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we present a first supercloseness analysis for higher order FEM/LDG coupled method for solving singularly perturbed convection-
diffusion problem. Based on piecewise polynomial approximations of degree 𝑘 (𝑘 ≥ 1), a supercloseness property of 𝑘 + 1/2 in DG
norm is established on S-type mesh. Numerical experiments complement the theoretical results.

1. Introduction

In this paper we are interested in the construction and
validation of high-order finite element approximations to
problems of type

−𝜀𝑢
󸀠󸀠
− 𝑏𝑢
󸀠
+ 𝑐𝑢 = 𝑓 in Ω = (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(1)

where 0 < 𝜀 ≪ 1 is a small positive parameter and 𝑏, 𝑐,
and 𝑓 are sufficiently smooth functions with the following
properties:

𝑏 (𝑥) ≥ 𝛽 > 0, 𝑐 (𝑥) ≥ 0, 𝑐 (𝑥) +
1

2
𝑏
󸀠

(𝑥) ≥ 𝑐
0
> 0,

∀𝑥 ∈ Ω,

(2)

for some constants 𝛽 and 𝑐
0
. This assumption guarantees that

(1) has a unique solution in𝐻2(Ω) ∩𝐻1
0
(Ω) for all 𝑓 ∈ 𝐿

2
(Ω)

[1]. Typically the solution of (1) has an exponential boundary
layer at 𝑥 = 0.

Problem (1) is a simple model problem that helps under-
standing the behavior of numerical methods in presence of

layers inmore complex problems like theNavier-Stokes equa-
tions in fluid dynamics or convection diffusion equations in
chemical reaction processes.

The smallness of 𝜀 causes global unphysical oscillations
if standard discretization schemes on general meshes are
applied. To obtain accurate results without high computa-
tional cost, problem (1) is usually solved by strong stability
numerical methods on the layer-adapted mesh, such as
Shishkin-mesh (S-mesh) [2] or Bakhvalov-Shishkinmesh (B-
S mesh) [3, 4]. In [5], a bilinear Galerkin finite element
method was applied to (1) using a S-mesh, and it was shown
that ‖𝑢 − 𝑢𝑁Gal‖1,𝜀 = O(𝑁−1 ln𝑁), where ‖ ⋅ ‖

1,𝜀
is the 𝜀-

weighted energy norm, 𝑢 is the exact solution, and 𝑢𝑁Gal is the
computed solution.On the samemethodusing aB-Smesh [4]
improved this result to O(𝑁−1). Roos and Linß [6] provided
the so-called S-type mesh which was a class of generalized
Shishkin-mesh including S-mesh and B-S mesh.

A popular stabilization technique is the discontinuous
Galerkin (DG) methods which were introduced in the early
1970s for the numerical solution of first order hyperbolic
problems. Simultaneously, but quite independently, theywere
proposed as nonstandard schemes for the approximation
of elliptic and parabolic problems. The DG methods on S-
meshes for solving singularly perturbed problems (SPPs)
were considered in [7–15]. Xie and her collaborators [8–10]
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investigated the superconvergence and uniform superconver-
gence properties of the local discontinuous Galerkin (LDG)
method on S-mesh for 1D and/or 2D convection-diffusion
type SPP. Zhu et al. [13] proved the uniformly convergence
properties of the LDG methods with higher order elements
on S-mesh for general 1D convection-diffusion and reaction-
diffusion type SPPs. And recently Zhu and Zhang [14, 15]
analyzed the uniform convergence properties of the LDG
methods with bilinear and higher order elements on S-mesh
for 2D SPP, respectively. On the other hand, the uniformly
convergence of the NIPG method with bilinear elements
on S-mesh was analyzed by Zarin and Roos [11] for 2D
convection-diffusion type SPP with parabolic layers. In order
to reduce the degrees of freedom of NIPG method, Roos and
Zarin [7] and Zarin [12] analyzed the uniformly convergence
of FEM/NIPG coupled method with bilinear element on
S-mesh for 2D convection-diffusion type SPP with expo-
nentially layers or characteristic layers. LDG method has
much more advantages than the others in the DG methods
family [16], but it also has more degrees of freedom than the
others. By this motivation, Zhu and his collaborators [17, 18]
analyzed the uniformly convergence property of FEM/LDG
coupled method with linear/bilinear element on S-mesh
for 1D/2D convection-diffusion type SPP with boundary
layer. Recently, Zhu and his collaborator [19] analyzed the
uniformly convergence property of higher order FEM/LDG
coupled method on S-mesh for 1D convection-diffusion type
SPP with boundary layer.

A supercloseness property is a useful tool to prove
superconvergence by postprocessing. Recently, Franz [20]
numerically studies the supercloseness properties for higher
order finite element methods and the streamline diffusion
finite element methods on 2D Bakhvalov-Shishkin meshes.
By the authors’ knowledge, there is a fewworks about uniform
supercloseness result of higher order DG method for solving
SPP on S-type mesh. In this paper, we are interested in
uniformly convergence properties and supercloseness prop-
erties of higher order FEM/LDG coupled method for 1D
SPP of convection-diffusion type on S-type mesh. The paper
is organized as follows. In Section 2, we introduce the S-
type mesh and the FEM/LDG coupled method. The stability
and error analysis of the FEM/LDG coupled method with
higher order elements on S-type mesh is given in Section 3.
A numerical example is presented in Section 4. It aims to
validate our theoretical result.

In the sequel with 𝐶 we will denote a generic positive
constant independent of the perturbation parameter 𝜀 and
mesh size.

2. The S-Type Mesh and the FEM/LDG
Coupled Method

2.1. The S-Type Mesh. Let 𝑁 be an even integer. Denote by
𝜆 the transition parameter which indicates where the mesh
changes from fine to coarse. This parameter is given by

𝜆 = min{1
2
,
𝑘 + 1.5

𝛽
𝜀 ln𝑁} , (3)

where our trial space, which is defined below, comprises
functions that are piecewise in P𝑘 for some integer 𝑘 ≥ 1.
Notice that 𝜀 ≪ 1; here and below we take 𝜆 = ((𝑘 +

1.5)/𝛽)𝜀 ln𝑁. Moreover, we suppose that 𝜀 ≤ 𝑁
−1 which is

realistic for this type of problems.
LetT

𝑁
= {𝐼
𝑗
= (𝑥
𝑗−1
, 𝑥
𝑗
) : 𝑗 = 1, . . . , 𝑁} be a partition of

the domain Ω. LetT
𝑁
= {𝐼
𝑗
= (𝑥
𝑗−1
, 𝑥
𝑗
) : 𝑗 = 1, . . . , 𝑁} be a

partition of the domainΩ and𝐻 = 2(1 − 𝜆)/𝑁. We choose

𝑥
𝑗
=

{{{

{{{

{

(𝑘 + 1.5) 𝜀

𝛽
𝜙 (

𝑗

𝑁
) , 𝑗 = 0, 1, . . . ,

𝑁

2
,

𝜆 + (𝑗 −
𝑁

2
)𝐻, 𝑗 =

𝑁

2
+ 1, . . . , 𝑁,

(4)

where 𝜙 is a monotonically increasing mesh-generating
function satisfying 𝜙(0) = 0 and 𝜙(1/2) = ln𝑁. Given an
arbitrary function 𝜙 fulfilling these conditions, a S-typemesh
is defined.

