇
𝛼

𝑓) (𝑡) = (
𝑎
∇
−(𝑚−𝛼)𝑔) (𝑡) , where 𝑔 (𝑡) = 𝑓∇

𝑚

(𝑡) .

(60)

By following (53) and (37), we get

L
∇
{ 𝐶
𝑎
∇
𝛼

𝑓} (𝑧) = L
∇
{
𝑎
∇
−(𝑚−𝛼)𝑔} (𝑧)

= 𝑧−(𝑚−𝛼)𝐺 (𝑧)

= 𝑧−(𝑚−𝛼) [𝑧𝑚𝐹 (𝑧) −
𝑚−1

∑
𝑘=0

𝑧𝑚−𝑘−1𝑓∇
𝑘

(𝑎)]

= 𝑧𝛼𝐹 (𝑧) −
𝑚−1

∑
𝑘=0

𝑧𝛼−𝑘−1𝑓∇
𝑘

(𝑎) .

(61)

Now, let us consider the generalized Mittag-Leffler func-
tion on time scales (see [28, 42]).

Definition 23. Let 𝛼, 𝛽, 𝜆 ∈ R and 𝑠, 𝑡 ∈ T . The time scales
Mittag-Leffler function, 𝐸𝑠,𝜆

𝛼,𝛽
(𝑡), is defined by the following

series expansion:

𝐸𝑠,𝜆
𝛼,𝛽

(𝑡) =
∞

∑
𝑘=0

𝜆𝑘ℎ̂
𝛼𝑘+𝛽−1

(𝑡, 𝑠) . (62)

In the following theorem, we give the Laplace transform
of generalized Mittag-Leffler function on time scales.

Theorem 24. For 𝛼, 𝛽, 𝜆 ∈ R and 𝑎, 𝑡 ∈ T , it holds that

𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛽
(𝑡)} (𝑧) =

𝑧−𝛽

1 − 𝜆𝑧−𝛼
, (63)

provided |𝜆/𝑧𝛼| < 1.

Proof. By usingTheorem 10 and the relation (47), we obtain

𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛽
(𝑡)} (𝑧) =

𝑎
L

∇
{

∞

∑
𝑘=0

𝜆𝑘ℎ̂
𝛼𝑘+𝛽−1

(𝑡, 𝑎)}

=
∞

∑
𝑘=0

𝜆𝑘
𝑎
L

∇
{ℎ̂

𝛼𝑘+𝛽−1
(𝑡, 𝑎)}

=
∞

∑
𝑘=0

𝜆𝑘

𝑧𝑘𝛼+𝛽
=

1

𝑧𝛽
{1 +

𝜆

𝑧𝛼
+

𝜆2

𝑧2𝛼
+ ⋅ ⋅ ⋅ }

=
𝑧−𝛽

1 − 𝜆𝑧−𝛼
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆

𝑧𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 1.

(64)

Example 25. Consider the following initial value problem:

(
𝑎
∇
𝛼𝑦) (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ [𝜎 (𝑎) , 𝑏]T , (65)

(
𝑎
∇
𝛼−𝑗𝑦) (𝑎) = 𝑏

𝑗
, (𝑏

𝑗
∈ R; 𝑗 = 1, 2, . . . , 𝑛 = [𝛼]) . (66)

By taking Laplace transform of both sides of (65) and using
(58), we get

𝑧𝛼
𝑎
L

∇
{𝑦} (𝑧) −

𝑛

∑
𝑗=1

𝑧𝑗−1 (
𝑎
∇
𝛼−𝑗𝑦) (𝑎) − 𝜆

𝑎
L

∇
{𝑦} (𝑧)

=
𝑎
L

∇
{𝑓} (𝑧) ,

𝑎
L

∇
{𝑦} (𝑧)

=
𝑧−𝛼

1 − 𝜆𝑧−𝛼

𝑛

∑
𝑗=1

𝑧𝑗−1 (
𝑎
∇
𝛼−𝑗𝑦) (𝑎) +

𝑧−𝛼

1 − 𝜆𝑧−𝛼 𝑎
L

∇
{𝑓} (𝑧)

=
𝑛

∑
𝑗=1

𝑏
𝑗 𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛼−𝑗+1
(𝑡)} (𝑧)

+
𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛼
(𝑡)} (𝑧)

𝑎
L

∇
{𝑓} (𝑧)

=
𝑛

∑
𝑗=1

𝑏
𝑗 𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛼−𝑗+1
(𝑡)} (𝑧) +

𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛼
(𝑡) ∗ 𝑓 (𝑡)} .

