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The domestic and overseas studies of redundant multifeatures and noise in dimension reduction are insufficient, and the efficiency
and accuracy are low. Dimensionality reduction and optimization of characteristic parameter model based on improved kernel
independent component analysis are proposed in this paper; the independent primitives are obtained byKICA (kernel independent
component analysis) algorithm to construct an independent group subspace, while using 2DPCA (2D principal component
analysis) algorithm to complete the second order related to data and further reduce the dimension in the abovemethod.Meanwhile,
the optimization effect evaluation method based on Amari error and average correlation degree is presented in this paper.
Comparative simulation experiments show that the Amari error is less than 6%, the average correlation degree is stable at 97% or
more, and the parameter optimizationmethod can effectively reduce the dimension of multidimensional characteristic parameters.

1. Introduction

As a result of technological advances, the data object which
needed to be processed is becoming more and more complex
[1–3], and the data dimension is higher and higher. The
feature space of multidimensional data usually contains
many redundant features even noise characteristics that will
increase learning, training time, and the space complexity,
which reduce the accuracy of the analysis process. Therefore,
before analyzing the multidimensional data, we should carry
out the dimension reduction preprocessing.

Combined with dimension reduction technique of prin-
cipal component analysis and blind source separation tech-
nique of independent component analysis, [4] proposed a
dimensional reduction method for multidimensional mixed-
signal characteristics, known as the PCA-ICAmethod. Refer-
ence [5] proposed a fused dimensional reduction algorithm
based on 2DPCA and ICA; it can be used for vehicle
recognition combined with the supported vector machine
model. Reference [6] proposed data dimensional reduction
method based on principal component analysis and kernel

independent component analysis (KICA), used for reduction
processing for signals like mechanical vibration. Reference
[7] proposed a linear data dimensional reduction method
based on two-step adaptive process. It is adaptive for dif-
ferent types of data dimensional reduction process, but its
performance needs to be further improvedwhen dealingwith
data sets with more and stronger abnormal data. Reference
[8] proposed data dimensional reduction method based on
related-statistics. It has strong dimension reduction stability
so it can substitute other dimensional reduction methods
in some cases. However, since the introduction of the new
parameter, thismethod needed to be validated in a larger data
set.

In a certain degree, those methods presented above can
realize dimensional reduction process to the multidimen-
sional characteristic signal in a specific range of redundancy
and noise, but when there are many characteristic redun-
dancies or noise data, its efficiency and accuracy need to be
further optimized.

Based on the analysis above, the paper proposed a
reduction method of multidimensional image characteristics
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based on improved KICA. In this method, the indepen-
dent parameters are obtained by KICA (kernel independent
component analysis) algorithm to construct an independent
group subspace, while using 2DPCA (2D principal compo-
nent analysis) algorithm to complete the removal of related
second order and further reduce the dimension. Meanwhile,
this paper presents a dimension reduction effect evaluation
method based on the average Amari error and correlation as
the evaluation criteria.

2. Dimensional Reduction Algorithm Based on
Improved KICA Model

2.1. The Basic Principles of the Model. KICA method [9] is
a new independent component analysis method based on
“kernel skills,” which is amultivariate data processingmethod
based on higher-order statistics. It can decompose the image
signal into a number of relatively independent components,
which can be used for feature extraction and image recog-
nition of the target images. However, this method fails to
effectively reduce the dimension and noise when multidi-
mensional feature parameter contains certain abnormal data
and redundancy (Figure 2).

2DPCAalgorithm [10, 11] is based on the traditional linear
data dimensional reduction method: the PCA algorithm,
but this method does not need to convert image matrix
into vector and can directly use the two-dimensional image
matrix to solve covariance matrix. So compared with PCA
method, 2DPCA algorithm simplifies the calculation of the
eigenvalues and eigenvectors, retaining the structure infor-
mation of the image, and therefore significantly improves
computational efficiency and shortens the computation time,
with better capability of noise-removing and dimensional
reduction.