Wedefine amesh-characterizing function𝜓 that is closely
related to 𝜙 by

𝜙 = − ln𝜓, (5)

which is monotonically decreasing with 𝜓(0) = 1 and
𝜓(1/2) = 𝑁

−1. Table 1 gives some examples of S-type meshes
introduced in [6].

Denote the length of any subinterval 𝐼
𝑗
by ℎ
𝑗
= 𝑥
𝑗
− 𝑥
𝑗−1

.
Some properties of S-type mesh are given in the following
lemma.

Lemma 1 (see [21]). Assume that the piecewise differentiable
mesh-generating function 𝜙 satisfies the conditions

max
𝑡∈[0,1/2]

𝜙
󸀠

(𝑡) ≤ 𝐶𝑁 𝑜𝑟 𝑒𝑞𝑢𝑖V𝑎𝑙𝑒𝑛𝑡𝑙𝑦 max
𝑡∈[0,1/2]

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝜓 (𝑡)
≤ 𝐶𝑁.

(6)

Let 𝑥
𝑗
, 𝑗 = 0, 1, . . . , 𝑁/2 be the points for a S-type mesh. Then,

the estimates,

ℎ
𝑗
≤ 𝐶𝜀𝑁

−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
⋅ exp(

𝛽𝑥
𝑗

(𝑘 + 1.5) 𝜀
) , 𝑗 = 1, . . . ,

𝑁

2
,

(7)

ℎ
𝑚

𝑗
exp(−

𝛽𝑥
𝑗−1

𝜀
) ≤ 𝐶(𝜀𝑁

−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑚

, 𝑗 = 1, . . . ,
𝑁

2
,

𝑚 ∈ [0, 𝑘 + 1.5] ,

(8)

hold true.

Remark 2. Taking 𝜎 = 𝑘 + 1.5, the proof of this lemma is
similar to the statements given on page 142 of [21]. From (6)
we can also get a simpler bound

ℎ
𝑗
≤ 𝐶𝜀𝑁

−1max𝜙󸀠 ≤ 𝐶𝜀, 𝑗 = 1, . . . ,
𝑁

2
. (9)

Set T1
𝑁
= {𝐼
𝑗
}
𝑁/2

𝑗=1
and T2

𝑁
= {𝐼
𝑗
}
𝑁

𝑗=𝑁/2+1
. We denote by

𝑢(𝑥
+

𝑗
) and 𝑢(𝑥−

𝑗
) the values of 𝑢 at 𝑥

𝑗
, from the right cell and

the left cell of 𝑥
𝑗
, respectively.
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2.2.TheWeak Formulation of the FEM/LDGCoupledMethod.
The S-type mesh defined in Section 2.1 is fine on Ω

1
= [0, 𝜆]

and coarse onΩ
2
= [𝜆, 1]. We discretize problem (1) by using

the FEM on Ω
1
where the mesh is fine enough and strong

stable LDG method is used on coarse mesh part Ω
2
. The

derived method is the so-called FEM/LDG coupled method.
The motivation to this coupled approach is to construct a
numerical scheme with strong stability property but has less
degrees of freedom than LDG method.

Let 𝑢𝑖 = 𝑢|
Ω𝑖
, 𝑖 = 1, 2, and 𝑞 = (𝑢

2
)
󸀠 in Ω

2
.

Rewrite problem (1) as the following equivalent transmission
problem:

− 𝜀(𝑢
1
)
󸀠󸀠

− 𝑏(𝑢
1
)
󸀠

+ 𝑐𝑢
1
= 𝑓 in Ω

1
,

𝑞 − (𝑢
2
)
󸀠

= 0 in Ω
2
,

− 𝜀𝑞
󸀠
− 𝑏(𝑢

2
)
󸀠

+ 𝑐𝑢
2
= 𝑓 in Ω

2
,

𝑢
1

(𝜆) = 𝑢
2

(𝜆) ,

(𝑢
1
)
󸀠

(𝜆) = 𝑞 (𝜆) ,

(10)

with boundary conditions

𝑢
1

(0) = 𝑢
2

(1) = 0. (11)

Let us now denote byP𝑘(𝐾) the space of polynomials of
degree at most 𝑘 on𝐾 and define the finite element spaceV1

𝑁

andV2
𝑁
as follows:

V
1

𝑁
= {V1 ∈ 𝐻1 (Ω

1
) : V1 (0) = 0, V1|

𝐾
∈ P
𝑘

(𝐾) ,

∀𝐾 ∈ T
1

𝑁
} ,

V
2

𝑁
= {V2 ∈ 𝐿2 (Ω

2
) : V2|

𝐾
∈ P
𝑘

(𝐾) , ∀𝐾 ∈ T
2

𝑁
} .

(12)

The spaceV1
𝑁
is a standard conforming finite element space,

whereas the functions in V2
𝑁
are completely discontinuous

across interelement boundaries.
Wewill search for approximate solutions (𝑈1

𝑁
, 𝑈
2

𝑁
, 𝑄
𝑁
) of

(10) and (11) in the finite element spaceV1
𝑁
×V2
𝑁
×V2
𝑁
that

satisfy (10) and (11) in a weak sense. The FEM/LDG coupled
method (see more details in [17, 22]) for problems (10) and
(11) is defined as follows: find (𝑈1

𝑁
, 𝑈
2

𝑁
, 𝑄
𝑁
) ∈ V1

𝑁
×V2
𝑁
×V2
𝑁

such that

∫
Ω1

[𝜀(𝑈
1

𝑁
)
󸀠

+ 𝑏𝑈
1

𝑁
] (V1)

󸀠

d𝑥 + ∫
Ω1

(𝑐 + 𝑏
󸀠
)𝑈
1

𝑁
V1d𝑥

− (𝜀𝑄
𝑁
+ 𝑏𝑈̃
2

𝑁
) (𝜆) V1 (𝜆) = ∫

Ω1

𝑓V1d𝑥,
(13)

for all test function V1 ∈ V1
𝑁
, and

∫
𝐼𝑗

𝑄
𝑁
𝑤d𝑥 + ∫

𝐼𝑗

𝑈
2

𝑁
𝑤
󸀠d𝑥 − 𝑈̂2

𝑁
(𝑥
𝑗
)𝑤 (𝑥

−

𝑗
)

+ 𝑈̂
2

𝑁
(𝑥
𝑗−1
)𝑤 (𝑥

+

𝑗−1
) = 0,

(14)

∫
𝐼𝑗

(𝜀𝑄
𝑁
+ 𝑏𝑈
2

𝑁
) (V2)

󸀠

d𝑥

+ ∫
𝐼𝑗

(𝑐 + 𝑏
󸀠
)𝑈
2

𝑁
V2d𝑥 − (𝜀𝑄

𝑁
+ 𝑏𝑈̃
2

𝑁
) (𝑥
𝑗
) V2 (𝑥−

𝑗
)

+ (𝜀𝑄
𝑁
+ 𝑏𝑈̃
2

𝑁
) (𝑥
𝑗−1
) V2 (𝑥+

𝑗−1
) = ∫
𝐼𝑗

𝑓V2d𝑥,

(15)

for all test function (𝑤, V2) ∈ V2
𝑁
× V2
𝑁

and for all 𝐼
𝑗
∈

T2
𝑁
, where 𝑈̂2

𝑁
, 𝑈̃2
𝑁
, and 𝑄

𝑁
are the numerical fluxes, which

approximate the traces of𝑈2
𝑁
and𝑄

𝑁
on the boundary of the

elements ofT2
𝑁
. To complete the specification of themethod,

it only remains to define the numerical fluxes.

