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We propose two iterative algorithms for finding a common element of the set of solutions of finite generalized mixed equilibrium
problems, the set of solutions of finite variational inclusions for maximal monotone and inverse strong monotone mappings, and
the set of common fixed points of infinite nonexpansive mappings and an asymptotically 𝜅-strict pseudocontractive mapping in
the intermediate sense in a real Hilbert space. We prove some strong and weak convergence theorems for the proposed iterative
algorithms under suitable conditions.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖⋅‖, let𝐶 be a nonempty closed convex subset of𝐻, and
let 𝑃𝐶 be the metric projection of𝐻 onto 𝐶. Let 𝑆 : 𝐶 → 𝐶

be a self-mapping on 𝐶. Fix(𝑆) is the set of fixed points of 𝑆
and R is the set of all real numbers. We recall that a mapping
𝐴 : 𝐶 → 𝐻 is said to be 𝐿-Lipschitz continuous, if there
exists a constant 𝐿 ≥ 0 such that
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, ∀𝑥, 𝑦 ∈ 𝐶. (1)

If 𝐿 = 1, then 𝐴 is called a nonexpansive mapping and if 𝐿 ∈
[0, 1), then 𝐴 is called a contraction. We also let 𝐼 denote the
identity operator on the Hilbert space𝐻.

Let 𝜑 : 𝐶 → R be a real-valued function, let 𝐴 :

𝐶 → 𝐻 be a nonlinear mapping, and let 𝐹 : 𝐶 × 𝐶 → R
be a bifunction. The generalized mixed equilibrium problem
(GMEP) introduced in [1] is to find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (2)

We denote the set of solutions of GMEP (2) by
GMEP(𝐹, 𝜑, 𝐴). The GMEP covers many problems [2–
6] as special cases and has been extensively studied recently.

Throughout this paper, we assume as in [1] that 𝐹 : 𝐶 ×

𝐶 → R is a bifunction satisfying conditions (A1)–(A4) and

𝜑 : 𝐶 → R is a lower semicontinuous and convex function
with restriction (B1) or (B2), where

(A1) 𝐹(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0, for any

𝑥, 𝑦 ∈ 𝐶;
(A3) 𝐹 is upper-hemicontinuous; that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

𝐹 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝐹 (𝑥, 𝑦) ; (3)

(A4) 𝐹(𝑥, ⋅) is convex and lower semicontinuous, for each
𝑥 ∈ 𝐶;

(B1) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset 𝐷

𝑥
⊂ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that, for any 𝑧 ∈

𝐶 \ 𝐷
𝑥
,

𝐹 (𝑧, 𝑦
𝑥
) + 𝜑 (𝑦

𝑥
) − 𝜑 (𝑧) +

1

𝑟

⟨𝑦𝑥
− 𝑧, 𝑧 − 𝑥⟩ < 0; (4)

(B2) 𝐶 is a bounded set.

Next we list some elementary consequences for themixed
equilibrium problem studied in [2] where MEP(𝐹, 𝜑) is the
solution set.
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Proposition 1 (see [2]). Assume that 𝐹 : 𝐶 × 𝐶 → R
satisfies (A1)–(A4) and let 𝜑 : 𝐶 → R be a proper lower
semicontinuous and convex function. Assume that either (B1)
or (B2) holds. For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping
𝑇
(𝐹,𝜑)

𝑟
: 𝐻 → 𝐶 as follows:

𝑇
(𝐹,𝜑)

𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑧)

+

1

𝑟

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(5)

for all 𝑥 ∈ 𝐻. Then the following hold:

(i) for each 𝑥 ∈ 𝐻, 𝑇(𝐹,𝜑)
𝑟

(𝑥) ̸= 0;
(ii) 𝑇(𝐹,𝜑)
𝑟

is single-valued;
(iii) 𝑇(𝐹,𝜑)

𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,
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2

≤ ⟨𝑇
(𝐹,𝜑)

𝑟
𝑥 − 𝑇
(𝐹,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ ; (6)

(iv) Fix(𝑇(𝐹,𝜑)
𝑟

) = MEP(𝐹, 𝜑);
(v) MEP(𝐹, 𝜑) is closed and convex.

Next, recall some concepts.

Definition 2. Let 𝐶 be a nonempty subset of a normed space
𝑋 and let 𝑆 : 𝐶 → 𝐶 be a self-mapping on 𝐶.

