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We propose two iterative algorithms for finding a common element of the set of solutions of finite generalized mixed equilibrium
problems, the set of solutions of finite variational inclusions for maximal monotone and inverse strong monotone mappings, and
the set of common fixed points of infinite nonexpansive mappings and an asymptotically x-strict pseudocontractive mapping in
the intermediate sense in a real Hilbert space. We prove some strong and weak convergence theorems for the proposed iterative

algorithms under suitable conditions.

1. Introduction

Let H be a real Hilbert space with inner product {,-) and
norm |- |, let C be a nonempty closed convex subset of H, and
let P be the metric projection of H onto C. Let S : C — C
be a self-mapping on C. Fix(S) is the set of fixed points of S
and R is the set of all real numbers. We recall that a mapping
A : C — H is said to be L-Lipschitz continuous, if there
exists a constant L > 0 such that

[Ax - Ay| <L|x-y|, Vx,yeC. (1)

If L = 1, then A is called a nonexpansive mapping and if L €
[0, 1), then A is called a contraction. We also let I denote the
identity operator on the Hilbert space H.

Let ¢ : C — R be a real-valued function, let A :
C — H be a nonlinear mapping, andlet F: C x C — R
be a bifunction. The generalized mixed equilibrium problem
(GMEP) introduced in [1] is to find x € C such that

F(x,9)+9(y)-9x) +(Ax,y-x) 20, VyeC. (2)

We denote the set of solutions of GMEP (2) by
GMEP(F, ¢, A). The GMEP covers many problems [2-
6] as special cases and has been extensively studied recently.

Throughout this paper, we assume as in [1] that F : C x
C — Risa bifunction satisfying conditions (Al)-(A4) and

¢ : C — Risalower semicontinuous and convex function
with restriction (B1) or (B2), where

(Al) F(x,x) =0, forall x € C;
(A2) F is monotone; that is, F(x, y) + F(y,x) < 0, for any

x,y €GC;
(A3) F is upper-hemicontinuous; that is, for each x, y,z €
C)
limsupF (tz+(1-t)x,y) < F(x,y); 3)
t—0*

(A4) F(x,-) is convex and lower semicontinuous, for each
x €C;

(B1) for each x € H and r > 0, there exists a bounded
subset D, ¢ Cand y, € C such that, for any z €
C\D,,

Fap) +0() 9@+ (nmzz-x) <0 (@)

(B2) C is a bounded set.

Next we list some elementary consequences for the mixed
equilibrium problem studied in [2] where MEP(F, ) is the
solution set.
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Proposition 1 (see [2]). Assume that F : C x C — R
satisfies (Al)-(A4) and let ¢ : C — R be a proper lower
semicontinuous and convex function. Assume that either (BI)
or (B2) holds. For r > 0 and x € H, define a mapping
TED . H — C as follows:

Tr(F«P) (x) = {z €C:F(z,y)+9(y)-¢(2)
1 (5)
+- (y-z,z-x) 20, V)/EC}’

or all x € H. Then the following hold:

for all Then the foll g hold
(i) for each x € H, Tr(F"”)(x) +0;
(ii) Tr(F ) i single-valued;

(iii) TV(F %) is firmly nonexpansive; that is, for any x, y € H,
(Fg) (Eg) 1% (Fg) (Fyg)
||Tr“’x—Tr"’y“ <(Tx-Ty,x-y);  (6)

(iv) Fix(T'5%)) = MEP(F, 9);
(v) MEP(F, @) is closed and convex.

Next, recall some concepts.

Definition 2. Let C be a nonempty subset of a normed space
X andletS: C — C be a self-mapping on C.

(i) S is asymptotically nonexpansive (see [7]), if there
exists a sequence {k,} of positive numbers satisfying
the property lim k, = land

n—oo0 'n

[8"x = S"y|| <k, |x-y|, Vn=1,Vx,yeC. (7)
(i) S is asymptotically nonexpansive in the intermediate
sense (see [8]) provided that S is uniformly continu-
ous and
limsup sup (||$"x - S8"y|| - |x - y[) < 0. )
,yeC

n—o00 x

(iii) S is uniformly Lipschitzian, if there exists a constant
& > 0 such that

[S"x ="y < Z|x-y], Vnz1vxyeC. (9)

It is clear that every nonexpansive mapping is asymptot-
ically nonexpansive and every asymptotically nonexpansive
mapping is uniformly Lipschitzian. Recently, Kim and Xu [9]
introduced the concept of asymptotically x-strict pseudocon-
tractive mappings in a Hilbert space as follows.

Definition 3. Let C be a nonempty subset of a Hilbert space
H. A mapping S : C — C is said to be an asymptotically «-
strict pseudocontractive mapping with sequence {y,}, if there
exist a constant k € [0, 1) and a sequence {y,} in [0, co) with
lim = 0 such that

n—)OOyn
I5" =S < (o) e+l -8 (- S

Vn>1, Vx,yeC.

(10)
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They studied weak and strong convergence theorems
for this class of mappings. It is important to note that
every asymptotically x-strict pseudocontractive mapping
with sequence {y,} is a uniformly Z-Lipschitzian mapping

with & = sup{(x + \1 + (1 —x)y,)/(1 +«) : n > 1}.

Recently, Sahu et al. [10] considered the concept of
asymptotically x-strict pseudocontractive mappings in the
intermediate sense, which are not necessarily Lipschitzian.

Definition 4. Let C be a nonempty subset of a Hilbert space
H. A mapping S : C — Cis said to be an asymptotically «-
strict pseudocontractive mapping in the intermediate sense
with sequence {y,}, if there exist a constant ¥ € [0,1) and a

sequence {y,} in [0, co) with lim, _, ¥, = 0 such that

lim sup sup ([|$"x = 8"y|* - (1 +7,) |x - y|*
n— 00 X,y€c (11)
—xfx-S"x - (y - Sn)’)"z) <O0.

Putc, := max{0, sup, ec(IS™x = "y’ ~(1+y,)llx - yl*-

Kllx — S"x — (y—S”y)IIZ)}. Then, ¢, > 0(Vn > 1),¢, —
0 (n — 00), and (11) reduces to the relation

87 = $"yIF < (14 9) =+ = 8" = (= S

+¢, Vnx1,Vx,yeC.
(12)

Whenever ¢, = 0, for all n > 1 in (12), then S is
an asymptotically «-strict pseudocontractive mapping with
sequence {y, }.

Let B be a single-valued mapping of C into H and R be a
multivalued mapping with domain D(R) = C. Consider the
following variational inclusion: find a point x € C such that

0 € Bx + Rx. (13)

We denote by I(B, R) the solution set of the variational inclu-
sion (13). In 1998, Huang [11] studied problem (13) in the case
where R is maximal monotone and B is strongly monotone
and Lipschitz continuous with D(R) = C = H. Subsequently,
Zeng et al. [12] further studied problem (13) in the case which
is more general than that in [11]. Moreover, the authors [12]
obtained the same strong convergence conclusion as in [11].
In addition, the authors also gave the geometric convergence
rate estimate for approximate solutions.