The Numerical Fluxes. We use the following notation to
describe the numerical fluxes at the interior nodes. The
average and jump of the trace of smooth function V ∈ 𝐿2(Ω

2
)

at the interior node 𝑥
𝑗
are given by

{V (𝑥
𝑗
)} =

V (𝑥+
𝑗
) + V (𝑥−

𝑗
)

2
,

[V (𝑥
𝑗
)] = V (𝑥+

𝑗
) − V (𝑥−

𝑗
) ,

(16)

respectively. We now define the numerical fluxes 𝑈̂2
𝑁
and 𝑄

𝑁

by

𝑈̂
2

𝑁
(𝑥
𝑗
) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑈
1

𝑁
(𝜆) , if 𝑗 = 𝑁

2
,

{𝑈
2

𝑁
(𝑥
𝑗
)} − 𝛾 [𝑈

2

𝑁
(𝑥
𝑗
)] ,

if 𝑗 = 𝑁

2
+ 1, . . . , 𝑁 − 1,

0, if 𝑗 = 𝑁,

(17)

𝑄
𝑁
(𝑥
𝑗
) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝑄
𝑁
(𝜆
+
) + 𝛼 (𝑈

2

𝑁
(𝜆
+
) − 𝑈
1

𝑁
(𝜆)) , if 𝑗 = 𝑁

2
,

{𝑄
𝑁
(𝑥
𝑗
)} + 𝛾 [𝑄

𝑁
(𝑥
𝑗
)]

+𝛼 [𝑈
2

𝑁
(𝑥
𝑗
)] ,

if 𝑗 = 𝑁

2
+ 1, . . . , 𝑁 − 1,

𝑄
𝑁
(1
−
) − 𝛼𝑈

2

𝑁
(1
−
) , if 𝑗 = 𝑁.

(18)

Here the scalars 𝛼 = 𝛼(𝑥) and 𝛾 = 𝛾(𝑥) are auxiliary
parameters. Their purpose is to enhance the stability and
accuracy properties of the LDG method (see [23, 24]).
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The numerical flux associated with the convection is the
classical upwinding flux; namely,

𝑈̃
2

𝑁
(𝑥
𝑗
) =

{{

{{

{

𝑈
2

𝑁
(𝑥
+

𝑗
) , if 𝑗 = 𝑁

2
, . . . , 𝑁 − 1,

0, if 𝑗 = 𝑁.

(19)

3. Stability and Error Analysis of the FEM/LDG
Coupled Method

This section is devoted to the existence and uniqueness of
the solution of the coupled method (13)–(15) with numerical
fluxes (17)–(19) and its corresponding error analysis. Firstly,
we rewrite our method in the primal form by eliminating𝑄

𝑁

following Arnold et al. [16]. And then we get stability of the
FEM/LDG coupled method, if the stabilization parameter 𝛼
is taken of orderO(1/𝐻). Under this condition, we obtain the
higher order uniform convergence of the coupled method.

Primal Formulation. Let us introduce the space

V
𝑁
:= {V ∈ 𝐿2 (Ω) : V𝑖 = V|

Ω𝑖
, V𝑖 ∈ V

𝑖

𝑁
, 𝑖 = 1, 2} ,

V (𝑁) = [𝐻
2

(Ω) ∩ 𝐻
1

0
(Ω)] +V

𝑁
,

(20)

where

𝐻
1

0
(Ω) = {V ∈ 𝐻1 (Ω) : V|

Ω𝑖
= V𝑖, 𝑖 = 1, 2,

V1 (0) = 0, V2 (1−) = 0} .

(21)

For V ∈ V(𝑁), we defineL
1
(V) as the unique element inV2

𝑁

satisfying

∫
Ω2

L
1
(V) 𝑟d𝑥

=

𝑁−1

∑

𝑗=𝑁/2+1

[V2 (𝑥
𝑗
)] ({𝑟 (𝑥

𝑗
)} + 𝛾 [𝑟 (𝑥

𝑗
)])

− V2 (1−) 𝑟 (1−) − (V1 (𝜆) − V2 (𝜆+)) 𝑟 (𝜆+) ,
(22)

for all 𝑟 ∈ V2
𝑁
.

As a result, from (14) we get

𝑄
𝑁
= (𝑈
2

𝑁
)
󸀠

+L
1
(𝑈
𝑁
) in V

2

𝑁
. (23)

Similar to the definition of L
1
(V), for V ∈ V(𝑁), we define

L
2
(V) as the unique element inV2

𝑁
satisfying

∫
Ω2

𝑏L
2
(V) 𝑟d𝑥 =

𝑁−1

∑

𝑗=𝑁/2+1

𝑏 (𝑥
𝑗
) [V2 (𝑥

𝑗
)] 𝑟 (𝑥

+

𝑗
)

− 𝑏 (𝜆) 𝑟 (𝜆
+
) (V1 (𝜆) − V2 (𝜆+)) ,

(24)

for all 𝑟 ∈ V2
𝑁
.

Following [19], using the lifting operators L
1
(⋅) and

L
2
(⋅), the flux form FEM/LDG coupled method (13)–(15)

with numerical fluxes (17)–(19) can be rewritten as the primal
form: find 𝑈

𝑁
∈ V
𝑁
such that

A
𝑁
(𝑈
𝑁
, V) := B

𝑁
(𝑈
𝑁
, V) +C

𝑁
(𝑈
𝑁
, V)

+S
𝑁
(𝑈
𝑁
, V) = F

𝑁
(V) , ∀V ∈ V

𝑁
,

(25)

with

B
𝑁
(𝑤, V) = ∫

Ω

𝜀 (𝑤
󸀠
+L
1
(𝑤)) (V󸀠 +L

1
(V)) d𝑥,

F
𝑁
(V) = ∫

Ω

𝑓Vd𝑥,

C
𝑁
(𝑤, V) = ∫

Ω

𝑏𝑤 (V󸀠 +L
2
(V)) d𝑥 + ∫

Ω

(𝑐 + 𝑏
󸀠
)𝑤Vd𝑥,

S
𝑁
(𝑤, V) =

𝑁−1

∑

𝑗=𝑁/2+1

𝜀𝛼 [𝑤
2
(𝑥
𝑗
)] [V2 (𝑥

𝑗
)]

+ 𝜀𝛼𝑤
2
(1
−
) V2 (1−)

+ 𝜀𝛼 (𝑤
1

(𝜆) − 𝑤
2
(𝜆
+
))

× (V1 (𝜆) − V2 (𝜆+)) .
(26)

Here,L
1
(⋅) andL

2
(⋅) have been defined in 𝐿2(Ω) by a trivial

extension.
From the following lemma, the primal formulation is

consistent.

Lemma 3. Let 𝑢 be the exact solution of the problems (10) and
(11). Then the primal form (25) has the Galerkin orthogonality
property

A
𝑁
(𝑢 − 𝑈

𝑁
, V) = 0, ∀V ∈ V

𝑁
. (27)

Proof. The proof is similar to Lemma 3.1 in [19].