(67)
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Thus, we have

𝑦 (𝑡) =
𝑛

∑
𝑗=1

𝑏
𝑗
𝐸𝑎,𝜆
𝛼,𝛼−𝑗+1

(𝑡) + 𝐸𝑎,𝜆
𝛼,𝛼

(𝑡) ∗ 𝑓 (𝑡)

=
𝑛

∑
𝑗=1

𝑏
𝑗
𝐸𝑎,𝜆
𝛼,𝛼−𝑗+1

(𝑡) + ∫
𝑡

𝑎

𝐸𝜌(𝜏),𝜆
𝛼,𝛼

(𝑡) 𝑓 (𝜏) ∇𝜏.

(68)

The above example coincides with the case T = R (see
[43]).

Now, we consider the Cauchy problem for dynamic
equations with the nabla type Caputo fractional derivatives.

Example 26. Consider the following initial value problem:

( 𝐶
𝑎
∇
𝛼

𝑦) (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ [𝜎 (𝑎) , 𝑏]T , (69)

𝑦∇
𝑗

(𝑎) = 𝑐
𝑗
, (𝑐

𝑗
∈ R; 𝑗 = 0, 1, 2, . . . , 𝑛 − 1) . (70)

By taking Laplace transform of both sides of (69) and using
(59), we get

𝑧𝛼
𝑎
L

∇
{𝑦} (𝑧) −

𝑛−1

∑
𝑗=0

𝑧𝛼−𝑗−1𝑦∇
𝑗

(𝑎) − 𝜆
𝑎
L

∇
{𝑦} (𝑧)

=
𝑎
L

∇
{𝑓} (𝑧) ,

𝑎
L

∇
{𝑦} (𝑧)

=
𝑧−𝛼

1 − 𝜆𝑧−𝛼

𝑛−1

∑
𝑗=0

𝑐
𝑗
𝑧𝛼−𝑗−1 +

𝑧−𝛼

1 − 𝜆𝑧−𝛼 𝑎
L

∇
{𝑓} (𝑧)

=
𝑛−1

∑
𝑗=0

𝑐
𝑗 𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝑗+1
(𝑡)} (𝑧)

+
𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛼
(𝑡)} (𝑧)

𝑎
L

∇
{𝑓} (𝑧)

=
𝑛

∑
𝑗=0

𝑐
𝑗 𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝑗+1
(𝑡)} (𝑧) +

𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛼
(𝑡) ∗ 𝑓 (𝑡)} .

(71)

Thus, we have

𝑦 (𝑡) =
𝑛−1

∑
𝑗=0

𝑐
𝑗
𝐸𝑎,𝜆
𝛼,𝑗+1

(𝑡) + 𝐸𝑎,𝜆
𝛼,𝛼

(𝑡) ∗ 𝑓 (𝑡)

=
𝑛−1

∑
𝑗=0

𝑐
𝑗
𝐸𝑎,𝜆
𝛼,𝑗+1

(𝑡) + ∫
𝑡

𝑎

𝐸𝜌(𝜏),𝜆
𝛼,𝛼

(𝑡) 𝑓 (𝜏) ∇𝜏.

(72)

The last example clearly coincides with the real counter
part; see [43].

4. Nabla Sumudu Transform

In [9], the authors introduced and studied the (delta) Sumudu
transform on time scales. Many important results were

produced and applied on dynamic equation on time scales.
In this section, we will consider the nabla Sumudu transform.
Most of the results were coated from [9, 44, 45] without proof
since their proofs are similar.

Definition 27. Let 𝑓 ∈ 𝐶ld(T ,C) be a function. Then, the
∇-Sumudu transform

𝑠
S
∇
{𝑓}(⋅) about the the point 𝑠 ∈ T

of the function 𝑓 is defined by

𝑠
S
∇
{𝑓} (𝑧)

:=
1

𝑧
∫
∞

𝑠

𝑒
⊖](1/𝑧)

(𝜌 (𝑡) , 𝑠) 𝑓 (𝑡) ∇𝑡 for 𝑧 ∈ D {𝑓} ,
(73)

where D{𝑓} consists of all complex numbers 𝑧 ∈ R](T ,C)
for which the improper integral exists.