(i) 𝑆 is asymptotically nonexpansive (see [7]), if there
exists a sequence {𝑘

𝑛
} of positive numbers satisfying

the property lim
𝑛→∞

𝑘
𝑛
= 1 and
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, ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (7)

(ii) 𝑆 is asymptotically nonexpansive in the intermediate
sense (see [8]) provided that 𝑆 is uniformly continu-
ous and
lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩
−
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) ≤ 0. (8)

(iii) 𝑆 is uniformly Lipschitzian, if there exists a constant
L > 0 such that
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, ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (9)

It is clear that every nonexpansive mapping is asymptot-
ically nonexpansive and every asymptotically nonexpansive
mapping is uniformly Lipschitzian. Recently, Kim and Xu [9]
introduced the concept of asymptotically 𝜅-strict pseudocon-
tractive mappings in a Hilbert space as follows.

Definition 3. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝜅-
strict pseudocontractive mapping with sequence {𝛾

𝑛
}, if there

exist a constant 𝜅 ∈ [0, 1) and a sequence {𝛾
𝑛
} in [0,∞) with

lim
𝑛→∞

𝛾
𝑛
= 0 such that
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,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(10)

They studied weak and strong convergence theorems
for this class of mappings. It is important to note that
every asymptotically 𝜅-strict pseudocontractive mapping
with sequence {𝛾

𝑛
} is a uniformly L-Lipschitzian mapping

withL = sup{(𝜅 + √1 + (1 − 𝜅)𝛾
𝑛
)/(1 + 𝜅) : 𝑛 ≥ 1}.

Recently, Sahu et al. [10] considered the concept of
asymptotically 𝜅-strict pseudocontractive mappings in the
intermediate sense, which are not necessarily Lipschitzian.

Definition 4. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝜅-
strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}, if there exist a constant 𝜅 ∈ [0, 1) and a

sequence {𝛾
𝑛
} in [0,∞) with lim

𝑛→∞
𝛾
𝑛
= 0 such that

lim sup
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sup
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:= max{0, sup
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)}. Then, 𝑐
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→

0 (𝑛 → ∞), and (11) reduces to the relation
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Whenever 𝑐
𝑛

= 0, for all 𝑛 ≥ 1 in (12), then 𝑆 is
an asymptotically 𝜅-strict pseudocontractive mapping with
sequence {𝛾𝑛}.

Let 𝐵 be a single-valued mapping of 𝐶 into𝐻 and 𝑅 be a
multivalued mapping with domain 𝐷(𝑅) = 𝐶. Consider the
following variational inclusion: find a point 𝑥 ∈ 𝐶 such that

0 ∈ 𝐵𝑥 + 𝑅𝑥. (13)

We denote by 𝐼(𝐵, 𝑅) the solution set of the variational inclu-
sion (13). In 1998, Huang [11] studied problem (13) in the case
where 𝑅 is maximal monotone and 𝐵 is strongly monotone
and Lipschitz continuous with𝐷(𝑅) = 𝐶 = 𝐻. Subsequently,
Zeng et al. [12] further studied problem (13) in the case which
is more general than that in [11]. Moreover, the authors [12]
obtained the same strong convergence conclusion as in [11].
In addition, the authors also gave the geometric convergence
rate estimate for approximate solutions.

In this paper, inspired by the research work mentioned
above, we introduce two iterative algorithms for finding a
common element of the set of solutions of finite generalized
mixed equilibriumproblems, the set of solutions of finite vari-
ational inclusions for maximal monotone and inverse strong
monotone mappings, and the set of common fixed points
of infinite nonexpansive mappings and an asymptotically 𝜅-
strict pseudocontractive mapping in the intermediate sense
in a real Hilbert space. We prove some strong and weak
convergence theorems for the proposed iterative algorithms
under mild conditions.
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2. Preliminaries

Let 𝐻 be a real Hilbert space and 𝐶 be a nonempty closed
convex subset of𝐻. We use the notation 𝑥𝑛 ⇀ 𝑥 to indicate
that the sequence {𝑥𝑛} converges weakly to 𝑥 and 𝑥𝑛 → 𝑥

to indicate that the sequence {𝑥𝑛} converges strongly to 𝑥.
Moreover, we use 𝜔𝑤(𝑥𝑛) to denote the weak 𝜔-limit set of
the sequence {𝑥𝑛}; that is,

𝜔
𝑤
(𝑥
𝑛
)

:= {𝑥 ∈ 𝐻 : 𝑥
𝑛
𝑖

⇀ 𝑥 for some subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
}} .