Based on the analysis above, this paper will combine
2PCA with KICA in order to realize dimension reduction of
multidimensional characteristic parameters, which is called
the 2PCA-KICA method. This method obtains the indepen-
dent parameters of multidimensional characteristics to con-
struct an independent group subspace using KICA (kernel
independent principal component analysis) algorithm, while
using 2DPCA (2D principal component analysis) algorithm
to complete the removal of related second order and further
reduce the dimension, in order to project multidimensional
signal feature samples onto a low-dimensional independent-
based space, and then realize effective dimensional reduction
of the multidimensional characteristics parameters. This
method can not only extract main signal from multidimen-
sional characteristics sample signal, but can also approxi-
mately estimate the source signal and effectively balance the
efficiency and immunity.

The KICA method consists of two contrast functions:
KCCA (kernel canonical correlation analysis) and KGV
(kernel generalized variance). Correspondingly, the 2DPCA-
KICA method can also be divided into 2DPCA-KCCA
algorithm and 2DPCA-KGV algorithm.The overall flowchart
of the algorithm is shown in Figure 1.

2.2. Analysis of the Optimization Process of Characteristic Pa-
rameters. Assume that the sample matrix Y of multidimen-
sional signal characteristic is a d × Nmatrix:

Y =
[
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So, we can get the mathematical model of 2DPCA-KICA
dimensional reduction method process as follows:

Φ : R𝑑 → F. (2)

By projection Φ, project the multidimensional feature
signal sample in 𝑑-dimensional space into 𝑚-dimensional
feature space F (𝑚 < 𝑑). The 2DPCA-KICA dimensional
reduction process can be divided into two steps.

Step 1. 2DPCA Dimensional Reduction. Reduce 𝑑-dimen-
sional data into𝑚-dimensional data by projectionΨ

1
: R𝑑 →

R𝑚.

Step 2. KICA Projection. Project 𝑚-dimensional data into
feature space by projection Ψ

2
: R𝑚 → F, utilize the kernel

idea which estimates the source signals in the feature space F,
and construct an independent group subspace.

The concrete progress of Step 2 will be described in
2DPCA-KICA algorithm in the next section. Now the
progress of Step 1 is shown below.

(1) Calculate the average of the training sample matrix:

𝑥 =

1

𝑀

𝑀

∑
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𝑥
𝑖
, (3)

where 𝑥
𝑖
∈ 𝑌
𝑑×𝑁 is the training samples and𝑀 is the number

of training samples (𝑀 < 𝑁).
(2)Calculate the covariancematrix of the training sample

matrix:
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(3) PCA calculation of training samples is as follows.
Calculate the characteristic value𝜆
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𝑑], so we can get
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where Λ represents diagonal matrix consisting of eigenval-
ues:

Λ =

[
[
[

[
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. (6)

(4) Determine the projection matrix as follows.
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Figure 1: The flowchart of multidimensional characteristic parameter optimization.
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Figure 2: Multidimensional feature hybrid tree architecture based on multiangles.

Select the corresponding orthonormal eigenvectors of the
larger feature value in the first𝑚 values in step (3) to construct
a vector group 𝑈

𝑚
and make it as the projection matrix:

𝑈
𝑚
= [𝑢1

𝑢
2
⋅ ⋅ ⋅ 𝑢
𝑚] . (7)

(5) Calculate the projection features of training samples:

𝑋
𝑚
= (𝑥
𝑖
− 𝑥)𝑈

𝑚
, (8)

where 𝑋
𝑚

∈ 𝑌
𝑚×𝑁 is the projection feature of training

samples, expressed as𝑋
𝑚
= [𝑦1

𝑦
2
⋅ ⋅ ⋅ 𝑦
𝑚].

2.3. Dimensional Reduction Algorithm Progress of Multidi-
mensional Feature Architecture. For the convenience of the
dimension reduction and error comparison of the character-
istic parameters, we usually assumed Y as the sample matrix
after centralization.

Specific steps are as follows.