Let us define the set

C
ℎ
(𝜆) := {𝑧 ∈ C

ℎ
: R

ℎ
(
1

𝑧
) > 𝜆} . (74)

We notice that, following Lemma 7, if 𝑓 ∈ 𝐶ld([𝑠,∞)T ,C) is
a function of exponential order 𝛼, then

lim
𝑡→∞

𝑓 (𝑡) 𝑒
⊖](1/𝑧)

(𝑡, 𝑠) = 0, (75)

where 𝑧 ∈ C
ℎ
(𝛼). Hence, we have the following.

Theorem 28. Let 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C) be of exponential

order 𝛼. Then, the ∇-Sumudu transform
𝑠
S
∇
{𝑓}(⋅) exists on

C]∗(𝑠)(𝛼) and converges absolutely.

In the special case T = N
𝑎
= {𝑎, 𝑎 + 1, 𝑎 + 2, . . .}, 𝑎 ∈ R

fixed (see [44]), we have

𝑎
S
∇
{𝑓} (𝑧) =

1

𝑧

∞

∑
𝑘=1

(
𝑧 − 1

𝑧
)
𝑘−1

𝑓 (𝑎 + 𝑘) (76)

for each 𝑧 ∈ C \ {0, 1} for which the series converges.
The following theorem states the close relationship

between nabla Sumudu transform and nabla Laplace trans-
form.

Theorem 29. Let 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C) be a function. Then

𝑠
S
∇
{𝑓} (𝑧) =

1

𝑧 𝑠
L

∇
{𝑓} (

1

𝑧
) =

1

𝑧
𝐹(

1

𝑧
) . (77)

The following theorem can be easily verified using induc-
tion.

Theorem 30. Let 𝑓 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C) be of exponential order

𝛼. Then,

𝑠
S
∇
{𝑓∇
𝑛

} (𝑧) =
1

𝑧𝑛 𝑠
𝑆
∇
{𝑓} (𝑧) −

𝑛−1

∑
𝑘=0

1

𝑧𝑛−𝑘
𝑓∇
𝑘

(𝑠) , (78)

where 𝑧 ∈ C]∗(𝑠)(𝛼).

The following theorem presents the nabla-Sumudu trans-
formation of convolution of two functions on time scales.
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Theorem 31. Let 𝑓, 𝑔 ∈ 𝐶
𝑙𝑑
([𝑠,∞)T ,C). Then

𝑠
S
∇
{𝑓 ∗ 𝑔} (𝑧) = 𝑧 [

𝑡0
S
∇

{𝑓} (𝑧) ⋅
𝑡0
S
∇

{𝑔} (𝑧)] . (79)

Proof. The proof is a direct consequence of relation (77) and
Theorem 18.

Now, we consider the ∇-Sumudu transform on time scale
fractional calculus. We begin with ∇-Sumudu transform of
power function on T .

Theorem 32. Let 𝑠 ∈ T . For 𝛼 > −1, one has

𝑠
S
∇
{ℎ̂

𝛼
(⋅, 𝑠)} (𝑧) = 𝑧𝛼. (80)

Proof. UsingTheorem 28 and the result (41), we have

𝑠
S
∇
{ℎ̂

𝛼
(⋅, 𝑠)} (𝑧) =

1

𝑧 𝑠
L

∇
{ℎ̂

𝛼
(⋅, 𝑠) 𝑓} (

1

𝑧
)

=
1

𝑧
(

1

(1/𝑧)𝛼+1
)

= 𝑧𝛼.

(81)

This completes the proof.

In particular, ℎ̂
0
(𝑡, 𝑠) = 1 and hence the ∇-Sumudu

transform of 𝑓(𝑡) = 1 is given as follows.

Corollary 33. The ∇-Sumudu transform of 𝑓(𝑥) = 1 is given
by

𝑠
S
∇
{1} (𝑧) =

𝑠
S
∇
{ℎ̂

0
(⋅, 𝑠)} (𝑧) = 𝑧0 = 1. (82)

In the following theorem, we give the Sumudu transform
of generalized Mittag-Leffler function on time scales.