(14)

Recall that a mapping 𝐴 : 𝐶 → 𝐻 is called

(i) Monotone, if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (15)

(ii) 𝜂-strongly monotone, if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
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2
, ∀𝑥, 𝑦 ∈ 𝐶; (16)

(iii) 𝛼-inverse stronglymonotone, if there exists a constant
𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
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2
, ∀𝑥, 𝑦 ∈ 𝐶. (17)

When𝐴 is an 𝛼-inverse strongly monotonemapping of𝐶
into𝐻, it is easy to see that 𝐴 is (1/𝛼)-Lipschitz continuous.
We also have that, for all 𝑢, V ∈ 𝐶 and 𝜆 > 0,

‖(𝐼 − 𝜆𝐴)𝑢 − (𝐼 − 𝜆𝐴)V‖2

= ‖(𝑢 − V) − 𝜆(𝐴𝑢 − 𝐴V)‖2

= ‖𝑢 − V‖2 − 2𝜆 ⟨𝐴𝑢 − 𝐴V, 𝑢 − V⟩ + 𝜆2‖𝐴𝑢 − 𝐴V‖2

≤ ‖𝑢 − V‖2 + 𝜆 (𝜆 − 2𝛼) ‖𝐴𝑢 − 𝐴V‖2.

(18)

So, if 𝜆 ≤ 2𝛼, then 𝐼 − 𝜆𝐴 is a nonexpansive mapping from 𝐶

to𝐻.
The metric projection from𝐻 onto 𝐶 is the mapping 𝑃

𝐶
:

𝐻 → 𝐶 which assigns to each point 𝑥 ∈ 𝐻 the unique point
𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property
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󵄩
󵄩
=: 𝑑 (𝑥, 𝐶) . (19)

Some important properties of projections are listed in the
following proposition.

Proposition 5. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶,

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 − 𝑧‖

2, ∀𝑦 ∈ 𝐶;
(iii) ⟨𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2, ∀𝑦 ∈ 𝐻.

Consequently, 𝑃
𝐶
is nonexpansive and monotone. It is easy

to see that the projection 𝑃
𝐶
is 1-ism.

We need some facts and tools in a real Hilbert space 𝐻
which are listed as lemmas below.

Lemma 6. Let 𝑋 be a real inner product space. Then there
holds the following inequality:
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≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (20)

Lemma 7. Let 𝐻 be a real Hilbert space. Then the following
hold:

(a) ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 − ‖𝑦‖2 − 2⟨𝑥 − 𝑦, 𝑦⟩, for all 𝑥, 𝑦 ∈ 𝐻;
(b) ‖𝜆𝑥 + 𝜇𝑦 + ]𝑧‖2 = 𝜆‖𝑥‖

2
+ 𝜇‖𝑦‖

2
+ ]‖𝑧‖2 −

𝜆𝜇‖𝑥 − 𝑦‖
2
−𝜇]‖𝑦 − 𝑧‖2 −𝜆]‖𝑥 − 𝑧‖2, for all 𝑥, 𝑦, 𝑧 ∈

𝐻 and 𝜆, 𝜇, ] ∈ [0, 1] with 𝜆 + 𝜇 + ] = 1;
(c) if {𝑥

𝑛
} is a sequence in 𝐻 such that 𝑥

𝑛
⇀ 𝑥, it follows

that

lim sup
𝑛→∞

󵄩
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󵄩
𝑥
𝑛
− 𝑦
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= lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥

󵄩
󵄩
󵄩
󵄩

2
+
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󵄩

2
, ∀𝑦 ∈ 𝐻.

(21)

Lemma8 (see [10, Lemma 2.5]). Let𝐻 be a real Hilbert space.
Given a nonempty closed convex subset 𝐶 of 𝐻 and points
𝑥, 𝑦, 𝑧 ∈ 𝐻 and given also a real number 𝑎 ∈ R, the set

{V ∈ 𝐶 :
󵄩
󵄩
󵄩
󵄩
𝑦 − V󵄩󵄩󵄩

󵄩

2
≤ ‖𝑥 − V‖2 + ⟨𝑧, V⟩ + 𝑎} (22)

is convex and closed.

Lemma 9 (see [10, Lemma 2.6]). Let 𝐶 be a nonempty subset
of a Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be an asymptotically
𝜅-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩

≤

1

1 − 𝜅

× (𝜅
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
+ √(1 + (1 − 𝜅) 𝛾𝑛

)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝜅) 𝑐𝑛

) ,

(23)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ≥ 1.

Lemma 10 (see [10, Lemma 2.7]). Let𝐶 be a nonempty subset
of a Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense with sequence {𝛾𝑛}. Let {𝑥𝑛} be a
sequence in𝐶 such that ‖𝑥𝑛−𝑥𝑛+1‖ → 0 and ‖𝑥𝑛−𝑆𝑛𝑥𝑛‖ → 0

as 𝑛 → ∞. Then ‖𝑥𝑛 − 𝑆𝑥𝑛‖ → 0 as 𝑛 → ∞.