In this paper, inspired by the research work mentioned
above, we introduce two iterative algorithms for finding a
common element of the set of solutions of finite generalized
mixed equilibrium problems, the set of solutions of finite vari-
ational inclusions for maximal monotone and inverse strong
monotone mappings, and the set of common fixed points
of infinite nonexpansive mappings and an asymptotically «-
strict pseudocontractive mapping in the intermediate sense
in a real Hilbert space. We prove some strong and weak
convergence theorems for the proposed iterative algorithms
under mild conditions.
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2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. We use the notation x,, — x to indicate
that the sequence {x,} converges weakly to x and x, — x
to indicate that the sequence {x,} converges strongly to x.
Moreover, we use w,,(x,) to denote the weak w-limit set of
the sequence {x,,}; that is,

wUJ (xn)

= {x € H : x, — x for some subsequence {xni} of {xn}}.

(14)
Recall that a mapping A : C — H is called
(i) Monotone, if
(Ax- Ay, x—y) >0, Vx,yeGC; (15)

(ii) #-strongly monotone, if there exists a constant 7 > 0
such that

(Ax - Ay,x - y) 2 q|x—y|’, Vx,yeC  (16)

(iii) a-inverse strongly monotone, if there exists a constant
a > 0 such that

(Ax - Ay, x-y) 2z a|Ax - Ay, Vx,yeC. (17)

When A is an a-inverse strongly monotone mapping of C
into H, it is easy to see that A is (1/«)-Lipschitz continuous.
We also have that, for allu,v € Cand A > 0,

I - AA)u — (I - AA)Y|?

= lI(u = v) = AM(Au - Av)|?
(18)
= |lu—v|* = 2A (Au — Av,u — v) + A} Au — Av|)?

<lu=vI* + A (A = 2a) | Au — Av|.

So, if A < 2a, then I — AA is a nonexpansive mapping from C
to H.

The metric projection from H onto C is the mapping P :
H — C which assigns to each point x € H the unique point
Pox € C satisfying the property

v~ pexl = nf vl = 40 )

Some important properties of projections are listed in the
following proposition.

Proposition 5. For given x € H and z € C,
)z=Pxe({x-2,y-2)<0,VyeC
(i) z=Pex & |x—zI* < lx-yI> -y -zl Vy € G
(iii) (Pox — Py, x — ¥) = |Pox — Peyl, Vy € H.

Consequently, P is nonexpansive and monotone. It is easy
to see that the projection P is 1-ism.

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 6. Let X be a real inner product space. Then there
holds the following inequality:

e+ v’ <l +2(pnx+y), VeyeX.  (20)

Lemma 7. Let H be a real Hilbert space. Then the following
hold:
@) llx = ylI* = lxl* = IyI* = 2(x = y, y), for all x, y € H;

) IAx +py +vzl> = Mxl® + wlyl® + 2llzl® -
Aullx — y||2 —wly - z|? = Mlx - z||2,for allx, y,z €
Hand A, u,v € [0, 1] withA+u+v=1;

(c) if {x,} is a sequence in H such that x,, — x, it follows
that
. 2. 2 2
limsup||x, - y|” = limsup|x, — x| + |x-y|", VyeH.
n— 00 n— 00
(21)
Lemma 8 (see [10, Lemma 2.5]). Let H be a real Hilbert space.

Given a nonempty closed convex subset C of H and points
X, ¥,z € H and given also a real number a € R, the set

fveC:|ly— <lx-vI’+(zv) +a}  (22)
is convex and closed.

Lemma 9 (see [10, Lemma 2.6]). Let C be a nonempty subset
of a Hilbert space H and let S : C — C be an asymptotically
Kk-strict pseudocontractive mapping in the intermediate sense
with sequence {y,}. Then

[ = 8%

1
1-x«

< (= - -0 p) e P + 1 -03,),
(23)

<

forallx,y e Candn > 1.

Lemma 10 (see [10, Lemma 2.7]). Let C be a nonempty subset
of a Hilbert space H and let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense with sequence {y,}. Let {x,} be a
sequence in C such that ||x,,—x,,,| — 0and|x,-S"x,| — 0
asn — oo. Then ||x, — Sx,| — 0asn — oo.

Lemma 11 (demiclosedness principle [10, Proposition 3.1]).
Let C be a nonempty closed convex subset of a Hilbert space
Hand let S : C — C be a continuous asymptotically
Kk-strict pseudocontractive mapping in the intermediate sense
with sequence {y, }. Then IS is demiclosed at zero in the sense
that if {x,} is a sequence in C such that x, — x € C and
limsup,, _, Jlimsup, _, lIx, —S"x,ll = 0, then (I - S)x = 0.



Lemma 12 (see [10, Proposition 3.2]). Let C be a nonempty
closed convex subset of a Hilbert space H and let S : C —
C be a continuous asymptotically x-strict pseudocontractive
mapping in the intermediate sense with sequence {y,} such that
Fix(S) # 0. Then, Fix(S) is closed and convex.
Lemma 13 (see [13, page 80]). Let {a,}.;,{b,},o,, and
{6,,}72, be sequences of nonnegative real numbers satisfying the
inequality

Ay <(1+6,)a,+b, VYnx>1. (24)

Ify2,8, < coand Y2\ b, < oo, then lim,_, a, exists. If,
in addition, {a,},°, has a subsequence which converges to zero,
then lim a, =0.

n—00"n

Corollary 14 (see [14, page 303]). Let {a,},>, and {b,},>,
be two sequences of nonnegative real numbers satisfying the
inequality

a Vn > 0. (25)

n+1 <a,+ bn’

a, exists.

n—00"n

If Y22 b, converges, then lim

Recall that a Banach space X is said to satisty the Opial
condition [15], if for any given sequence {x,} < X which
converges weakly to an element x € X, there holds the
inequality

lim sup ||xn - x|| < lim sup ||xn - y“ , VyeX, y#x.
n— 00 n— 00
(26)

It is well known in [15] that every Hilbert space H satisfies the
Opial condition.

Lemma 15 (see [16, Proposition 3.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H and let {x,} be a
sequence in H. Suppose that

[nes = PP < L4 A,) |x,— pf 46, VpeConz1,
27)

where {A,} and {8, } are sequences of nonnegative real numbers
such that Y2/ A, < oo and Y268, < oo. Then {Pcx,}
converges strongly in C.

Lemma 16 (see [17]). Let C be a closed convex subset of a real
Hilbert space H. Let {x,} be a sequence in H and u € H. Let
q = Pou. If {x,} is such that w,(x,) C C and satisfies the
condition

%o —ull < lu-al, vm, (28)
then x, — qasn — ©o.