Stability Analysis. To consider the stability of the primal form
A
𝑁
, we define the following norms and seminorms for V ∈

V(𝑁):

|‖V‖|2
𝜀
= ‖V‖2
0,Ω

+ 𝜀|V|2
1,𝑁

+ 𝜀|V|2
∗
+ |V|2
𝑐
,

|V|2
1,𝑁

=
󵄩󵄩󵄩󵄩󵄩󵄩
(V1)
󸀠󵄩󵄩󵄩󵄩󵄩󵄩

2

0,Ω1

+

𝑁

∑

𝑗=𝑁/2+1

󵄩󵄩󵄩󵄩󵄩󵄩
(V2)
󸀠󵄩󵄩󵄩󵄩󵄩󵄩

2

0,𝐼𝑗

,

|V|2
∗
=

𝑁−1

∑

𝑗=𝑁/2+1

𝛼[V2(𝑥
𝑗
)]
2

+ 𝛼(V2(1−))
2

+ 𝛼(V1(𝜆) − V2(𝜆+))
2

,

|V|2
𝑐
=
1

2

𝑁−1

∑

𝑗=𝑁/2+1

𝑏 (𝑥
𝑗
) [V2(𝑥

𝑗
)]
2

+
1

2
𝑏 (1) (V2(1−))

2

+
1

2
𝑏 (𝜆) (V1 (𝜆) − V2 (𝜆+))

2

,

(28)

where ‖ ⋅ ‖
0,𝐷

is the usual Sobolev norm defined on region𝐷.
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According to [25] (page 422), when the coefficient 𝛼 =

O(𝐻−1), there exists a constant 𝐶 > 0, such that
󵄩󵄩󵄩󵄩L1(V)

󵄩󵄩󵄩󵄩0,Ω ≤ 𝐶|V|
∗
, V ∈ V (𝑁) . (29)

Lemma 4. If 𝛼 = O(1/𝐻), there exists a constant 𝐶 > 0, such
that

A
𝑁
(V, V) ≥ 𝐶|‖V‖|2

𝜀
, ∀V ∈ V

𝑁
. (30)

Proof. The proof is similar to Lemma 3.2 in [19].

From Lemma 4, we easily get
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢𝑁

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩0,Ω, (31)

which implies the uniqueness of the solution to (25). Further,
since (25) is a linear problem over the finite-dimensional
space V

𝑁
, the existence of the solution follows from its

uniqueness. Consequently, by (23), we get the existence and
uniqueness of the solution to the problem (13)–(15) with
numerical fluxes (17)–(19).

Remark 5. In fact, following [25] or [8], for any 𝛼 ≥ 0, we
can prove the existence and uniqueness of the solution to
the problem (13)–(15) with numerical fluxes (17)–(19). In this
paper, we are only interested in the special case 𝛼 = O(𝐻−1).

Error Analysis. We are now going to provide a 𝜀-uniform
estimate for the error 𝑢 − 𝑈

𝑁
in the norm (28). The error

analysis presented in this paper relies on a priori estimate of
the exact solution of (1) and a special interpolation which was
firstly introduced in [26].

Lemma6 (see [27, Lemma 1.9]). Let 𝑞 be some positive integer.
Consider the boundary value problem (1) with the assumption
of (2). Its exact solution 𝑢 can be composed as 𝑢 = 𝑆+𝐸, where
the smooth part S and the layer part 𝐸 satisfy

−𝜀𝑆
󸀠󸀠
− 𝑏𝑆
󸀠
+ 𝑐𝑆 = 𝑓,

−𝜀𝐸
󸀠󸀠
− 𝑏𝐸
󸀠
+ 𝑐𝐸 = 0,

(32)

󵄨󵄨󵄨󵄨󵄨
𝑆
(𝑙)

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶,

󵄨󵄨󵄨󵄨󵄨
𝐸
(𝑙)

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝜀
−𝑙 exp(−

𝛽𝑥

𝜀
)

𝑓𝑜𝑟 0 ≤ 𝑙 ≤ 𝑞.

(33)

Next we introduce a special interpolant in [26] that will be
useful later. On each element 𝐾 = [𝑥

𝑗−1
, 𝑥
𝑗
], we define 𝑘 + 1

nodal functionalsN
𝑙
by

N
0
(𝑤) = 𝑤 (𝑥

𝑗−1
) , N

𝑘
(𝑤) = 𝑤 (𝑥

𝑗
) ,

N
𝑙
(𝑤) =

1

(𝑥
𝑗
− 𝑥
𝑗−1
)
𝑙
∫

𝑥𝑗

𝑥𝑗−1

(𝑥 − 𝑥
𝑗−1
)
𝑙−1

𝑤 (𝑥) d𝑥,

𝑙 = 1, . . . , 𝑘 − 1.

(34)

Now a local interpolationI
𝐾
𝑤 |∈ P𝑘(𝐾) is defined by

N
𝑙
(I
𝐾
𝑤 − 𝑤) = 0, 𝑙 = 0, . . . , 𝑘, (35)

which can be extended to a continuous global interpolation
I𝑤 ∈ V

𝑁
via set

I𝑤|
𝐾
= I
𝐾
𝑤, ∀𝐾 ∈ T

𝑁
. (36)

Obviously, if 𝑘 = 1, this special interpolation is just the
Lagrange linear interpolation.

The following error estimate is adapted from Lemma 7 of
[26].

Lemma 7. The special interpolant has the following properties:

((𝑤 −I𝑤)
󸀠
, V󸀠
𝑁
)
𝐾
= 0, ∀V

𝑁
∈ V
𝑁
,

|𝑤 −I𝑤|
𝑙,𝐾

≤ 𝐶ℎ
𝑘+1−𝑙

𝐾
|𝑤|
𝑘+1,𝐾

,

𝑙 = 0, 1, . . . , 𝑘 + 1, ∀𝑤 ∈ 𝐻
𝑘+1

(𝐾) ,

‖𝑤 −I𝑤‖
𝐿
∞
(𝐾)

≤ 𝐶ℎ
𝑘+1

𝐾
|𝑤|
𝑘+1,∞,𝐾

,

∀𝑤 ∈ 𝑊
𝑘+1,∞

(𝐾) ,

(37)

where𝐾 is any element of partitionTN and ℎ
𝐾
is the length of

element 𝐾.

Lemma 8. Assume that the piecewise differential mesh-
generating function𝜙 satisfies (6). Let the exact solution𝑢 = 𝑆+

𝐸 of the problem (1) be decomposed into a smooth and layered
part, respectively, I𝑆 and I𝐸 are the interpolants of 𝑆 and 𝐸
on a 𝑆-type mesh respectively. Then, one has I𝑢 = I𝑆 +I𝐸

and the estimates

‖𝑢 −I𝑢‖
𝐿
∞
(Ω𝑖)

≤ {
𝐶(𝑁
−1max |𝜓󸀠|)

𝑘+1

if 𝑖 = 1,

𝐶𝑁
−(𝑘+1) if 𝑖 = 2,

(38)

‖𝑢 −I𝑢‖
𝐿
2
(Ω)

≤ 𝐶(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

, (39)

|𝑆 −I𝑆|
1,Ω

≤ 𝐶𝑁
−𝑘
, (40)

|𝐸 −I𝐸|
1,Ω1

≤ 𝐶𝜀
−1/2

(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘

, (41)

|𝐸 −I𝐸|
1,Ω2

≤ 𝐶𝑁
−(𝑘+1)