Lemma 11 (demiclosedness principle [10, Proposition 3.1]).
Let 𝐶 be a nonempty closed convex subset of a Hilbert space
𝐻 and let 𝑆 : 𝐶 → 𝐶 be a continuous asymptotically
𝜅-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then 𝐼−𝑆 is demiclosed at zero in the sense

that if {𝑥
𝑛
} is a sequence in 𝐶 such that 𝑥

𝑛
⇀ 𝑥 ∈ 𝐶 and

lim sup
𝑚→∞

lim sup
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑚
𝑥
𝑛
‖ = 0, then (𝐼 − 𝑆)𝑥 = 0.
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Lemma 12 (see [10, Proposition 3.2]). Let 𝐶 be a nonempty
closed convex subset of a Hilbert space 𝐻 and let 𝑆 : 𝐶 →

𝐶 be a continuous asymptotically 𝜅-strict pseudocontractive
mapping in the intermediate sense with sequence {𝛾

𝑛
} such that

Fix(𝑆) ̸= 0. Then, Fix(𝑆) is closed and convex.

Lemma 13 (see [13, page 80]). Let {𝑎
𝑛
}
∞

𝑛=1
, {𝑏
𝑛
}
∞

𝑛=1
, and

{𝛿
𝑛
}
∞

𝑛=1
be sequences of nonnegative real numbers satisfying the

inequality

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (24)

If ∑∞
𝑛=1

𝛿𝑛 < ∞ and ∑∞
𝑛=1

𝑏𝑛 < ∞, then lim𝑛→∞𝑎𝑛 exists. If,
in addition, {𝑎𝑛}

∞

𝑛=1
has a subsequence which converges to zero,

then lim𝑛→∞𝑎𝑛 = 0.

Corollary 14 (see [14, page 303]). Let {𝑎
𝑛
}
∞

𝑛=0
and {𝑏

𝑛
}
∞

𝑛=0

be two sequences of nonnegative real numbers satisfying the
inequality

𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 0. (25)

If ∑∞
𝑛=0

𝑏
𝑛
converges, then lim

𝑛→∞
𝑎
𝑛
exists.

Recall that a Banach space 𝑋 is said to satisfy the Opial
condition [15], if for any given sequence {𝑥

𝑛
} ⊂ 𝑋 which

converges weakly to an element 𝑥 ∈ 𝑋, there holds the
inequality

lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑥

󵄩
󵄩
󵄩
󵄩
< lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥.

(26)

It is well known in [15] that every Hilbert space𝐻 satisfies the
Opial condition.

Lemma 15 (see [16, Proposition 3.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space𝐻 and let {𝑥

𝑛
} be a

sequence in𝐻. Suppose that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2
≤ (1 + 𝜆𝑛

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛿
𝑛
, ∀𝑝 ∈ 𝐶, 𝑛 ≥ 1,

(27)

where {𝜆
𝑛
} and {𝛿

𝑛
} are sequences of nonnegative real numbers

such that ∑∞
𝑛=1

𝜆
𝑛
< ∞ and ∑

∞

𝑛=1
𝛿
𝑛
< ∞. Then {𝑃

𝐶
𝑥
𝑛
}

converges strongly in 𝐶.

Lemma 16 (see [17]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻. Let {𝑥

𝑛
} be a sequence in 𝐻 and 𝑢 ∈ 𝐻. Let

𝑞 = 𝑃
𝐶
𝑢. If {𝑥

𝑛
} is such that 𝜔

𝑤
(𝑥
𝑛
) ⊂ 𝐶 and satisfies the

condition

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑞

󵄩
󵄩
󵄩
󵄩
, ∀𝑛, (28)

then 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞.

Let {𝑇
𝑛
}
∞

𝑛=1
be an infinite family of nonexpansive self-

mappings on 𝐶 and let {𝜆
𝑛
}
∞

𝑛=1
be a sequence of nonnegative

numbers in [0, 1]. For any 𝑛 ≥ 1, define a self-mapping𝑊
𝑛
on

𝐶 as follows:

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛

= 𝜆
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛
+ (1 − 𝜆

𝑛−1
) 𝐼,

...

𝑈
𝑛,𝑘

= 𝜆
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆
𝑘
) 𝐼,

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1

𝑇
𝑘−1

𝑈
𝑛,𝑘
+ (1 − 𝜆

𝑘−1
) 𝐼,

...

𝑈
𝑛,2

= 𝜆
2
𝑇
2
𝑈
𝑛,3
+ (1 − 𝜆

2
) 𝐼,

𝑊
𝑛
= 𝑈
𝑛,1

= 𝜆
1
𝑇
1
𝑈
𝑛,2
+ (1 − 𝜆

1
) 𝐼.

(29)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜆

𝑛
, 𝜆
𝑛−1

, . . . , 𝜆
1
.