Let {T,}>’, be an infinite family of nonexpansive self-
mappings on C and let {1}, be a sequence of nonnegative
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numbers in [0, 1]. For any n > 1, define a self-mapping W, on
C as follows:
U,

el = I,

Un,n = AnTn(Jn,rHl + (1 - An) I’

Un,n—l = An—lTn—lUn,n + (1 - An—l) I’

Upi = MTiUppar + (1= A) L, (29)

Upp-1 = Mot T U + (1-Ae) L

Uno = AMThU, 5 + (1-1,)1
W,=U,, =AMT\U,,+(1-1))L

Such a mapping W, is called the W-mapping generated by
T,T, 1 ..., Tyand A, A, _q,...5 Ay

Lemma 17 (see [18, Lemma 3.2]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let {T,},°,
be a sequence of nonexpansive self-mappings on C such that
(o2, Fix(T,) # 0 and let {A,}} be a sequence in (0,b] for some
b e (0,1). Then, for every x € C and k > 1, the limit
lim, , U, ;x exists.

Utilizing Lemma 17, we can define a mappingW: H —
H as follows:

Wx = nleréoan = nlilréoUn,lx’ Vx € H. (30)

Such a W is called the W-mapping generated by T}, T,...
and Ay, A,,.... We remark that since W, is nonexpansive,
W:H — H is also nonexpansive.

Lemma 18 (see [18, Lemma 3.3]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let {T,},°,
be a sequence of nonexpansive self-mappings on C such that
Moy Fix(T,) #0, and let {A,,} be a sequence in (0, b), for some
b € (0,1). Then, Fix(W) = (2, Fix(T,).

Lemma 19 (see [19, demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then I -T is demiclosed.
That is, whenever {x,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges to
some y, it follows that (I - T)x = y.

Recall that a set-valued mapping R : D(R) ¢ H — 2
is called monotone, if, for all x,y € D(R), f € R(x), and
g € R(y), we have

(f-gx-y)=0. 31)

A set-valued mapping R is called maximal monotone, if R is
monotone and (I + AR)D(R) = H, for each A > 0. We denote
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by G(R) the graph of R. It is known that a monotone mapping
Ris maximal ifand only if, for (x, f) € HxH,{f-g,x—y) >
0, for every (y, g) € G(R), we have f € R(x).

Assume that R : D(R) ¢ H — 2 is a maximal
monotone mapping. Then, for A > 0, associated with R, the
resolvent operator Jj ; can be defined as

Jaax = (I +AR)'x, Vx e H. (32)

We have the following property for the resolvent operator
]R,/\ :H — D(R)

Lemma 20 (see [11]). Jy, is single-valued and firmly nonex-
pansive; that is,

Vx,y € H.
(33)

Jrax = Traysx = ¥) 2 |Jrax - ]R,)Ly”2>

Consequently, Ji,  is nonexpansive and monotone.

Lemma 21 (see [20]). Let R be a maximal monotone mapping
with D(R) = C. Then, for any given A > 0, u € C is a solution
of the variational inclusion: find a point x € C such that

0 € Bx + Rx, (34)
where B is a single-valued mapping of C into H if and only if
u € C satisfies

u=Jp, (u—ABu). (35)

Lemma 22 (see [12]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous, and single-valued mapping. Then, for each z € H,
the equation z € (B+AR)x has a unique solution x, , for A > 0.

Lemma 23 (see [20]). Let R be a maximal monotone mapping
with D(R) = Candlet B: C — H be a monotone, continuous,
and single-valued mapping. Then (I+AM(R+B))C = H, for each
A > 0. In this case, R + B is maximal monotone.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem for an
iterative algorithm for finding a common element of the set
of solutions of finite generalized mixed equilibrium problems,
the set of solutions of finite variational inclusions for maximal
monotone and inverse strong monotone mappings, and the
set of common fixed points of infinite nonexpansive map-
pings and asymptotically k-strict pseudocontractive mapping
§: C — Cin the intermediate sense in a real Hilbert space.
This iterative algorithm is based on the extragradient method
[21], Mann-type iterative method, and shrinking projection
method. For more recent related results, see [22] and the
references therein.

Theorem 24. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let M, N be two integers. Let F, be
a bifunction from C x C to R satisfying (Al)-(A4) and let
¢ : C — R U {+00} be a proper lower semicontinuous and

convex function, where k € {1,2,...,M}. Let R, : C — 2"
be a maximal monotone mapping and let A, : H — H and
B, : C — H be p-inverse strongly monotone and n;-inverse
strongly monotone, respectively, where k € {1,2,..., M} and
i € {1,2,...,N}. Let S C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense, for some 0 < k < 1, with sequence
{y.} < [0,00) such that lim,_, .y, = 0 and {c,} < [0,00)
such that lim,_, ¢, = 0. Let {T,},2, be a sequence of
nonexpansive self-mappings on C and let {A,} be a sequence
in (0,b] for some b € (0,1). Assume that F := (2, Fix(T,) N
N, GMEP(Fy, ¢, A) N(Y, I(B;, R;) N Fix(S) is nonempty
and bounded and that either (Bl) or (B2) holds. Let {«,}, {S3,},
and {68,} be sequences in [0, 1] such that o, + 3, < 1,0 <
a<a,<landx <96, <d < 1 Pick any x, € H and set
C, = C,x; = P x,. Let {x,} be a sequence generated by the
following algorithm:

un = Tr(;]j’(pM) (I - rM,nAM) Tr(;l\_/[l:’(pM_l)

x (I~ T(i’(”‘) (I-r

rM—l,nAM—l)"' r Al)xn’
2y = ]RN,/\NM (I - )‘N,nBN) IRN,I,/\N,Ln

x (I~ AN—I,nBN—l) e ]RI,AM (I- Al,nBl) Uy»

(36)
k,=08,z,+(1-8,)S"z,
Yn = (1 &, ﬁn) X, + ‘xnkn + :BanZn’
Coi = {z €C,: |y, - z||2 < lx, - z||2 + 6,,},

Xy = Po, X, V20,

where W,, is the W-mapping generated by (2.2), 6,, = y,A% +¢
and A, = supillx, — pll : p € F} < oco. Assume that the
following conditions hold:

(i) 0 < liminf,_, B, <limsup, _, (e, + f,) < L;
(i) Ay} € lapb] € (0,27), Vi € {1,2,..., N}
(111) {rk’n} C [ek, fk] C (0, Zyk), Vk € {1, 2,.. .,M}.

Then {x,} converges strongly to Ppx,,.

Proof. We divide the proof into several steps.