Step 1. Sample signal matrix of standardized multidimen-
sional characteristics

Y =QY. (9)
In the above formula, Q is the inverse of the square root for
sample covariance matrix of Y.

Step 2. Calculate the characteristics values 𝜆
1
, . . . , 𝜆

𝑑
of

the sample covariance matrix of Y and the corresponding
eigenvectors C = (e

1
, . . . , e

𝑑
), where the eigenvalues are

arranged in descending order.

Step 3. Determine the remaining number 𝑚 of primary
elements based on the PCA selection criteria of 2DPCA and
calculate the former𝑚 primary elements, expressed as

Y
2DPCA = YC

𝑚
= 𝑄YC

𝑚
. (10)

In the above formula, C
𝑚
= (e
1
, . . . , e

𝑚
) is the transpose

of the matrix composed of the former 𝑚 feature vector
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and Y
2DPCA is the new matrix composed of the former pri-

mary elements after dimensional reduction of Y by 2DPCA
method.

Step 4. Perform whitening process to YPCA; we get

Y
2DPCA = PY

2DPCA. (11)

In the above formula, P is the whitening transforma-
tion matrix; Y

2DPCA is the whitened matrix of Y
2DPCA,

𝐸{Y
2DPCAY𝑇2DPCA} = I, where I is a unit matrix.

Step 5. Select the kernel function𝐾(𝑥, 𝑦) (this paper chooses
Gaussian radial basis function exp(−‖𝑥 − 𝑦‖2/2𝜎2)), depend-
ing on the KICA algorithm (KCCA or KGV). Determine the
contrast function 𝐶(W) and gradually search the unmixed
matrixW by the minimized contrast function.

Step 6. Estimate the source signals which is called the in-
dependent-based subspace based on unmixed matrix, it is
expressed as below:

Ŷ =WY
2DPCA =WPY

2DPCA =WKCCAY2DPCA. (12)

Or

Ŷ =WY
2DPCA =WPY

2DPCA =WKGVY2DPCA. (13)

In the above formula,WKCCA andWKGV are the unmixed
matrixes obtained, respectively, by using theKCCAalgorithm
and KGV algorithm. Ŷ is the independent-based matrix.

3. Simulation Results and Analysis

3.1. Evaluation Method for the Effect of Parameter Optimiza-
tion. The last section describes the proposed parameters
optimizing method based on improved KICA algorithm.
In order to compare with the proposed PCA, 2DPCA and
PCA-ICA and 2DPCA-ICA algorithm [12, 13], and verify the
correctness of the proposed algorithm in this paper, we need
to compare the effects of dimensional reduction.This section
compares two standards of comparison of the dimensional
reduction effect. The comparative results will be specifically
described in detail in the analysis of the experiment.

(1) The Amari Error. Amari error represents the similarity
between two matrices, and it can be used to measure the
accuracy of the estimated value of the matrix [14]. Therefore,
when mixing matrix and unmixed matrix are known, we
can compare different dimension reduction effects of dimen-
sional reduction methods by calculating the Amari error
between mixing matrix and unmixed matrix.

The Amari error between the matrixV and the matrixW
is defined as follows:
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In the above formula, 𝑎
𝑖𝑗
= (VW−1)

𝑖𝑗
. While the value

of 𝑑(V,W) is smaller, the difference between the matrix V
and the matrixW is smaller. Only when 𝑑(V,W) = 0 are the
matrix V and the matrixW the same.

For linear mixed-signal matrix, the Amari error between
equivalent mixing matrix and unmixed matrix can effec-
tively measure the dimensional reduction effect of different
methods. However, for nonlinear mixed signal matrix, we
cannot find the equivalent mixing matrix V. So, we cannot
use the Amari error criterion to compare different effects of
different dimensional reduction methods when dealing with
nonlinearmixed signals. As a result, this paper introduces the
conception of correlation.