Lemma 17 (see [18, Lemma 3.2]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let {𝑇

𝑛
}
∞

𝑛=1

be a sequence of nonexpansive self-mappings on 𝐶 such that
⋂
∞

𝑛=1
Fix(𝑇
𝑛
) ̸= 0 and let {𝜆

𝑛
} be a sequence in (0, 𝑏] for some

𝑏 ∈ (0, 1). Then, for every 𝑥 ∈ 𝐶 and 𝑘 ≥ 1, the limit
lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists.

Utilizing Lemma 17, we can define a mapping𝑊 : 𝐻 →

𝐻 as follows:

𝑊𝑥 = lim
𝑛→∞

𝑊
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,1
𝑥, ∀𝑥 ∈ 𝐻. (30)

Such a 𝑊 is called the 𝑊-mapping generated by 𝑇
1, 𝑇2, . . .

and 𝜆1, 𝜆2, . . .. We remark that since 𝑊𝑛 is nonexpansive,
𝑊: 𝐻 → 𝐻 is also nonexpansive.

Lemma 18 (see [18, Lemma 3.3]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let {𝑇

𝑛
}
∞

𝑛=1

be a sequence of nonexpansive self-mappings on 𝐶 such that
⋂
∞

𝑛=1
Fix(𝑇
𝑛
) ̸= 0, and let {𝜆

𝑛
} be a sequence in (0, 𝑏], for some

𝑏 ∈ (0, 1). Then, Fix(𝑊) = ⋂
∞

𝑛=1
Fix(𝑇
𝑛
).

Lemma 19 (see [19, demiclosedness principle]). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥
𝑛
} strongly converges to

some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦.

Recall that a set-valued mapping 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2
𝐻

is called monotone, if, for all 𝑥, 𝑦 ∈ 𝐷(𝑅), 𝑓 ∈ 𝑅(𝑥), and
𝑔 ∈ 𝑅(𝑦), we have

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (31)

A set-valued mapping 𝑅 is called maximal monotone, if 𝑅 is
monotone and (𝐼 + 𝜆𝑅)𝐷(𝑅) = 𝐻, for each 𝜆 > 0. We denote
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by𝐺(𝑅) the graph of𝑅. It is known that a monotonemapping
𝑅 is maximal if and only if, for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑓−𝑔, 𝑥−𝑦⟩ ≥

0, for every (𝑦, 𝑔) ∈ 𝐺(𝑅), we have 𝑓 ∈ 𝑅(𝑥).
Assume that 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2

𝐻 is a maximal
monotone mapping. Then, for 𝜆 > 0, associated with 𝑅, the
resolvent operator 𝐽

𝑅,𝜆
can be defined as

𝐽
𝑅,𝜆𝑥 = (𝐼 + 𝜆𝑅)

−1
𝑥, ∀𝑥 ∈ 𝐻. (32)

We have the following property for the resolvent operator
𝐽
𝑅,𝜆

: 𝐻 → 𝐷(𝑅).

Lemma 20 (see [11]). 𝐽
𝑅,𝜆

is single-valued and firmly nonex-
pansive; that is,

⟨𝐽
𝑅,𝜆
𝑥 − 𝐽
𝑅,𝜆
𝑦, 𝑥 − 𝑦⟩ ≥

󵄩
󵄩
󵄩
󵄩
𝐽
𝑅,𝜆
𝑥 − 𝐽
𝑅,𝜆
𝑦
󵄩
󵄩
󵄩
󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻.

(33)

Consequently, 𝐽
𝑅,𝜆

is nonexpansive and monotone.

Lemma 21 (see [20]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶. Then, for any given 𝜆 > 0, 𝑢 ∈ 𝐶 is a solution
of the variational inclusion: find a point 𝑥 ∈ 𝐶 such that

0 ∈ 𝐵𝑥 + 𝑅𝑥, (34)

where 𝐵 is a single-valued mapping of 𝐶 into 𝐻 if and only if
𝑢 ∈ 𝐶 satisfies

𝑢 = 𝐽
𝑅,𝜆 (

𝑢 − 𝜆𝐵𝑢) . (35)

Lemma 22 (see [12]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶 and let 𝐵 : 𝐶 → 𝐻 be a strongly monotone,
continuous, and single-valued mapping. Then, for each 𝑧 ∈ 𝐻,
the equation 𝑧 ∈ (𝐵+𝜆𝑅)𝑥 has a unique solution 𝑥

𝜆
, for 𝜆 > 0.