. (42)

Proof. Our proof is based on arguments given by Tobiska
[26].The linearity of the interpolation operator impliesI𝑢 =

I(𝑆 + 𝐸) = I𝑆 +I𝐸.
(i)The proof of (38): by Lemma 1, Lemma 7, and (33), we

have

‖𝑆 −I𝑆‖
𝐿
∞
(Ω)

≤ 𝐶𝑁
−(𝑘+1)

, (43)

‖𝐸 −I𝐸‖
𝐿
∞
(𝐼𝑗)

≤ 𝐶ℎ
𝑘+1

𝑗
|𝐸|
𝑘+1,∞,𝐼𝑗

≤ 𝐶ℎ
𝑘+1

𝑗
⋅ 𝜀
−(𝑘+1) exp(−

𝛽𝑥
𝑗−1

𝜀
)

≤ 𝐶(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

,

(44)
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for any 𝐼
𝑗
= [𝑥
𝑗−1
, 𝑥
𝑗
] ⊂ Ω

1
. Hence, we obtain

‖𝐸 −I𝐸‖
𝐿
∞
(Ω1)

≤ 𝐶(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

. (45)

From (33), we get

‖𝐸‖
𝐿
∞
(Ω2)

≤ 𝐶max
𝑥∈[𝜆,1]

exp(−
𝛽𝑥

𝜀
)

= 𝐶 exp(−
𝛽𝜆

𝜀
) ≤ 𝐶𝑁

−(𝑘+1.5)
.

(46)

Consider the element 𝐾 = [𝑥
𝑗−1
, 𝑥
𝑗
] ⊂ Ω

2
. The local nodal

functional can be estimated by

󵄨󵄨󵄨󵄨𝑁𝑖 (𝐸)
󵄨󵄨󵄨󵄨 ≤ 𝐶 exp(−

𝛽𝑥
𝑗−1

𝜀
) ; (47)

thus, we have from the local representation,

I𝐸|
𝐾
=

𝑘

∑

𝑖=0

𝑁
𝑖
(𝐸) 𝜑
𝑖
, (48)

the estimate

‖I𝐸‖
𝐿
∞
(𝐾)

≤

𝑘

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑁𝑖 (𝐸)
󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩𝜑𝑖

󵄩󵄩󵄩󵄩𝐿∞(𝐾) ≤ 𝐶 exp(−
𝛽𝑥
𝑗−1

𝜀
)

≤ 𝐶 exp(−
𝛽𝜆

𝜀
) ≤ 𝐶𝑁

−(𝑘+1.5)
,

(49)

where we used ‖𝜑
𝑖
‖
𝐿
∞
(𝐾)

≤ 𝐶, 𝜑
𝑖
are basis functions on

element 𝐾. And then, we obtain ‖I𝐸‖
𝐿
∞
(Ω2)

≤ 𝐶𝑁
−(𝑘+1.5).

Combining this with (46), we get

‖𝐸 −I𝐸‖
𝐿
∞
(Ω2)

≤ ‖𝐸‖
𝐿
∞
(Ω2)

+ ‖I𝐸‖
𝐿
∞
(Ω2)

≤ 𝐶𝑁
−(𝑘+1.5)

.

(50)

Collecting (43), (45), and (50), we conclude

‖𝑢 −I𝑢‖
𝐿
∞
(Ω𝑖)

≤ ‖𝑆 −I𝑆‖
𝐿
∞
(Ω𝑖)

+ ‖𝐸 −I𝐸‖
𝐿
∞
(Ω𝑖)

≤ ‖𝑆 −I𝑆‖
𝐿
∞
(Ω)

+ ‖𝐸 −I𝐸‖
𝐿
∞
(Ω𝑖)

≤

{{

{{

{

𝐶(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠
󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

, if 𝑖 = 1,

𝐶𝑁
−(𝑘+1)

, if 𝑖 = 2.

(51)

(ii) The proof of (39): by (38), we easily get

‖𝑢 −I𝑢‖
𝐿
2
(Ω)

≤ ‖𝑢 −I𝑢‖
𝐿
∞
(Ω)

⋅ |Ω|
1/2

≤ 𝐶(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

.

(52)

(iii) The proof of (40): by Lemma 1, Lemma 7, and (33),
we easily obtain

|𝑆 −I𝑆|
1,Ω

≤ 𝐶𝑁
−𝑘
. (53)

(iv) The proof of (41): let 𝑥
𝑗−1/2

= (𝑥
𝑗
+ 𝑥
𝑗−1
)/2. Then on

the fine part of the mesh, we have
󵄨󵄨󵄨󵄨𝐸 − 𝐸𝐼

󵄨󵄨󵄨󵄨
2

1,𝐼𝑗

≤ 𝐶ℎ
2𝑘

𝑗
|𝐸|
2

𝑘+1,𝐼𝑗

≤ 𝐶ℎ
2𝑘

𝑗
𝜀
−(2𝑘+1)

(exp(−
2𝛽𝑥
𝑗−1

𝜀
) − exp(−

2𝛽𝑥
𝑗

𝜀
))

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

exp(
2𝑘𝛽𝑥
𝑗

(𝑘 + 1.5) 𝜀
)

× sinh(
𝛽ℎ
𝑗

𝜀
) exp(−

2𝛽𝑥
𝑗−1/2

𝜀
) ,

(54)

where we have used Lemma 7 and (7). From (9) we get ℎ
𝑗
/𝜀 ≤

𝐶, and therefore sinh(𝛽ℎ
𝑗
/𝜀) ≤ 𝐶𝛽ℎ

𝑗
/𝜀 for 𝑗 = 1, . . . , 𝑁/2.

The representation

𝛽ℎ
𝑗

𝜀
= 𝛼∫

𝑡𝑗

𝑡𝑗−1

𝜙
󸀠

(𝑡) d𝑡 for 𝑗 = 1, . . . ,
𝑁

2
(55)

yields
󵄨󵄨󵄨󵄨𝐸 − 𝐸𝐼

󵄨󵄨󵄨󵄨
2

1,𝐼𝑗

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

exp(
2𝑘𝛽𝑥
𝑗

(𝑘 + 1.5) 𝜀
)

× ∫

𝑡𝑗

𝑡𝑗−1

−𝜓
󸀠
(𝑡)

𝜓 (𝑡)
d𝑡 exp(−

2𝛽𝑥
𝑗−1/2

𝜀
)

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

exp(
2𝑘𝛽𝑥
𝑗

(𝑘 + 1.5) 𝜀
)

1

𝜓 (𝑡
𝑗
)

× ∫

𝑡𝑗

𝑡𝑗−1

−𝜓
󸀠

(𝑡) d𝑡 exp(−
2𝛽𝑥
𝑗−1/2

𝜀
)

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

∫

𝑡𝑗

𝑡𝑗−1

−𝜓
󸀠

(𝑡) d𝑡 exp(
𝛽ℎ
𝑗

𝜀
)

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

∫

𝑡𝑗

𝑡𝑗−1

−𝜓
󸀠

(𝑡) d𝑡,

(56)

since 𝜓 > 0, 𝜓󸀠 ≤ 0 and exp(𝛽ℎ
𝑗
/𝜀) ≤ 𝐶 by (9). We sum the

overall subintervals in the layer region to get

󵄨󵄨󵄨󵄨𝐸 − 𝐸𝐼
󵄨󵄨󵄨󵄨
2

1,Ω1

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

(𝜓 (0) − 𝜓(
1

2
))

≤ 𝐶𝜀
−1
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
2𝑘

,

(57)

where 𝜓(0) = 1 and 𝜓(1/2) = 1/𝑁 are used.
(v) The proof of (42): by triangle inequality

|𝐸 −I𝐸|
1,Ω2

≤ |𝐸|
1,Ω2

+ |I𝐸|
1,Ω2

, (58)
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we estimate |𝐸|
1,Ω2

and |I𝐸|
1,Ω2

, respectively. From (33), we
obtain

|𝐸|
1,Ω2

≤ 𝐶(∫

1

𝜆

𝜀
−2 exp(−

2𝛽𝑥

𝜀
) d𝑥)

1/2

≤ 𝐶𝜀
−1/2 exp(−

𝛽𝜆

𝜀
)

≤ 𝐶𝜀
−1/2

𝑁
−(𝑘+1.5)

.