Theorem 34. For 𝛼, 𝛽, 𝜆 ∈ R and 𝑎, 𝑡 ∈ T , it holds that

𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛽
(𝑡)} (𝑧) =

𝑧𝛽−1

1 − 𝜆𝑧𝛼
, (83)

provided |𝜆𝑧𝛼| < 1.

Proof. Using the relation (77) and the result (63), we get

𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛽
(𝑡)} (𝑧) =

1

𝑧 𝑎
L

∇
{𝐸𝑎,𝜆

𝛼,𝛽
(𝑡)} (

1

𝑧
)

=
1

𝑧
(

(1/𝑧)−𝛽

1 − 𝜆(1/𝑧)−𝛼
)

=
𝑧𝛽−1

1 − 𝜆𝑧𝛼
, 󵄨󵄨󵄨󵄨𝜆𝑧

𝛼󵄨󵄨󵄨󵄨 < 1.

(84)

The nabla Sumudu transform of fractional integral and
fractional derivatives are as follows.

Theorem 35. (i) For 𝛼 > 0,

𝑎
S
∇
{
𝑎
∇
−𝛼𝑓} (𝑧) = 𝑧𝛼

𝑎
S
∇
{𝑓} (𝑧) . (85)

(ii) For 𝛽 > 0 and𝑚 = [𝛽] + 1,

𝑎
S
∇
{
𝑎
∇
𝛽𝑓} (𝑧)

=
1

𝑧𝛽 𝑎
S
∇
{𝑓} (𝑧) −

𝑚−1

∑
𝑘=0

1

𝑧𝑚−𝑘
[
𝑎
∇
−(𝑚−𝛽)𝑓]

∇
𝑘

(𝑎) .
(86)

(iii) For 𝛾 > 0 and𝑚 = [𝛾] + 1,

𝑎
S
∇
{ 𝐶
𝑎
∇
𝛾

𝑓} (𝑧) =
1

𝑧𝛾 𝑎
S
∇
{𝑓} (𝑧) −

𝑚−1

∑
𝑘=0

1

𝑧𝛾−𝑘
𝑓∇
𝑘

(𝑎) . (87)

Proof. The proof to each part follows immediately after
applying (77) and the respective Laplace transforms (53),
(54), and (59).

As in the case of Laplace transform (see relation (58)), the
∇-Sumudu transform inTheorem 35(ii) is equivalent to

S
∇
{
𝑎
∇
𝛽𝑓} (𝑧) =

1

𝑧𝛽 𝑎
S
∇
{𝑓} (𝑧) −

ℓ

∑
𝑗=1

1

𝑧𝑗
(
𝑎
∇
𝛽−𝑗𝑓) (𝑎) ,

ℓ − 1 < 𝛽 ≤ ℓ.
(88)

In the following example we will illustrate the use of
the ∇-Sumudu transform by applying it to solve initial value
problems.

Example 36. Consider the following initial value problem:

(
𝑎
∇
𝛼𝑦) (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ T , 0 < 𝛼 ≤ 1, (89)

(
𝑎
∇
𝛼−1𝑦) (𝑎) = 𝑦

0
, 𝑦

0
∈ R. (90)

We begin by taking the ∇-Sumudu transform of both
sides of (89). By usingTheorem 35(ii) for 0 < 𝛼 ≤ 1, we get

𝑧−𝛼
𝑎
S
∇
{𝑦} (𝑧) − 𝑧−1

𝑎
∇−(1−𝛼)𝑦 (𝑎) − 𝜆S

∇
{𝑦} (𝑧)

=
𝑎
S
∇
{𝑓} (𝑧) .

(91)

Hence,

𝑎
S
∇
{𝑦} (𝑧)

=
𝑧−1

𝑧−𝛼 − 𝜆 𝑎
∇
𝛼−1𝑦 (𝑎) +

1

𝑧−𝛼 − 𝜆 𝑎
S
∇
{𝑓} (𝑧)

= (
𝑧𝛼−1

1 − 𝜆𝑧𝛼
)𝑦

0
+ 𝑧(

𝑧𝛼−1

1 − 𝜆𝑧𝛼
)

𝑎
S
∇
{𝑓} (𝑧)

= 𝑦
0
⋅
𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛼−1
(𝑡)} (𝑧)

+ 𝑧 {
𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛼−1
(𝑡)} (𝑧) ⋅

𝑎
S
∇
{𝑓} (𝑧)}

= 𝑦
0
⋅
𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛼−1
(𝑡)} (𝑧)

+
𝑎
S
∇
{{𝐸𝑎,𝜆

𝛼,𝛼−1
(𝑡)} (𝑧) ∗ {𝑓} (𝑧)} .