Step 1. First note that the defining inequality in C,, is equiva-
lent to the inequality

@(x-z).2) <l - el +6,. @)

So, by Lemma 8, C,, is closed and convex, for everyn > 1.
We next show that F ¢ C,, for alln > 1. Put

(Fk(/’k) (I e A )T(Fk 1Pr-1)
kon

k-1,n (38)
Fl 1
X (I -1 1Ak 1) (p)(I_rl,nAl)xn’
forallk € {1,2,...,M}andn > 1;
Q _]RA (I /‘m 1)]R11)L,1n
(39)
x (1=, 1aBi- D) Troay, (1_/\1,7131)’



foralli € {1,2,...,N}andn > 1, and (92 = Q?l = I, where I
is the identity mapping on H. Then we have that u, = ®x,
and z,, = QnN u,,. Suppose that F ¢ C, for some n > 1. Take
p € F arbitrarily. Then, from (18) and Proposition 1(iii), we
have

(Faps9ar) M-1
TrMI’\:,[ o (I - rM,nAM) ®n Xy

lun - pll =

1 (1 )00
= "(I = A ) @ﬁ/klxn ~(I=ryndnm) @ﬁ/PlP"

|

0", -0} ]

|

®(r)zxn - ®Op||

n

= [ = pll-
(40)

Similarly, we have
"Zn - p" = ||]RN,/\N,,[ (I - /\N,nBN) QnN_lun
TR (I - An,By) Qi\FIP"

= "(I =~ AnwBr) QnN_I”n - (I-An,By) Q,I:]_IP“

N-1 N-1
< o, - )

< "ngn - Q:P"
= [Ju, - pl-
(41)
Combining (40) and (41), we have
|z = pll < % - £l (42)
By Lemma 7(b), we deduce from (36) and (42) that
o = oI = 84z, = p) + (1 = 8,)(8"2, = P’

= Snuzn - pllz + (1 - (Sn) ”Snzn - P”z

-8,(1-6,) |z, - S"zn"2
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< S,z "+ (1-9,)
x [(1+ ) 2 = oI + xllz, = Szl + <]
=8,(1-8,) |2, = "z,
= [1+y,(1=8)] |z - 2l
+(1-0,) (=08,) |z, = S"z,|" + (1-3,)c,
< (1+7,) |z - oI’
+(1-6,)(k=0,) |z, - Sz +,
< (1+v) a2l + o (43)
It follows from (42), (43), and the convexity of || - I that
Iy, = 2I” = (1= @, = B,) (x, - p) + o, (k, -~ p)
+B, Wz, - p)|°
< (=, = B % - 2l + o Ik, = I
+ B Woz, - o
< (1-a, = B) %, - pl’
+ 0, ((1+9) |20 = 2I° +6.) + Bullzu — o
< (1-a, = B,) |x, - pl’
+ o, (14 9) |6 =PI + 6) + Ballx — oI
= (1-a,) |, - o
+ o, (1+9,) |, = 0l + )
= Jx = pI* + oyl — £l + i,
< = ol + vallxa - 2l + <,

< ||x,, - p"2 +0,. )
44

Hence, p € C,,,. This implies that F ¢ C,, for alln > 1.

n+l-
Step 2. We prove that ||x,, — k, || = Oasn — oo.

Indeed, let v = Ppx,. From x,, = P xpand v € F € C,,
we obtain
[, = x| < [lv = o] - (45)

This implies that {x,,} is bounded and, hence, {u,}, {z,}, {k,.},
and {y,} are also bounded. Since x,,,, € C,,, ¢ C, and x,, =
P, xo, we have

I, = %ol < [|%pe1 = %), VR > 1. (46)

Therefore, lim,, _, o [lx,, — x| exists. From x,, = P xg, x,,,; €
C,.1 € C,, by Proposition 5(ii) we obtain

s =25l < o = 0l = o — % (47)
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which implies
lim |x,,, - x,| = 0. (48)

n— 00

It follows from x,,,, € C,,,, that|y, — X, 17 < llx, = %, 17+
0,, and hence

”x” B y””2 <2 (“xﬂ - xn+1”2 + “xn+1 - J’n||2)
< 2o = X |” + % = X +6,)  (49)
=2 (2”xn - xn+1||2 + en) .

From (48) and lim 0, = 0, we have

n— 00
lim [x, - y,[ = 0. (50)

Also, utilizing Lemma 7(b), we obtain from (36), (42), and
(43) that

Iy = 2l = (1 = e, = B,) (= p) + 1, (K, = )
+ B W,z - p)|’

< (1-a, = B,) |, - plI” + ik, - oI
+BlWz, - ol
=B (1=, = B) [, ~ W,z

< (1-a, = B) |, - ol
+ o, [(1+ ) 2 = oI + 6] + Ballza - 2l
=B (1=, = B) [, - W,z

< (1-a,- )%, - ol
+ 0, [(1+9,) %0 = oI + 6] + Ballx = 2
B (1=, = B,) %, ~ Wz,

= (1 - an) “xn - P"2

2

+ o, [(1+3,) e = 2l + 6]

- B (1=, = B) %, - Wz |’
=[x, = I + pallx, = £l + s

B (1=, = B) [, - Wz |

< “xn - p"2 + en - ﬁn (1 0 ﬁn) “xn - annuz’

(51)
which, hence, yields
ﬁn (1 &, - /-;n) "xn - ann"2
< Joew = ol = Iy = 2l + 6, 2)

< "xn - yn" ("xn - P” * ”yn - p") + en'

Since, — Oand{x,},{y,} are bounded, it follows from (50)
and condition (i) that

lim ||xn - ann" =0. (53)

n— 00

Note that
=% = O (kg = X,) + By (W2, = %), (54)
which leads to
& ey = x| = |3 = %0 = B, (Woz, = x,)|

< “yn - xn“ + ﬁn ”ann - xn” (55)
< ||yn - xn“ + ”ann - xn” .
So, from (50), (53),and 0 < a < «,, < 1, we get
Jimlx, — k| = 0. (56)
Step 3. We prove that ||x,, — u,ll — 0, [|u, -z, — 0, |z, -

W,z,l — 0,and |z, - S"z,|| — 0Oasn — oo.
Indeed, from (42) and (43), it follows that

"kn - p"2 < [1 T Vu (1 - 871)] "zn - P"2
+ (1 - 6n) (K - 6n) "Zn - Snznuz + (1 - 6n) Cn
<z = oI + valzu - 2l + <
2 2
< ”Zﬂ - p” + yn”xn - P" TG

< ||zn - p||2 +0,. -
57

Next, we prove that

k k-1
0,x,-0, x,

lim | =0, k=1,2,...,M.  (58)
n—00

For p € F, it follows from (18) that

®}:rxn - P”Z =

(Fiopr) k-1
Trk’: (pk (I - rk,nAk) ®n Xn

2
- Tr(:f’%)(l - rk,nAk)p'l

< |t - r, A0 e, - (1= 1P|

< |®’;_1xn - p”2
+ Tiem (T = 244 ”AkG)Ionn - AkP”2
< %, - ol

+ T (T = 24k ”Ak@ﬁ_lxn - AkP|'2~
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By (40), (41), (57), and (59), we obtain

Ik = oI < Iz - 2l +6,
< Ju,— ol +6,

< ®I;xn - p"2 +0,

< = pI* + rip (rim — 201 '|Ak®]:l_1xn - AkP"2

+0,, (60)

which implies that

A0, - AkP“2

Tien (2 = )
< %, = pl* - Ik = pII* + 6, (61)

< |l = keall (s = 2l + e = ) + 6.