(2) The Correlation and Relevancy. The correlation [15] is
used to indicate the degree of linear correlation between two
random variables, so it can be used to describe the correlation
between sample characteristics parameters. For the charac-
teristic data after dimension reduction X = (x

1
, x
2
, . . . , x

𝑚
)
𝑇

and the estimated characteristic data X̂ = (x̂
1
, x̂
2
, . . . , x̂

𝑚
)
𝑇,

their correlation is described as follows:
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𝑖
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𝑖
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Then we get the following judgment.

(1) When 𝜌 > 0, x
𝑖
and x̂
𝑖
have the same trends.

(2) When 𝜌 < 0, x
𝑖
and x̂
𝑖
have the converse trends.

(3) When 𝜌 = 0, x
𝑖
and x̂
𝑖
are not relevant.

According to the characteristics of the correlation 𝜌,
we define the absolute value of the correlation as the mea-
surement of the correlation metrics between two data. It is
expressed as follows:

𝜅 (x
𝑖
, x̂
𝑖
) =





𝜌 (x
𝑖
, x̂
𝑖
)





(𝑖 = 1, 2, . . . , 𝑚) . (16)

It is called the single signal.
When comparing the correlation degree between the two

signal matrices, we can use the availability of correlation
between 𝑚 source signals and the estimated signal as a
standard; it is expressed as follows:

𝐾(X, X̂) = 1

𝑚

𝑚

∑

𝑖=1

𝜅 (x
𝑖
, x̂
𝑖
) . (17)

It is called the average correlation.This paper will use the
average correlation to compare different dimension reduction
effects of different dimensional reduction methods when
dealing with multidimensional feature signal matrix (linear
or nonlinear).

3.2. Experimental Procedure andAnalysis. This paper is based
on the multiangle feature recognition. The experimental
sample data consists of 300 different models of 30 car brands
including Volkswagen, Hyundai, GM, Audi, DongFeng, Nis-
san, Honda, and Toyota. In order to reduce errors caused by
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Table 1: Different dimension reduction results of dimensional reduction methods for multidimensional feature samples.

PCA 2DPCA PCA-ICA PCA-KICA 2DPCA-KCCA 2DPCA-KGV
𝜅
1

0.9347 0.9441 0.9236 0.9329 0.9707 0.9729
𝜅
2

0.9422 0.9511 0.9450 0.9430 0.9722 0.9830
𝜅
3

0.9478 0.9563 0.9499 0.9563 0.9698 0.9763
𝜅
4

0.9507 0.9427 0.9506 0.9581 0.9507 0.9881
𝜅
5

0.9469 0.9505 0.9789 0.9505 0.9669 0.9805
𝜅
6

0.9589 0.9609 0.9635 0.9576 0.9789 0.9776
𝜅
7

0.9267 0.9118 0.9288 0.9332 0.9767 0.9832
𝜅
8

0.9321 0.9209 0.9167 0.9289 0.9821 0.9889
𝜅
9

0.9233 0.9473 0.9273 0.9207 0.9733 0.9707
𝜅
10

0.9017 0.9101 0.9119 0.9244 0.9817 0.9844
𝐾 0.9365 0.9396 0.9397 0.9406 0.9723 0.9806
Amari 0.0898 0.0763 0.0824 0.0707 0.0523 0.0387

Table 2: Different dimension reduction effects of dimensional reduction methods for multidimensional feature samples.

PCA 2DPCA PCA-ICA PCA-KICA 2DPCA-KCCA 2DPCA-KGV
Running time (s) 3.421 2.857 2.809 1.734 1.336 1.255

image capture, we selected 30 groups of samples from each
brand, and we get totally 9000 groups. Select any 15 groups
of images from each of the above models, mixed signals 4500
samples as the training samples and the remaining samples
as the test sample. Each model feature chooses an initial set
of 36 parameters, with loss of the generality. The following
parameters dimensional reduction is calculated based on 30
sets of the view from the front, side, and tail of theVolkswagen
Bora 1.4𝑇models. To othermodels, we use similarmethod to
get similar conclusions.