(59)

An inverse inequality yields
|I𝐸|
1,Ω2

≤ 𝐶𝑁‖I𝐸‖
𝐿
2
(Ω2)

, (60)
and it remains to bound ‖I𝐸‖

𝐿
2
(Ω2)

. Consider the element
𝐾 = [𝑥

𝑗−1
, 𝑥
𝑗
] ⊂ Ω

2
. From local representation of I𝐸|

𝐾
, it

follows

‖I𝐸‖
𝐿
2
(𝐾)

≤

𝑘

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑁𝑖 (𝐸)
󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩𝜑𝑖

󵄩󵄩󵄩󵄩𝐿2(𝐾)

≤ 𝐶𝑁
−1/2 exp(−

𝛽𝑥
𝑗−1

𝜀
) ,

(61)

where we used ‖𝜑
𝑖
‖
𝐿
2
(𝐾)

≤ 𝐶𝑁
−1/2

‖𝜑
𝑖
‖
𝐿
2
(𝐾̂)

≤ 𝐶𝑁
−1/2. Here

𝐾̂ is the reference element of𝐾 and 𝜑
𝑖
are the basis functions

on 𝐾̂. Summing up we get

‖I𝐸‖
2

𝐿
2
(Ω2)

= ∑

𝐾⊂Ω2

‖I𝐸‖
2

𝐿
2
(𝐾)

≤ 𝐶𝑁
−1

𝑁

∑

𝑗=𝑁/2+1

exp(−
2𝛽𝑥
𝑗−1

𝜀
) .

(62)

Recall that themesh size on the coarsemesh has been denoted
by𝐻 and satisfies 1/𝑁 ≤ 𝐻 ≤ 2/𝑁. Integrating the inequality

exp(−
2𝛽𝑥
𝑗−1

𝜀
) = exp(

2𝛽𝐻

𝜀
) exp(−

2𝛽𝑥
𝑗

𝜀
)

≤ exp(
2𝛽𝐻

𝜀
) exp(−

2𝛽𝑥

𝜀
)

for 𝑥 ∈ [𝑥
𝑗−1
, 𝑥
𝑗
]

(63)

over (𝑥
𝑗−1
, 𝑥
𝑗
) and summing up for 𝑗 = 𝑁/2 + 2, . . . , 𝑁, we

obtain

𝑁
−1 exp(−

2𝛽𝑥
𝑗−1

𝜀
) ≤ exp(

2𝛽𝐻

𝜀
)∫

𝑥𝑗

𝑥𝑗−1

exp(−
2𝛽𝑥

𝜀
) d𝑥,

𝑁
−1

𝑁

∑

𝑗=𝑁/2+2

exp(−
2𝛽𝑥
𝑗−1

𝜀
)

≤ exp(
2𝛽𝐻

𝜀
)∫

1

𝑥𝑁/2+1

exp(−
2𝛽𝑥

𝜀
) d𝑥

≤ 𝜀 exp(
2𝛽𝐻

𝜀
) exp(−

2𝛽𝑥
𝑁/2+1

𝜀
) d𝑥

≤ 𝐶𝜀𝑁
−2(𝑘+1.5)

.

(64)

Therefore, we get

‖I𝐸‖
2

𝐿
2
(Ω2)

≤ 𝐶𝑁
−1 exp(−

2𝛽𝑥
𝑁/2

𝜀
) + 𝐶𝜀𝑁

−2(𝑘+1.5)

≤ 𝐶 (𝑁
−1
+ 𝜀)𝑁

−2(𝑘+1.5)
.

(65)

And then, we have

|I𝐸|
1,Ω2

≤ 𝐶𝑁(𝑁
−1
+ 𝜀)
1/2

𝑁
−(𝑘+1.5)

≤ 𝐶𝑁
−(𝑘+1)

. (66)

Combining this with (59), we conclude (42).

The following statement is the direct consequence of
Lemma 8.

Theorem 9. Under the conditions of Lemma 8, one has 𝜂 =

𝑢 −I𝑢 satisfies

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀 ≤ 𝐶(𝑁

−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘

, (67)

for S-type mesh.

Proof. Since 𝑢−I𝑢 is continuous inΩ, we have |𝜂|
∗
= 0 and

|𝜂|
𝑐
= 0. Then, |‖𝜂‖|2

𝜀
= ‖𝜂‖
2

0,Ω
+ 𝜀|𝜂|

2

1,𝑁
. From (40), (41), and

(42) of Lemma 8, we obtain

𝜀
1/2

|𝑢 −I𝑢|
1,Ω

≤ 𝜀
1/2

(|𝑆 −I𝑆|
1,Ω

+ |𝐸 −I𝐸|
1,Ω1

+ |𝐸 −I𝐸|
1,Ω2

)

≤ 𝐶(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘

.

(68)

Using this together with (39), we easily conclude the result of
Theorem 9.

Now we turn to estimate |‖𝜉‖|
𝜀
.

Lemma 10. Under the conditions of Lemma 8, one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝑆 −I𝑆) 𝜉
󸀠 d 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑁

−(𝑘+1/2)󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀, (69)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝐸 −I𝐸) 𝜉
󸀠 d 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐶
𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1/2󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀,

(70)

where 𝐶
𝜓
:= 1 + (𝑁

−1max |𝜓󸀠| ln𝑁)1/2.

Proof. (i) The proof of (69): by Lemma 8 and integrating by
parts, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝑆 −I𝑆) 𝜉
󸀠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝑆 −I𝑆‖
𝐿
∞
(Ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑗=1

∫
𝐼𝑗

𝑏𝜉
󸀠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑁
−(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑗=1

[(𝑏𝜉) (𝑥
−

𝑗
) − (𝑏𝜉) (𝑥

+

𝑗−1
)] − ∫

Ω

𝑏
󸀠
𝜉d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ 𝐶𝑁
−(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑗=1

[(𝑏𝜉) (𝑥
−

𝑗
) − (𝑏𝜉) (𝑥

+

𝑗−1
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐶𝑁
−(𝑘+1)󵄩󵄩󵄩󵄩󵄩

𝑏
󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐿2(Ω).