Since {r,} < lewfil < (0,2u), k € {1,2,..., M},
lim, _, .0, = 0, and (56), we have
. k-
Tim |40, %, — Agp| =0, k=12..,M.  (62)

By Proposition 1(iii) and Lemma 7(a), we have

okx, - ol

= “Tr(ffw(l ~ 1 ARO, X, = T =1 Ay) p“z
< {1~ riepAy) 51, — (1 - 1, A) p. O, ~ )
- (|- ra) @, - (= rpa) ol

+|0kx, - pf = (- reuds) ©F 7,
(-1t p - (@5, - p)[)
x, — o

a 2
o lxn —p" +

n

Y

~ Ok x, ~ ©Fx, ~ 11405, - A ).
(63)
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which implies that
&5, - o
<fer ol

- "@ﬁ_lxn - ®I;xn - rk,n(Ak(af;_lxn - AkP)H2

2

k-1 2 k-1 k
= "@n Xn _P" - ®n Xn _®n'xn

Al - Aol o

k-1 k k-1
+ 21y, (@' x, — Ox,, Oy ' X, — Arp)
k-1 2 k-1 k. |?
Y

k-1 k
+ 21,119, X, —0,x,

Ak@)]:flxn - AkP"
< |z, - pIf - 57" x, - ©Fx, |

+ 21’k’n

@I;Ixn - ®an Ak@)ﬁ*lxn - Akp" .
Combining (57) and (64), we have
Ik, - ol

< ||Zn _p“2 +6n

< u, - p||2 +0,
< 6%, o[ +6,

_ 2
< |lx, = pl* - @5 "x, - O, |

k-1 k
+ 21,19, x,-0,x,

| |Ax©5 "%, - Axp| + 6,
(65)
which implies
ok x, - &fx, |

< %, - plI* - Ik, - 2l
+21, |05 ' x, - O, || |Ax©) X, - Agp] +6,
< [l = Kall (1 = 2ll + Ik, = 2II)

+ 21, ”@Ifl_lxn - @:xn“ “Ak(al;_lxn - AkP“ +0,.
(66)

Fromlim,,_, .0, = 0, (56), and (62), we know that (58) holds.
Hence, we obtain

e — ] = '|®?lxﬂ - ®yxn"

0 1
< “@nxn -0,x,

1 2
+ “@nxn -0,x,

(67)
+o 4 “@nM_lxn - @nMxn

— 0 asn— oo.
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Next, we show that lim,, _, . |B;Q\u, — Bipll = 0,i =
1,2,..., N. It follows from Lemma 20 and (18) that

[0}~ o
= ”]Ri’/\i,n (I - Ai»"Bi)Q;_lun - ]Ri:/\i,n (I - /\i,nBi)p“z

< |- 280wy — (1=, Bp|f

i,n2i ini
S ”Qit_lun - p"Z + Ai,n (/\i,n - 2’71‘) "Bio‘il_lun - Bip"2
< Jlu, - P”2 + Aip (Aiy = 217;) ||BiQ:1_1u7l - Bz‘P”Z

<l = oI + Ai (i = 21) "BiQil_lun - BiP||2- (68)
Combining (57) and (68), we have

Ik, - |
< |z - p||2 +0,
< ]]Q;un - p“z +0,

< [t = I + A (i = 20) | B2 0, — Bip|* + 6,

which implies

Mo (20 = i) | B, ~ Bip
< I = 2I° = ko = 2I” + 6, (70)

< |l = keall (s = 2l + e = ) + 6.

From{A,,} C [a;,b] c (0,2;),i € {1,2,..., N}Llim,_, 0, =
0, and (56), we obtain

lim ||B, ', - B;p| =0,

n— 00

i=1,2,..,N. (71
By Lemmas 20 and 7(a), we obtain

; 2
Qnun - p“

= "]R,»,Ai)nU - Ai,nBi)‘Qi«z_lun —Jroa,, (- Ai,nBi)p"z

< <(I -\ B) Q;_lun - (I - Ai,nBi) ps Q;un - p>

i,ni

9

(Jx =8OR, — (= A, B + |, -

N | —

@ = A, B  u, — (1= A,,B)p - (u, - P>||2)

LNl L,n1

< ; (2w, - o + [, - off

- "Q;I”n - Q;“n - /\i,n(BiQiflun - BiP)”Z)
< 3 (b= oI + a0, - £
- "Qil_lun - ‘Qizun - /\i,n(BiQil_lun - Bip)”Z)

i 2
‘Qnun - P“

<3 (bl +
- "Qiz_lun - Q;un - /\i,n(BiQ;_lun - sz)|'2> > (72)
which implies

; 2
Qnun - P"

< [lx - ol
- ||Qi1_1un - Q;un - Ai,n(BiQiz_lun - sz)”2

= leu = I - 5w, -

(73)
. 2
- Ain||BiQ; lun - Bip"
+2A;, () u, - Qu,, BOS u, — Bip)
. -
< xw = oI = |20 1 — Q|
+21;, Qi:lun - Q;un BiQf;lun - B,-p" .
Combining (57) and (73), we get
I, - ol
< “zn - p”Z +0,
<||@u, - | +6, (74)
2

i-1 i
Q, u, - Qu,

< e - pl -

i-1 i
+21;, "Qn u, — Qnun"

B, u, - B,p| +6,,

which implies

Q! o 2
n un_ nun

S

+21;, Oy, - Qilun" "BiQTun - Bip" +0,
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< I = kall (1 = 21l + e, = 21)
+ 20 |, — Q| | B2,y — Bip] + 6,

From (56), (71), and lim 0, = 0, we have

n— 00
lim Q) 'u, - Qu,| =0, i=12...,N
=00 n “n n“*n > P R
From (76), we get

||un - zn" = “qun - QnNun“

0 1
< "Qnun - Qnun“ + ‘

ity = Q|
+ 4 "QnN_lun - Qf:]un”
— 0 asn— oo.
By (67) and (77), we have
= zul < e = 0] + s, = 2,
— 0 asn— oo.
From (48) and (78), we have
lznis = 2l < l2mis = Xnsr | + |00 = %
+]x, =z, — 0 asn— co.
By (56), (67), and (77), we get
o = 2ull < e =l + 1 = 20| + s = 2
— 0 asn— oo.
We observe that
kn =2, = (1-6,)(S"2, - 2,).
From §,, < d < 1 and (80), we have
Jim [[$"z, - z,[ = 0.
We note that

8"z, — Sz, < 52, = 2| + |20 = Zusa |

1
+ Sn+

Zp+l T Zp+1 “

n+1

n+1
STz, -S 2z,

+

From (79), (82), and Lemma 9, we obtain

lim “S”z,, 8§z, | =o.

n— 00

On the other hand, we note that

Iz, = Sz,|| < |2 = S"2,|| + |S"2, — S"*'2,,

+

n+1
Sz, — Szn” .

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(85)
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From (82), (84), and the uniform continuity of S, we have
nll)l‘lgo Hzn - Szn" =0. (86)
In addition, note that

Iz, = Wz, | < |20 = Woza| + W2, — Wz,

< 2w = x|l + %0 = Wza|| + Wz, - Wz, -

(87)
So, from (53), (78), and [4, Remark 3.2], it follows that
nh_,néo “Zn - Wzn” =0. (88)

Step 4. Finally we prove that x,, — v = Ppx,asn — 0o0.