(92)

Thus, we have

𝑦 (𝑡) = 𝑦
0
𝐸𝑎,𝜆
𝛼,𝛼−1

(𝑡) + 𝐸𝑎,𝜆
𝛼,𝛼−1

(𝑡) ∗ 𝑓 (𝑡) . (93)
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Example 37. Consider the following Caputo type initial value
problem:

( 𝐶
𝑎
∇
𝛼

𝑦) (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) ,

(𝑡 ∈ T , 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N, 𝜆 ∈ R) ,
(94)

𝑦∇
𝑘

(𝑎) = 𝑏
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. (95)

By taking the ∇-Sumudu transform of both sides of (94) and
usingTheorem 35(iii), we get

1

𝑧𝛼 𝑎
S
∇
{𝑦} (𝑧) −

𝑛−1

∑
𝑘=0

1

𝑧𝛼−𝑘
𝑦∇
𝑘

(𝑎) − 𝜆S
∇
{𝑦} (𝑧)

=
𝑎
S
∇
{𝑓} (𝑧) ,

𝑎
S
∇
{𝑦} (𝑧)

=
𝑧𝛼

1 − 𝜆𝑧𝛼

𝑛−1

∑
𝑘=0

𝑏
𝑘

𝑧𝛼−𝑘
+

𝑧𝛼

1 − 𝜆𝑧𝛼 𝑎
S
∇
{𝑓} (𝑧)

=
𝑛−1

∑
𝑘=0

𝑏
𝑘

𝑧𝑘

1 − 𝜆𝑧𝛼
+

𝑧𝛼

1 − 𝜆𝑧𝛼 𝑎
S
∇
{𝑓} (𝑧)

=
𝑛−1

∑
𝑘=0

𝑏
𝑘 𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝑘+1
(𝑡)} (𝑧)

+ 𝑧 (
𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛼
(𝑡)} (𝑧) ⋅

𝑎
S
∇
{𝑓} (𝑧))

=
𝑛−1

∑
𝑘=0

𝑏
𝑘 𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝑘+1
(𝑡)} (𝑧) +

𝑎
S
∇
{𝐸𝑎,𝜆

𝛼,𝛼
(𝑡) ∗ 𝑓 (𝑡)} .

(96)

Thus, we have

𝑦 (𝑡) =
𝑛−1

∑
𝑘=0

𝑏
𝑘
𝐸𝑎,𝜆
𝛼,𝑘+1

(𝑡) + 𝐸𝑎,𝜆
𝛼,𝛼

(𝑡) ∗ 𝑓 (𝑡) . (97)

In particular, when 0 < 𝛼 < 1, the initial value problem

𝐶

𝑎
∇
𝛼

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ T ,

𝑦 (𝑎) = 𝑏
0
, 𝑦

0
∈ R

(98)

has a solution of the following form:

𝑦 (𝑡) = 𝑏
0
𝐸𝑎,𝜆
𝛼,1

(𝑡) + 𝐸𝑎,𝜆
𝛼,𝛼

(𝑡) ∗ 𝑓 (𝑡) . (99)

Example 38. Consider the following Caputo type initial value
problem:

( 𝐶
𝑎
∇
𝛼

𝑦) (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ T , 0 < 𝛼 ≤ 1, (100)

𝑦 (𝑎) = 𝑦
0
, 𝑦

0
∈ R. (101)

By taking the∇-Sumudu transform of both sides of (100) and
usingTheorem 35(iii) for 0 < 𝛼 ≤ 1, we get

𝑧−𝛼
𝑎
S
∇
{𝑦} (𝑧) − 𝑧−𝛼𝑦 (𝑎) =

𝑎
S
∇
{𝑓} (𝑧) . (102)

Hence,

𝑎
S
∇
{𝑦} (𝑧) = 𝑦

0
+ 𝑧𝛼

𝑎
S
∇
{𝑓} (𝑧)

= 𝑦
0 𝑎
S
∇
{ℎ̂

0
(𝑡, 𝑎)} (𝑧)

+ 𝑧
𝑎
S
∇
{ℎ̂

𝛼−1
(𝑡, 𝑎)} (𝑧)

𝑎
S
∇
{𝑓} (𝑧) .