(71)
Recalling that 𝜉 = I𝑢 − 𝑈

𝑁
is continuous in Ω

1
, we have

[𝜉(𝑥
𝑗
)] = 0, 𝑗 = 0, . . . , 𝑁/2 − 1. And then,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑗=1

[(𝑏𝜉) (𝑥
−

𝑗
) − (𝑏𝜉) (𝑥

+

𝑗−1
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑏 (𝑥
0
)
󵄨󵄨󵄨󵄨𝜉 (𝑥
+

0
)
󵄨󵄨󵄨󵄨

+

𝑁−1

∑

𝑗=1

𝑏 (𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨
[𝜉 (𝑥
𝑗
)]
󵄨󵄨󵄨󵄨󵄨
+ 𝑏 (𝑥

−

𝑁
)
󵄨󵄨󵄨󵄨𝜉 (𝑥
−

𝑁
)
󵄨󵄨󵄨󵄨

=

𝑁−1

∑

𝑗=𝑁/2

𝑏 (𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨
[𝜉 (𝑥
𝑗
)]
󵄨󵄨󵄨󵄨󵄨
+ 𝑏 (𝑥

−

𝑁
)
󵄨󵄨󵄨󵄨𝜉 (𝑥
−

𝑁
)
󵄨󵄨󵄨󵄨

≤ (

𝑁

∑

𝑗=𝑁/2

𝑏 (𝑥
𝑗
))

1/2

× (

𝑁−1

∑

𝑗=𝑁/2

𝑏(𝑥
𝑗
)[𝜉 (𝑥

𝑗
)]
2

+ 𝑏(𝑥
−

𝑁
)𝜉(𝑥
−

𝑁
)
2

)

1/2

≤ 𝐶𝑁
1/2󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨𝑐.

(72)

Combining this with (71), we can easily get (69).
(ii) The proof of (70): by Cauchy-Schwarz inequality,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝐸 −I𝐸) 𝜉
󸀠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶‖𝐸 −I𝐸‖

𝐿
2
(Ω1)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨1,Ω1

+ 𝐶‖𝐸 −I𝐸‖
𝐿
2
(Ω2)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨1,Ω2

,

(73)

where by Lemma 7,

‖𝐸 −I𝐸‖
𝐿
2
(Ω1)

≤
󵄨󵄨󵄨󵄨Ω1

󵄨󵄨󵄨󵄨
1/2

‖𝐸 −I𝐸‖
𝐿
∞
(Ω1)

≤ 𝐶(𝜀 ln𝑁)1/2(𝑁−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

,

(74)

and from (33), (65),
‖𝐸 −I𝐸‖

𝐿
2
(Ω2)

≤ ‖𝐸‖
𝐿
2
(Ω2)

+ ‖I𝐸‖
𝐿
2
(Ω2)

≤ 𝐶𝜀
1/2
𝑁
−(𝑘+1)

+ 𝐶 (𝑁
−1/2

+ 𝜀
1/2
)𝑁
−(𝑘+1.5)

≤ 𝐶 (𝜀
1/2
𝑁
−(𝑘+1)

+ 𝑁
−(𝑘+2)

) .

(75)

Thus, we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝐸 −I𝐸) 𝜉
󸀠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝜀
1/2

[(ln𝑁)1/2(𝑁−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

+ 𝑁
−(𝑘+1)

]
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨1,Ω

+ 𝐶𝑁
−(𝑘+2)󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨1,Ω2

≤ 𝐶[(ln𝑁)1/2(𝑁−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

+ 𝑁
−(𝑘+1)

]

×
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀 + 𝐶𝑁

−(𝑘+2)
⋅ 𝑁

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐿2(Ω2)

≤ 𝐶[(ln𝑁)1/2(𝑁−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1

+ 𝑁
−(𝑘+1)

]
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀

≤ 𝐶𝐶
𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1/2󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀,

(76)

where 𝐶
𝜓
:= 1 + (𝑁

−1max |𝜓󸀠| ln𝑁)1/2.

Remark 11. The factor 𝐶
𝜓
is bounded by a constant for all

meshes listed in Table 1. But there also exists counterexample
that𝐶

𝜓
increases with the increasing of𝑁; see [21] for details.

Theorem 12. Under the conditions of Lemma 8. Assuming 𝛼 =
O(1/𝐻), then 𝜉 = I𝑢 − 𝑈

𝑁
satisfies

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀 ≤ 𝐶𝐶

𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1/2

. (77)

Proof. By Lemma 3 and Lemma 4, we first obtain

𝐶
1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨
2

𝜀
≤ A
𝑁
(𝜉, 𝜉) = −A

𝑁
(𝜂, 𝜉)

= −B
𝑁
(𝜂, 𝜉) −C

𝑁
(𝜂, 𝜉) −S

𝑁
(𝜂, 𝜉) .

(78)

By the definition of I𝑢, we have 𝜂(𝑥
𝑗
) = 0, 𝑗 = 0, 1, . . . , 𝑁.

Consequently,

B
𝑁
(𝜂, 𝜉) = ∫

Ω

𝜀𝜂
󸀠
(𝜉
󸀠
+L
1
(𝜉)) d𝑥,

C
𝑁
(𝜂, 𝜉) = ∫

Ω

𝑏𝜂𝜉
󸀠d𝑥

+ ∫
Ω

(𝑐 + 𝑏
󸀠
) 𝜂𝜉d𝑥 ≡ 𝐼

1
+ 𝐼
2
,

S
𝑁
(𝜂, 𝜉) = 0.

(79)

Firstly, we consider the term B
𝑁
(𝜂, 𝜉). By Lemma 7,

Lemma 8, and (29), we have

󵄨󵄨󵄨󵄨B𝑁 (𝜂, 𝜉)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
Ω2

𝜀𝜂
󸀠
L
1
(𝜉) d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝜀
󵄩󵄩󵄩󵄩󵄩
𝜂
󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(Ω2)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨∗

≤ 𝐶𝜀
1/2

(|𝑆 −I𝑆|
1,Ω2

+ |𝐸 −I𝐸|
1,Ω2

)
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀

≤ 𝐶𝜀
1/2
𝑁
−𝑘󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀.

(80)

Now consider the termC
𝑁
(𝜂, 𝜉). By Lemma 10, we get

󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝑆 −I𝑆) 𝜉
󸀠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑏 (𝐸 −I𝐸) 𝜉
󸀠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 [𝑁
−(𝑘+1/2)

+ 𝐶
𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1/2

]
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀

≤ 𝐶𝐶
𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1/2󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀.

(81)

By (39), the second term in the right hand side of (79) can be
easily estimated with

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 ≤ 𝐶

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩0,Ω

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩0,Ω ≤ 𝐶(𝑁

−1max 󵄨󵄨󵄨󵄨󵄨𝜓
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀.

(82)
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Table 1: Some examples of mesh-generating and mesh-characterizing functions of S-type meshes.

Name 𝜙(𝑡) max𝜙󸀠 𝜓(𝑡) max |𝜓󸀠|
S-mesh 2𝑡 ln𝑁 2 ln𝑁 𝑁

−2𝑡
2 ln𝑁

B-S mesh − ln(1 − 2𝑡(1 − 1/𝑁)) 2𝑁 1 − 2𝑡(1 − 1/𝑁) 2
Polynomial S-mesh (2𝑡)

𝑚 ln𝑁 2𝑚 ln𝑁 𝑁
−(2𝑡)
𝑚

𝐶(ln𝑁)1/𝑚

Modified B-S mesh 𝑡/(𝑞 − 𝑡), 𝑞 = 1/2(1 + 1/ ln𝑁) 3ln2𝑁 𝑒
−𝑡/(𝑞−𝑡)

3/(2𝑞) ≤ 3

Table 2: History of convergence of the FEM/LDG coupled method, 𝜀 = 10
−6.