Indeed, since {x,,} is bounded, there exists a subsequence
{xni} which converges weakly to some w. From (58) and (76)-
(78), we have that ®]:l,-xn,' — w, ‘Qnm,-un,' — w and z, — w,
where k € {1,2,...,M} and m € {1,2,...,N}. Since S is
uniformly continuous, by (86), we get lim,, _, |z, — $"z,Il =
0, for any m > 1. Hence, from Lemma 11, we obtain w €
Fix(S). In the meantime, utilizing Lemma 19, we deduce from
(88) and z, — w that w € Fix(W) = .2, Fix(T,,). Next,
we prove that w € ﬂﬂzl I(B,,, R,,). As a matter of fact, since
B,, is n,,-inverse strongly monotone, B,, is a monotone and
Lipschitz continuous mapping. It follows from Lemma 23 that
R,, + B,, is maximal monotone. Let (v,g) € G(R,, + B,,);
that is, g — B,,v € R, v. Again, since Q)'u, = Jroa, (I =
/lm’an)A'Z_lun, n>1,me{l,2,...,N}, we have

Q" — A, B, € (T4 4y, ,R,) Qs (89)
that is,
1 -1 -1
1 (0w, - Q'uy, = A,y B Q) € R, Q1.
m,n

(90)

In terms of the monotonicity of R,,,, we get

<v -Q'u,,g-B,v

1
—— (0w, - Qu, - AmmBanmlun)> >0
mmn
(91)
and, hence,
(v-/u, g)

> <v -Q"u,,B,,v

+

n

(Qmilun -QMu, - /\m’anQnmlun)>

m,n
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(= OB, = 8,0+ 8,0, B,

+/11 (Qnm_lun - Qnmun)>

mn

> (v—-Q'u,, B, Q'u, — B, Q0 'u,)

+ <v -y, % (Qnmflun - QTun)> . (92)

m,n

In particular,

<v - Qnm,.”n,-)9>

m m m-1
> (v-Qu,, B, O, - B,O0 )

1 _
+ <V— Qnmiun,»> 1 (QZ: 1uni B Qnmiu”i)> ’

m,n;

(93)

Since [y, — Q;"_lunll — 0 (due to (76)) and ||B,,,Q;'u,, —
B, Q7 'u,| — 0 (due to the Lipschitz continuity of B,,), we
conclude from Q;'funi — w and condition (ii) that

lim <v - Q:':uni,g> =(v-w,g) >0. (94)

It follows from the maximal monotonicity of B,, + R,
that 0 € (R, + B, w; that is, w € I(B,,R,).
Therefore, w € ﬂﬁzl I(B,;R,,). Next, we prove that
w € (L, GMEP(F,, ¢y, Ay). Since @fx, = Tie?(I -

rk)nAk)G)ﬁ_lxn, n>1ke{l,2,..., M}, wehave

F (08x, ) + 0 () — 91 (Ohx,,) + (A,05 ' x,,, y — Ohx,, )

+ L <y - @ﬁxn, @ﬁxn - @kilxn> > 0.

n

rk,n
(95)
By (A2), we have
o () - 0 (Ofix,) + (A8 'x, y - Ofx,)
(96)

1 _
+ r—(y - ®]:lxn, ®]:lxn - G)’; 1xn) > F (y, @I:lxn) .
k.o

Letz, =ty+(1-t)w, forallt € (0,1] and y € C. This implies
that z, € C. Then, we have

<zt - ®ﬁxn,Akzt>

2 @ (®lr€1xn> - i (z,) + <Zt - @ﬁxn, Akzt>

- (& - O)x, 4,0, 'x,)

k k-1

O'x, -0 x

k n n k

- <zt - Ofx,, 1Y L F (2, ©fx,)
Tk

1

= Pk (®l;xn) ~ Pk (zt) + <Zt - ®I;xn> Akzt - Ak®ﬁxn>

k k k-1
+ <zt -0,x,,A,0,x, - A0, xn>

OFx, -0 x
- <zt -0, M> +F, (zt, @ﬁxn) .

Tk
97)

By (58), we have IIAkG)flxn - Ak@)ﬁ_lxnll — O0asn — oo.
Furthermore, by the monotonicity of A, we obtain (z, —
@I;xn, Az, — AkG)flxn) > 0. Then, by (A4), we obtain

(2, —w, Arz) 2 9 (W) — @ (2,) + Fe (zow) . (98)
Utilizing (A1), (A4), and (98), we obtain
0= F(212) + ¢k (2) — 9 (21)
< tF (25, y) + (1 = 1) F (2, w) + tgp ()
+ (1= 1) g () =~ ¢ (2,)
< t[Fe (20 ) + o (9) = @u (2)] + (1= 1) (2, - w, Agzy)

= t[F (2 y) + 9 () = orc (2)] + A =)ty —w, Agzy),
(99)

and, hence,

0<F (2, 9) + o (¥) —r (2,) + (1 =) (y —w, Ayz,) .
(100)

Lettingt — 0, we have, for each y € C,

0<F (w, )+ ¢ (¥) - (W) + (y —w, Agw) . (101)

This implies that w € GMEP(F,, ¢, A;) and, hence,
w € M, GMEP(F,, ¢, A;). Consequently, w € F =
N2, Fix(T,,) N ek, GMEP(E, ¢, A) N o, I(B,, R,) N
Fix(S). This shows that w,({x,}) < F. From (45) and
Lemma 16, we infer that x, — v = Ppxyasn — oo. This
completes the proof. O

4. Weak Convergence Theorem

In this section, we prove a weak convergence theorem for
an iterative algorithm for finding a common element of the
set of solutions of the set of solutions of finite generalized
mixed equilibrium problems, the set of solutions of finite
variational inclusions for maximal monotone and inverse
strong monotone mappings, and the set of common fixed
points of infinite nonexpansive mappings and asymptotically
Kk-strict pseudocontractive mapping S : C — C in the
intermediate sense in a real Hilbert space. This iterative
algorithm is based on the extragradient method and Mann-
type iterative method.

Theorem 25. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let M, N be two integers. Let F, be
a bifunction from C x C to R satisfying (Al)-(A4) and let
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¢ : C — R U {+oo} be a proper lower semicontinuous
and convex function, where k € {1,2,...,M}. LetR; : C —
2" be a maximal monotone mapping and let A, : H —
H and B, C — H be p-inverse strongly monotone
and w;-inverse strongly monotone, respectively, where k €
{1,2,...,M},ie{l1,2,...,N}. Let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense, for some 0 < k < 1, with sequences
{y.} c [0,00) and {c,} < [0,00). Let {T,},2, be a sequence
of nonexpansive self-mappings on C and {A,,} be a sequence in
(0,b], for some b € (0,1). Assume that F = (2, Fix(T,) N
N, GMEP(Fy, ¢, Ay) N (Y, I(B;, R;) N Fix(8) is nonempty
and that either (B1) or (B2) holds. Let {«,},183,}, and {0,} be
sequences in [0, 1] such that «,, + 8, < 1,0 < a < «, < 1 and
k <6, <d < 1. Pickany x, € H and let {x,} be a sequence
generated by the following algorithm:

u = T(FM)(PM) (I _ rM,nAM) T(FM—l)(PM—l)

nT S, M1
X (I =1 Apr) Tr(fnp%) (I =rpAy) %,
2y = ]RN,)LN,,, (I - )‘N,nBN) ]RN,I,AN,M
x (I - /\N—l,nBN—l) e ]Rl,/\l’n (I- /\l,nBl) Uy,

k,=90,z,+(1-6,) 5"z,

(102)

Yn = (1 -0, ﬁn) Xp T “nkn + ﬁanzn’

where W, is the W-mapping generated by (2.2). Assume that
the following conditions hold:

(1) Y2y, <ooand Y2 ¢, < 00;
(ii) 0 < liminf, _, B, < limsup, _, («, + B,) < 1;
(iii) {A;,} < [a;,B] € (0,27,), Vi € {1,2,..., N}
(i) {1} € lews fid € (0,24), Vk € {1,2,..., M}.
Then, {x,} converges weakly to w = lim,, _,  Ppx,,.