(103)

Thus, we have

𝑦 (𝑡) = 𝑦
0
+ ℎ̂

𝛼−1
(𝑡, 𝑎) ∗ 𝑓 (𝑡)

= 𝑦
0
+

𝑎
∇
−𝛼𝑓 (𝑡) .

(104)

Remark 39. Following Theorem 29 and the examples on
solving fractional dynamic equations, one can conclude that

(a) if the solution of fractional dynamic equation exists
by ∇-Sumudud transform, then the solution exists by
∇-Laplace transform, and vise versa;

(b) if the solution of fractional dynamic equation exists
by ∇-Sumudud transform, then the solution exists by
Sumudu and Laplace transform (here T = R).
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transform on time scales and its applications,” Advances in
Difference Equations, vol. 2012, article 60, 2012.

[10] M. Bohner and G. S. Guseinov, “The ℎ-LAPlace and 𝑞-LAPlace
transforms,” Journal of Mathematical Analysis and Applications,
vol. 365, no. 1, pp. 75–92, 2010.

[11] M. R. Segi Rahmat, “The (𝑞, ℎ)-Laplace transform on discrete
time scales,” Computers & Mathematics with Applications, vol.
62, no. 1, pp. 272–281, 2011.

[12] K. S. Miller and B. Ross, An Introduction to the Fractional
calculus and Fractional Differential Equations, John Wiley &
Sons, New York, NY, USA, 1993.

[13] I. Podlubny, Fractional Differential equations, Academic Press,
San Diego, Calif, USA, 1999.

[14] R. P. Agarwal, “Certain fractional 𝑞-integrals and 𝑞-derivatives,”
vol. 66, pp. 365–370, 1969.

[15] J. B. Dı́az and T. J. Osler, “Differences of fractional order,”
Mathematics of Computation, vol. 28, pp. 185–202, 1974.

[16] T. J. Osler, “Fractional derivatives and Leibniz rule,”The Amer-
ican Mathematical Monthly, vol. 78, no. 6, pp. 645–649, 1971.

[17] H. L. Gray and N. F. Zhang, “On a new definition of the
fractional difference,”Mathematics of Computation, vol. 50, no.
182, pp. 513–529, 1988.

[18] K. S. Miller and B. Ross, “Fractional difference calculus,” in
Proceedings of the International Symposium on Univalent Func-
tions, Fractional Calculus andTheir Applications, Ellis Horwood
Series in Mathematics & Its Applications, pp. 139–152, Nihon
University, Koriyama, Japan, May 1988.

[19] T. Abdeljawad and D. Baleanu, “Fractional differences and
integration by parts,” Journal of Computational Analysis and
Applications, vol. 13, no. 3, pp. 574–582, 2011.

[20] T. Abdeljawad, “On Riemann and Caputo fractional differ-
ences,” Computers &Mathematics with Applications, vol. 62, no.
3, pp. 1602–1611, 2011.

[21] T. Abdeljawad, “On Delta and Nabla Caputo fractional differ-
ences and dual identities,” Discrete Dynamics in Nature and
Society, vol. 2013, Article ID 406910, 12 pages, 2013.

[22] F. M. Atici and P.W. Eloe, “A transformmethod in discrete frac-
tional calculus,” International Journal of Difference Equations,
vol. 2, no. 2, pp. 165–176, 2007.

[23] F. M. Atici and P. W. Eloe, “Initial value problems in discrete
fractional calculus,” Proceedings of the American Mathematical
Society, vol. 137, no. 3, pp. 981–989, 2009.

[24] F. M. Atici and P. W. Eloe, “Discrete fractional calculus with
the nabla operator,” Electronic Journal of Qualitative Theory of
Differential Equations, no. 3, pp. 1–12, 2009.

[25] J. Hein, Z. McCarthy, N. Gaswick, B. McKain, and K.
Speer, “Laplace transforms for the nabla-difference operator,”
Panamerican Mathematical Journal, vol. 21, no. 3, pp. 79–97,
2011.

[26] A. Nagai, “On a certain fractional q-difference and its eigen
function,” Journal of NonlinearMathematical Physics, vol. 10, pp.
133–142, 2003.
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