The experimental environment is a PC of Intel core
i5-2430M 2.4GHz CPU, 2GB DDR, Windows 7 OS. The
software is Matlab 2010a. Since the video sequence can be
treated as a seamless overlay ofmultiple static images, in order
to simplify the amount of data, the paper test images were
taken by a static shot.

Respectively, we use PCA, 2DPCA, PCA-ICA, PCA-
KICA, and improved KICA (including 2DPCA-KCCA and
2DPCA-KGV) methods to realize dimensional reduction for
the original multidimensional characteristics signal Y

(30×36)
.

Calculate the estimated signals and the single signal corre-
lation, the average correlation, and the Amari error between
the original signal and the estimated signals.

In this paper, the improved algorithm is used to reduce
dimension for the original multidimensional feature data; the
finally selected number of the optimal PCA is 10. They are,
respectively, labeled as 𝜅

𝑖
(𝑖 = 1, 2, . . . , 10),𝐾, andAmari.The

results are shown in Table 1.We compare different dimension
reduction effects of dimensional reduction methods for
multidimensional feature samples. The results are shown in
Table 2.

To reduce the volatility of the results of dimensional
reduction, the paper presents a more objective comparative
evaluation to two kinds of dimensional reduction evaluation
criteria. We carry out 𝑛 times of dimensional reduction pro-
cess to the originalmultidimensional feature signal. Calculate

the average correlation and Amari error, as shown in Tables 3
and 4.

The Amari error and the average correlation of the above
six dimensional reduction methods are labeled as follows:
Amari1, Amari2, Amari3, Amari4, Amari5, and Amari6 and
𝐾
1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
, and 𝐾

6
. Comparison of Amari errors

between Tables 1 and 3 shows that the effect of 2DPCA-KICA
is the best, in which 2DPCA-KGV is the optimal method;
comparison of the average correlations between Tables 1
and 4 shows that the effect of 2DPCA-KICA is the best, in
which 2DPCA-KGV is the optimal method. The conclusion
is consistent with the method which using Amari error as
the dimensional reduction evaluation criteria, so it is effective
to use average correlation as the dimensional reduction eval-
uation criteria. As shown in Table 2, dimensional reduction
method based on 2DPCA-KICA has the highest efficiency,
averagely saving 0.439 s compared to PCA-KICA model.

The comparison of the combined effect above shows
that the dimensional reduction method based on 2DPCA-
KICA proposed in this paper has higher accuracy, less errors,
and faster operational efficiency, which proved the scientific
validity of the improved model in this paper.

4. Conclusion

This paper studies and analyzes the reductionmethod ofmul-
tidimensional feature based on 2DPCA-KICA. It has the fol-
lowing innovations and benefits: firstly, it effectively balances
the dimensional reduction efficiency and the processing
accuracy. It canmeet the need ofmultidimensional reduction
under various circumstances of redundancy or noise, with a
strong robustness; secondly, it proposes a dimensional reduc-
tion evaluation method using Amari error and the average
correlation as the evaluation criteria. Simulation results show
that the method has better dimensional reduction, meeting
the real-time requirements. In the next step, we will focus on
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Table 3: The comparison of the average Amari errors.

𝑛 PCA 2DPCA PCA-ICA PCA-KICA 2DPCA-KCCA 2DPCA-KGV
20 0.0868 0.0744 0.0784 0.0651 0.0483 0.0357
40 0.0908 0.0772 0.0893 0.0787 0.0590 0.0405
60 0.0886 0.0753 0.0817 0.0737 0.0538 0.0393

Table 4: The comparison of the average correlations.

𝑛 PCA 2DPCA PCA-ICA PCA-KICA 2DPCA-KCCA 2DPCA-KGV
20 0.9261 0.9269 0.9295 0.9366 0.9721 0.9754
40 0.9437 0.9499 0.9492 0.9459 0.9784 0.9836
60 0.9359 0.9387 0.9373 0.9432 0.9740 0.9817

researching an excellent classification in order to improve the
algorithm applied in specific classification model.
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