Lemma 23 (see [20]). Let𝑅 be amaximal monotone mapping
with𝐷(𝑅) = 𝐶 and let𝐵 : 𝐶 → 𝐻 be amonotone, continuous,
and single-valuedmapping.Then (𝐼+𝜆(𝑅+𝐵))𝐶 = 𝐻, for each
𝜆 > 0. In this case, 𝑅 + 𝐵 is maximal monotone.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem for an
iterative algorithm for finding a common element of the set
of solutions of finite generalizedmixed equilibriumproblems,
the set of solutions of finite variational inclusions formaximal
monotone and inverse strong monotone mappings, and the
set of common fixed points of infinite nonexpansive map-
pings and asymptotically 𝜅-strict pseudocontractivemapping
𝑆 : 𝐶 → 𝐶 in the intermediate sense in a real Hilbert space.
This iterative algorithm is based on the extragradient method
[21], Mann-type iterative method, and shrinking projection
method. For more recent related results, see [22] and the
references therein.

Theorem 24. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑀,𝑁 be two integers. Let 𝐹

𝑘
be

a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑
𝑘
: 𝐶 → R ∪ {+∞} be a proper lower semicontinuous and

convex function, where 𝑘 ∈ {1, 2, . . . ,𝑀}. Let 𝑅
𝑖
: 𝐶 → 2

𝐻

be a maximal monotone mapping and let 𝐴
𝑘
: 𝐻 → 𝐻 and

𝐵
𝑖
: 𝐶 → 𝐻 be 𝜇

𝑘
-inverse strongly monotone and 𝜂

𝑖
-inverse

strongly monotone, respectively, where 𝑘 ∈ {1, 2, . . . ,𝑀} and
𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense, for some 0 ≤ 𝜅 < 1, with sequence
{𝛾𝑛} ⊂ [0,∞) such that lim𝑛→∞𝛾𝑛 = 0 and {𝑐𝑛} ⊂ [0,∞)

such that lim𝑛→∞𝑐𝑛 = 0. Let {𝑇𝑛}
∞

𝑛=1
be a sequence of

nonexpansive self-mappings on 𝐶 and let {𝜆𝑛} be a sequence
in (0, 𝑏] for some 𝑏 ∈ (0, 1). Assume that 𝐹 := ⋂

∞

𝑛=1
Fix(𝑇𝑛) ∩

⋂
𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘) ∩ ⋂

𝑁

𝑖=1
𝐼(𝐵𝑖, 𝑅𝑖) ∩ Fix(𝑆) is nonempty

and bounded and that either (B1) or (B2) holds. Let {𝛼𝑛}, {𝛽𝑛},
and {𝛿𝑛} be sequences in [0, 1] such that 𝛼𝑛 + 𝛽𝑛 ≤ 1, 0 <

𝑎 ≤ 𝛼𝑛 ≤ 1, and 𝜅 ≤ 𝛿𝑛 ≤ 𝑑 < 1. Pick any 𝑥0 ∈ 𝐻 and set
𝐶1 = 𝐶, 𝑥1 = 𝑃𝐶

1

𝑥0. Let {𝑥𝑛} be a sequence generated by the
following algorithm:

𝑢
𝑛
= 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
) 𝑇
(𝐹
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀−1,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐴
1
) 𝑥
𝑛
,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆𝑁−1,𝑛𝐵𝑁−1) ⋅ ⋅ ⋅ 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
+ 𝛽
𝑛
𝑊
𝑛
𝑧
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 0,

(36)

where𝑊
𝑛 is the𝑊-mapping generated by (2.2), 𝜃𝑛 = 𝛾𝑛Δ2𝑛+𝑐𝑛,

and Δ 𝑛 = sup{‖𝑥𝑛 − 𝑝‖ : 𝑝 ∈ 𝐹} < ∞. Assume that the
following conditions hold:

(i) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
(𝛼
𝑛
+ 𝛽
𝑛
) < 1;

(ii) {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), ∀𝑖 ∈ {1, 2, . . . , 𝑁};

(iii) {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), ∀𝑘 ∈ {1, 2, . . . ,𝑀}.

Then {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥
0
.

Proof. We divide the proof into several steps.
Step 1. First note that the defining inequality in 𝐶

𝑛 is equiva-
lent to the inequality

⟨2 (𝑥𝑛
− 𝑧
𝑛)
, 𝑧⟩ ≤

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
. (37)

So, by Lemma 8, 𝐶
𝑛 is closed and convex, for every 𝑛 ≥ 1.