Proof. First, let us show that lim x, — pll exists, for any

n—>00”

p € F.Put
) = Tr(,ff’(Pk) (I = 1enAx) Tr(,ikl:’(pkﬂ)
(103)
Fyy
X (I =11 phir) Tr(ly,t o (I -1 ,A1) %,
forallk € {1,2,...,.M},n>1;
an = ]R,.,/\,-,n (I - Ai,nBi) ]R,-,l,/\,-,lm

(104)

x (I - )Li—l,nBi—l) e ]RI,AM (I- Al,nBl)’

foralli € {1,2,...,N},n > 1, ®2 = Qﬁ = I, where I is the
identity mapping on H. Then, we have that u, = ®"x, and
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z, = QNu,. Take p € F arbitrarily. Similar to the proof of
Theorem 24, we obtain that
lun = 2l < Jlx. - .
“Zn_p” = “un_p"’

(105)
(106)
|©Ex, — | < =, - 2l

+ T (Ten = 244k) ”AkG)I;lxn - AkP“2>

ke{l,2,...,M},
(107)

“G)ﬁxn - p“z < “xn - P"2 - ||®I;;_1xn - ®I:1xn||2

+ 21’k’n

k-1 k
0, x,- @nxn”

x |A®y ' x, - Agp|, k=1,2,..,M,
(108)

[ = ol < I, = I
A (Vi = 20) B, — Bip|”, (109)
i€{l,2,...,N},

Qilun - p“z < ||xn - p||2 - "Q;_lun - Q;un"2

|

i-1 i
+21;, "Qn u, — Qnun"

d

BOu, - Bp|, ie€{1,2,...,N}.
(110)

We observe that
ko= Pl = 8420~ p)+ (1 = 8,082, = I
= (Snllzn - p“Z + (1 - 671) "Snzn - pl’z
=8,(1-8,) |z, - "z,
< 8n|lzn - P“z + (1 - 811)
X [(1 + yn) "Zn - P"2 + K"Zn - Snzn”Z + C”]
-8,(1-6,) |z, - S”z,,"2
[1 + Vu (1 - é\n)] "zn - p"2
+ (1 - 6n) (K - 8n) "Zn - Snzn"2 + (1 - 6n) (o8

(1 + Yn) "Zn - P"2 + G-

IN

(111)
It follows from (105), (106), and (111) that

“xn+1 - p"2
= (1 - &, — B)(x, — P) + aylk, — P) + B(Wyz, — P
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< (1=a, = B) |, - ol + ek, - o
+ BoWoz, - p|’

< (1=a,=B) %w - I + @ [(L+ 1) |20 - 2l + 6]
+ Bz - pl’

< (=0, = B) % = pI* + 0, [(1+9) |, = Pl + ]
+ Ballx, - oI’

= (1-a,) |20 = pI* + e, [(1+ ) % =PI + 6]

= (1+ o) [ = pI” + s

<(1+y,)|x, - p||2 +G, (112)

By Lemma 13 and condition (i), we deduce that lim,, _, [lx,, -
pll exists. Hence, {x,} is bounded and so are {u,}, {z,}, and
{k,}.

In addition, by Lemma 7(b), we obtain from (105), (106),
and (111) that

%1 = 2|
= (1 - &, - B, = p) + ayk, — P) + B (W,i2, — P

= (1 -, _ﬁn) ”xn _p"2
(xn(kn - p) + IBH(ann - P)

2

R e

e ) (1 ) | oo P 5
<(1-a,- ) b o

N P o e L
(o ) (1 ) [Ze e

- (1= ) b oI+l = I

BV~ ol = P

< (1=, = B) [ = I + o [(1+3) 2 — 21 +6]

l-«a, —
+ Bullzn - 2l - #ﬁﬁ”nxm - x|
n n

< (1 -, — 13,,) ”xn - P"2 + o, [(1 + Yn) "xn - P“z + Cn]

l-«, -
+ ﬁn"xn - P“z - o _:f ‘Bﬂn "xn+1 - xnnz
n n

13
= (1 - (xn) Hxn - p"2 + o, [(1 + Yn) ”xn - p"2 + Cn]
1 -0y _ﬁn _ 2
e, e
1-a,-p,

= (1 + (xn))n) “xn - p"2 + o6 — T‘Bf;"xrﬁl - xﬂ||2
< (1 + Yn) "xn - P“z +6 — (1 -0~ /‘;n) "xn+1 - xn||2’

113)

which immediately yields
(1 %, ﬁn) "xn+1 - xn"2 < "xn - p“2 - “xrﬁ-l - P"2
(114)
2
+ 9%, = pII” + ¢

Fromlim,_, .y, = 0,lim,, , ¢, = 0,limsup, _, . (e, +f3,) <
1, and the existence of lim,, _, . [x,, — pl, it follows that

Jim 5,01 - ] = 0 ()

Again, utilizing Lemma 7(b), we obtain from (105), (106), and
(111) that

%1 = 2|

= (1~ = By — ) + oty — ) + B Wiz, — P

< (1-0, = B,) |, oI + Ik, - oI
+ BulWoz, = plI* = B (1 = @, = B) [Wz, = .