𝑘 𝑁

|‖𝑢 − 𝑢
𝑁
‖|
𝜀

|‖𝑢
𝐼
− 𝑢
𝑁
‖|
𝜀

S-mesh B-S mesh S-mesh B-S mesh
Error ln-ord Error ord Error ln-ord Error ord

1

16 2.060𝑒 − 01 — 9.204𝑒 − 02 — 3.539𝑒 − 02 — 6.912𝑒 − 03 —
32 1.304𝑒 − 01 0.97 4.750𝑒 − 02 0.95 1.429𝑒 − 02 1.93 2.069𝑒 − 03 1.74
64 7.868𝑒 − 02 0.99 2.412𝑒 − 02 0.98 5.217𝑒 − 03 1.97 6.378𝑒 − 04 1.70
128 4.599𝑒 − 02 1.00 1.216𝑒 − 02 0.99 1.785𝑒 − 03 1.99 2.051𝑒 − 04 1.64
256 2.630𝑒 − 02 1.00 6.101𝑒 − 03 1.00 5.846𝑒 − 04 2.00 6.845𝑒 − 05 1.58
512 1.480𝑒 − 02 1.00 3.057𝑒 − 03 1.00 1.854𝑒 − 04 2.00 2.344𝑒 − 05 1.55

2

16 4.230𝑒 − 02 — 8.054𝑒 − 03 — 6.413𝑒 − 03 — 7.305𝑒 − 04 —
32 1.740𝑒 − 02 1.89 2.151𝑒 − 03 1.90 1.681𝑒 − 03 2.85 1.022𝑒 − 04 2.84
64 6.406𝑒 − 03 1.96 5.553𝑒 − 04 1.95 3.744𝑒 − 04 2.94 1.360𝑒 − 05 2.91
128 2.198𝑒 − 03 1.98 1.410𝑒 − 04 1.98 7.518𝑒 − 05 2.98 1.777𝑒 − 06 2.94
256 7.199𝑒 − 04 1.99 3.554𝑒 − 05 1.99 1.409𝑒 − 05 2.99 2.325𝑒 − 07 2.93
512 2.280𝑒 − 04 2.00 8.919𝑒 − 06 1.99 2.510𝑒 − 06 3.00 3.267𝑒 − 08 2.83

This, combined with (81), yields

󵄨󵄨󵄨󵄨C𝑁 (𝜂, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐶

𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘+1/2󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀.

(83)

Collecting (78), (80), and (83), we concludeTheorem 12.

Remark 13. Uniform convergence of higher order LDG
method on 2D Shishkin-mesh was considered in [15]. From
Theorem 3.1 of [15], a similar result can be obtained as our
Theorem 12. From Theorem 3.1 and Remark 3.3 of [15], we
can find the following conditions must hold: 0 ≤ 𝐶

11
≤ O(1)

onE or 0 ≤ 𝐶
11
≤ O(𝑁) onE𝐵

+
and 𝐶

11
= 0 onE \E𝐵

+
. Here

𝐶
11
is a parameter in the definition of numerical fluxes, and

E, E𝐵
+
are unions of some edges of elements. In our paper, a

parameter 𝛼 in (18), which plays the same role as 𝐶
11
, takes

value as 𝛼 = O(1/𝐻). This does not fulfill the condition of
Theorem 3.1 of [15].

The combination of Theorem 9 and Theorem 12 leads to
our main results directly, that is, the following.

Theorem 14. Let 𝑢 and 𝑈
𝑁
be the solutions of the continu-

ous problem (10) and the discrete problem (25), respectively.
Assume that the piecewise differential mesh-generating func-
tion 𝜙 satisfies (6). Taking 𝛼 = O(1/𝐻), then

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢 − 𝑈𝑁

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀 ≤ 𝐶𝐶

𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘

. (84)

Corollary 15. Let (𝑄
𝑁
, 𝑈
𝑁
) be the solution obtained by the

coupled method (13)–(15) with numerical fluxes (17)–(19).
Under the assumption of Theorem 14, one has

󵄨󵄨󵄨󵄨𝑞 − 𝑄𝑁, 𝑢 − 𝑈𝑁
󵄨󵄨󵄨󵄨A𝑁

≤ 𝐶𝐶
𝜓
(𝑁
−1max 󵄨󵄨󵄨󵄨󵄨𝜓

󸀠󵄨󵄨󵄨󵄨󵄨
)
𝑘

, (85)

where |(⋅, ⋅)|A𝑁 is a problem-related norm defined by

|(𝑟, V)|2A𝑁 = ‖V‖2
0,Ω

+ 𝜀‖𝑟‖
2

0,Ω2
+ 𝜀

󵄩󵄩󵄩󵄩󵄩󵄩
(V1)
󸀠󵄩󵄩󵄩󵄩󵄩󵄩

2

0,Ω1

+ 𝜀|V|2
∗
+ |V|2
𝑐
.

(86)

Proof. From (23), we have 𝑞 − 𝑄
𝑁
= (𝑢
2
− 𝑈
2

𝑁
)
󸀠

− L
1
(𝑈
𝑁
).

Since L
1
(𝑢) = 0, we obtain 𝑞 − 𝑄

𝑁
= (𝑢
2
− 𝑈
2

𝑁
)
󸀠

+L
1
(𝑢 −

𝑈
𝑁
). In terms of (29), we conclude |(𝑞 − 𝑄

𝑁
, 𝑢 − 𝑈

𝑁
)|A𝑁

≤

𝐶|‖𝑢 − 𝑈
𝑁
‖|
𝜀
, which implies the conclusion.

4. Numerical Experiments

In this section, we numerically verify the sharpness of our
theoretical findings. In our numerical experiments, we take
𝛼 = 1/𝐻, 𝛽 = 1/2 in (17) and (18).

Example 16. We solve the model problem (1) with 𝑏 = 3 − 𝑥,
𝑐 = 1, and taking 𝑓 such that the exact solution is

𝑢 (𝑥) = (1 − 𝑒
−2𝑥/𝜀

) sin (1 − 𝑥) , (87)

which exhibits a boundary layer with the width O(𝜀 ln(1/𝜀))
at the outflow boundary 𝑥 = 0.

In the following, “ln-ord” denotes the exponent 𝑟 in a
convergence order of the form O((𝑁−1 ln𝑁)𝑟), while “ord”
denotes the exponent 𝑟 in a convergence order of the form
O(𝑁−𝑟).

The errors |‖𝑢 − 𝑢
𝑁
‖|
𝜀
and |‖𝑢

𝐼
− 𝑢
𝑁
‖|
𝜀
for the FEM/LDG

coupled method with higher order 𝑘th elements are shown
in Table 2. We have chosen 𝜀 = 10

−6 in our calculations on
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S-meshes and B-S meshes. From Table 2, we observe that the
numerical results for |‖𝑢 − 𝑢

𝑁
‖|
𝜀
agree with those predicted

in Theorem 14. Note that the closeness errors |‖𝑢
𝐼
− 𝑢
𝑁
‖|
𝜀

have a supercloseness property of order 𝑘+1 if 𝑘th polynomial
is used. This phenomenon indicates that the supercloseness
result of order 𝑘 + 1/2 proved inTheorem 12 is not optimal.
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