We next show that 𝐹 ⊂ 𝐶𝑛, for all 𝑛 ≥ 1. Put

Θ
𝑘

𝑛
= 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐴
𝑘
) 𝑇
(𝐹
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟𝑘−1,𝑛𝐴𝑘−1) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟1,𝑛𝐴1) 𝑥𝑛,

(38)

for all 𝑘 ∈ {1, 2, . . . ,𝑀} and 𝑛 ≥ 1;

Ω
𝑖

𝑛
= 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝐽
𝑅
𝑖−1
,𝜆
𝑖−1,𝑛

× (𝐼 − 𝜆
𝑖−1,𝑛

𝐵
𝑖−1
) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) ,

(39)
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for all 𝑖 ∈ {1, 2, . . . , 𝑁} and 𝑛 ≥ 1, and Θ0
𝑛
= Ω
0

𝑛
= 𝐼, where 𝐼

is the identity mapping on𝐻. Then we have that 𝑢
𝑛
= Θ
𝑀

𝑛
𝑥
𝑛

and 𝑧
𝑛
= Ω
𝑁

𝑛
𝑢
𝑛
. Suppose that 𝐹 ⊂ 𝐶

𝑛
for some 𝑛 ≥ 1. Take

𝑝 ∈ 𝐹 arbitrarily. Then, from (18) and Proposition 1(iii), we
have

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑥
𝑛

− 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑀,𝑛
𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

...

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥𝑛 − Θ

0

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
.

(40)

Similarly, we have

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
)Ω
𝑁−1

𝑛
𝑢
𝑛

−𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
)Ω
𝑁−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑁,𝑛𝐵𝑁)Ω
𝑁−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑁,𝑛𝐵𝑁)Ω

𝑁−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑁−1

𝑛
𝑢𝑛 − Ω

𝑁−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

...

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑥
𝑛
− Ω
0

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
.

(41)

Combining (40) and (41), we have

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
. (42)

By Lemma 7(b), we deduce from (36) and (42) that

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
𝛿
𝑛
(𝑧
𝑛
− 𝑝) + (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

= 𝛿
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛿
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛)

× [(1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜅

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

= [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿𝑛) (𝜅 − 𝛿𝑛)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
. (43)

It follows from (42), (43), and the convexity of ‖ ⋅ ‖2 that
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
− 𝛽
𝑛
) (𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑘
𝑛
− 𝑝)

+𝛽𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
((1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
) + 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
((1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
) + 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼𝑛 ((1 + 𝛾𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛)

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼𝑛𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼𝑛𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃𝑛.

(44)

Hence, 𝑝 ∈ 𝐶
𝑛+1

. This implies that 𝐹 ⊂ 𝐶
𝑛
, for all 𝑛 ≥ 1.

Step 2. We prove that ‖𝑥
𝑛
− 𝑘
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, let V = 𝑃
𝐹
𝑥
0
. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and V ∈ 𝐹 ⊂ 𝐶

𝑛
,

we obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
V − 𝑥
0

󵄩
󵄩
󵄩
󵄩
. (45)

This implies that {𝑥
𝑛} is bounded and, hence, {𝑢𝑛}, {𝑧𝑛}, {𝑘𝑛},

and {𝑦𝑛} are also bounded. Since 𝑥𝑛+1 ∈ 𝐶𝑛+1 ⊂ 𝐶𝑛 and 𝑥𝑛 =
𝑃𝐶
𝑛

𝑥0, we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
0

󵄩
󵄩
󵄩
󵄩
, ∀𝑛 ≥ 1. (46)

Therefore, lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
0
‖ exists. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, 𝑥
𝑛+1

∈

𝐶
𝑛+1

⊂ 𝐶
𝑛
, by Proposition 5(ii) we obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
, (47)
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which implies

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (48)

It follows from𝑥
𝑛+1

∈ 𝐶
𝑛+1

that ‖𝑦
𝑛
− 𝑥
𝑛+1

‖
2
≤ ‖𝑥
𝑛
− 𝑥
𝑛+1

‖
2
+

𝜃
𝑛
and hence
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

2
≤ 2 (

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

2
)

≤ 2 (
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
)

= 2 (2
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑥𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃𝑛) .

(49)

From (48) and lim
𝑛→∞

𝜃
𝑛
= 0, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (50)

Also, utilizing Lemma 7(b), we obtain from (36), (42), and
(43) that
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
− 𝛽
𝑛
) (𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑘
𝑛
− 𝑝)

+𝛽
𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼𝑛 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
] + 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
] + 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

− 𝛽𝑛 (1 − 𝛼𝑛 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 −𝑊𝑛𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
𝑐
𝑛

− 𝛽𝑛 (1 − 𝛼𝑛 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 −𝑊𝑛𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
,

(51)

which, hence, yields

𝛽
𝑛 (1 − 𝛼𝑛 − 𝛽𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 −𝑊𝑛𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
) + 𝜃
𝑛
.