< (1=, = Bo) [ = oI + 0, [(1+9) 2 - 2l + 6]
+ Bullzw = oI - B, (1= &, = B,) W,z — x5,

< (1=at, = B) e = oI + e, [(1+ 7)1 = 21 + 1]
+ Bullxa - ol - B (1= = B) Wiz, - x|

= (1= 0,) [l = oI + e, [(1+ 7)1 = I + 4]
=B, (1=, = B,) [W,z, =,

= (1+ o) %, = pI” + s,
~ B, (1=, = B,) [Wyz, — .|

< (1 + Yn) “xn - p"2 +G Bn (1 &, - ﬁn) ”ann - xn"2’
(116)

2

which leads to
Bu (L=, = B) Wz, = 5l < = oI = Juss — oI
2
+ Yn"xn - p” + o
117)

From lim, _, .y, = 0, lim, _, . ,¢, = 0, condition (ii), and the
existence of lim,,_, . ||lx,, — pll, it follows that

Jim [W,z, - x,| = 0. (118)
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Note that
Xnpl = Xy = &y (kn - xn) + ﬁn (ann - xn) : (119)
Hence, it is easy to see from 0 < a < «,, < 1 that

a "xn N kn“ S o "kn - xn”

< ”xn+1 - Xp ﬁn (ann - xn)“

(120)
= |lxn+l - xn" + B, "ann - xn"
< ”xn+1 - xn" + "ann - xn" :
From (115) and (118), it follows that
Jim [k, - x,[| = 0. (121)

Combining (107) and (111), we have

kw = oI < lzw = 2l + vln = 21 +6,
< Ju = oI + vz = £l + <,

k 2
< |®nxn - p" + V.M, +¢,

= "xn - pnz T T (rk,n - z.uk) “Ak@ﬁilxn - Akp"2

+y,M, +¢,
(122)
where M, = sup,_, [z, — plI*>, which implies
- 2
Ten (285 = Tien) “Ak®}; "x, - AkPH

<[l = oI = Iy = Pl + 920, + 6, 123)

s ”xn - kn" ("xn - p” + ”kn - p”) + Yan + G-
From {r.,} < [ew, fil < (0,2m), k € {1,2,...,M},
lim, , y, =0,lim, _, ¢, = 0, and (121), we have

lim |40, "%, - Agp| =0, k=12,..,M. (124)

n— o0

Combining (108) and (111), we have

k 2
®nxn - P" + Van TG

Iew =l < |

< Jx, - ol - €% x, - x|

k-1 k
+ 21y | 0, x,-0,x,

Ak@)ﬁilxn - Akl’"

+ Yan + Cn>
(125)

Abstract and Applied Analysis
which implies

Joi s, - e}
< [l = pl* = Ik, — 2l

k-1 k
+ 21, | 0, x,-0,x,

Ak®f1_1xn - Akp" + Van TG

< I = Kall (I = 2l + s = pI)

+ ZTk’n

®ﬁ_1xn - @ﬁxn“ “AkG)};_lxn - Akp“ +v.M, +c,.
(126)

Fromlim, _, .y, = 0,lim, _, . ¢, = 0, (121), and (124), we get

k-1 k
0, x,-0,x,

lim |
n— 00

=0, k=12,...,M. (127)
From (127), we have

||xn - un" = “@239, - @iwxn“

0 1 1 2
< "@nxn - ®nxn“ + H@,lxn - 0,x,

M-1 M
+~-+“®n x, -0, x,

— asn — OO.
(128)

Combining (109) and (111), we obtain
"kn - P||2 < ”Zn - P||2 + ynllzn - P"2 TG
i 2
< ”Qnun - p” +v,M; +¢,

< = I + A iy = 20) [ B 0, — Bip||

+y,M; +¢,
(129)
wherei € {1,2,..., N}, which implies
Aig (20 = Ai) BiQiflun - BiP"2
<= o -l o + 2 bpllp el
+ ynllzn - p"2 +¢
< "xn - kn“ (”xn - p" + "kn - p") + Yan + Gy
From {};,} C [a;,b] C (0,2),i € {1,2,...,N}, lim, , y, =

0,lim, _, ,.c, = 0, and (121), we get

lim B w, ~Bip| =0, iefL2.. N} (3D
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Combining (110) and (111), we have

"kn - P"2 < ”Zn - P”2 + Yn”zn - P||2 TG

; 2
< |, - p| +vaMi +6,
-~ D
< = ol - 2w, - 0L,
+21,, "Qit_lun - Q;un BiQit_luﬂ B Bip"
+Y,M; +¢,
(132)

which implies

Q! o 2
n Un = S Uy

< = oI = I = I’
+21;, "Q;_Iun - Q;un" "B,Oi:lun - Bip" +v.M, +¢,

< I = Kall (5 = 2l + s = pI)

+ 24, |t - Q|| |Bi - Bip|| + v, + 6,

(133)

From lim, _, oy, = 0, lim,_, ¢, = 0, (121), and (131), we
obtain

lim [ w, - Q| =0, ie{l,2,...,N}.  (134)

n—00

By (134), we have

||un - zn|| = "qun - QnNun

0 1 1 2
< "Qnun - Qnun" + "Qnun - Qnun“

N-1 N
+---+||Qn un—Qnun“—>0 asn — 0o0.

(135)
From (128) and (135), we have
"xn - Zn“ < ”xn - un” + "un - Zn"
(136)
— 0 asn— 00.
By (121) and (136), we obtain
“kn - Zn” < ”kn - xn" + "xn - Zn”
(137)
— 0 asn — oo0.
We note that
k,-z,=(1-6,)(8"z,-z,). (138)
From §,, < d < 1 and (137), we have
Jim 8"z, - z,[ = 0. (139)

15
On the other hand, we observe that
||Zn+1 - Zn" < “Zn+1 - xn+1|| + ||xn+1 - 'xn” + ”xn - Zn" .
(140)
By (115) and (136), we have
Jim_ 2541 = 2| = 0. (141)
We note that
“Zn - Szn" < ”Zn - Zn+1|| + ||Zn+1 - Sn+1zn+1“
(142)
+|s"z,,, -z, | + ||S"”zn -8z,

From (139), (141), Lemma 9, and the uniform continuity of S,
we obtain

lim |z, - Sz,| = 0. (143)

n—00
In addition, note that
Iz, = Wz, | < |20 = Woz| + W2, = Wz,

<z = x|l + %0 = Wz|| + W2, — Wz, -
(144)

So, from (118), (136), and [4, Remark 3.2], it follows that
Jim_ |z, - Wz,[ = 0. (145)

Since {x,} is bounded, there exists a subsequence {xni}
of {x,} which converges weakly to w. From (136), we have
that z, — w. From (143) and the uniform continuity of
S, we have lim, _, llz, — S"z,| = 0, for any m > 1. So,
from Lemma 11, we have w € Fix(S). Utilizing the similar
arguments to those in the proof of Theorem 24, we can
derive w € (L, GMEP(F,, ¢, Ax) N(Y, I(B;, R;) NFix(W).
Consequently, w € F. This shows that w,,(x,,) C F.

Next, let us show that w,,(x,) is a single-point set. As a
matter of fact, let {xnj} be another subsequence of {x,} such

that Xy, = w'. Then, we get w’ € F.Ifw# w', from the Opial
condition, we have

lim |x, - w| = lim

. !
] < Jim e, ]

n— 00 i— 00 i— 00
= lim “x —w'”z lim |x —w'“
n—oo ™" j— o0 1 (146)
< lim Xy, —w'l = nlhrréo %, — w| -

Jj— oo

This attains a contradiction. So we have w = w'’. Put v, =
Pu(x,). Since w € F, we have (x,, — v,,v, — w) > 0. By
Lemma 15, we have that {v,} converges strongly to some w, €
F. Since {x,} converges weakly to w, we have

(w—wy, wy —w) > 0. (147)

Therefore, we obtain w = w,, = lim,, _, . Prx,,. This completes
the proof. O
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