(52)

Since 𝜃
𝑛
→ 0 and {𝑥

𝑛
}, {𝑦
𝑛
} are bounded, it follows from (50)

and condition (i) that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 −𝑊𝑛𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (53)

Note that

𝑦
𝑛
− 𝑥
𝑛
= 𝛼
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) + 𝛽
𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛
) , (54)

which leads to

𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑥
𝑛
− 𝛽
𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛
)
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
.

(55)

So, from (50), (53), and 0 < 𝑎 ≤ 𝛼
𝑛 ≤ 1, we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (56)

Step 3. We prove that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖𝑢

𝑛
− 𝑧
𝑛
‖ → 0, ‖𝑧

𝑛
−

𝑊
𝑛
𝑧
𝑛
‖ → 0, and ‖𝑧

𝑛
− 𝑆
𝑛
𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, from (42) and (43), it follows that

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤ [1 + 𝛾𝑛 (1 − 𝛿𝑛)]

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
.

(57)

Next, we prove that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (58)

For 𝑝 ∈ 𝐹, it follows from (18) that

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛𝐴𝑘)Θ
𝑘−1

𝑛
𝑥𝑛

−𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐴
𝑘
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑘,𝑛𝐴𝑘)Θ

𝑘−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑘,𝑛𝐴𝑘)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝑟𝑘,𝑛 (𝑟𝑘,𝑛 − 2𝜇𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(59)
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By (40), (41), (57), and (59), we obtain

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃
𝑛
, (60)

which implies that

𝑟𝑘,𝑛 (2𝜇𝑘 − 𝑟𝑘,𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
) + 𝜃
𝑛.

(61)

Since {𝑟
𝑘,𝑛} ⊂ [𝑒𝑘, 𝑓𝑘] ⊂ (0, 2𝜇𝑘), 𝑘 ∈ {1, 2, . . . ,𝑀},

lim𝑛→∞𝜃𝑛 = 0, and (56), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (62)

By Proposition 1(iii) and Lemma 7(a), we have

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛𝐴𝑘)Θ
𝑘−1

𝑛
𝑥𝑛 − 𝑇

(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛𝐴𝑘)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ⟨(𝐼 − 𝑟
𝑘,𝑛
𝐴
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
𝐴
𝑘
) 𝑝, Θ

𝑘

𝑛
𝑥
𝑛
− 𝑝⟩

=

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑘,𝑛𝐴𝑘)Θ

𝑘−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑘,𝑛𝐴𝑘) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑘,𝑛𝐴𝑘)Θ

𝑘−1

𝑛
𝑥𝑛

− (𝐼 − 𝑟
𝑘,𝑛
𝐴
𝑘
) 𝑝 − (Θ

𝑘

𝑛
𝑥
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛
− 𝑟
𝑘,𝑛
(𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

) ,

(63)

which implies that
󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛
− 𝑟
𝑘,𝑛
(𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝑟
2

𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟𝑘,𝑛 ⟨Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛, 𝐴𝑘Θ

𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝⟩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
.

(64)

Combining (57) and (64), we have
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜃
𝑛
,

(65)
which implies
󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜃
𝑛
.

(66)
From lim

𝑛→∞
𝜃
𝑛
= 0, (56), and (62), we know that (58) holds.

Hence, we obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
1

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
1

𝑛
𝑥
𝑛
− Θ
2

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(67)
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Next, we show that lim
𝑛→∞

‖𝐵
𝑖
Ω
𝑖

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. It follows from Lemma 20 and (18) that

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

. (68)

Combining (57) and (68), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃𝑛,

(69)

which implies

𝜆𝑖,𝑛 (2𝜂𝑖 − 𝜆𝑖,𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
) + 𝜃
𝑛
.

(70)

From {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁}, lim

𝑛→∞
𝜃
𝑛
=

0, and (56), we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁. (71)

By Lemmas 20 and 7(a), we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖)Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐽𝑅

𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝, Ω

𝑖

𝑛
𝑢
𝑛
− 𝑝⟩

=

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)𝑝 − (Ω

𝑖

𝑛
𝑢
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

) , (72)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝜆
2

𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛
⟨Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
, 𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
.

(73)

Combining (57) and (73), we get

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜃
𝑛
,

(74)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜃
𝑛



10 Abstract and Applied Analysis

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜃
𝑛. (75)

From (56), (71), and lim
𝑛→∞

𝜃
𝑛
= 0, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁. (76)

From (76), we get

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢
𝑛
− Ω
𝑁

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢𝑛 − Ω

1

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
1

𝑛
𝑢𝑛 − Ω

2

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑁−1

𝑛
𝑢
𝑛
− Ω
𝑁

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(77)

By (67) and (77), we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(78)

From (48) and (78), we have
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(79)

By (56), (67), and (77), we get
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(80)

We observe that

𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿𝑛) (

𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛)
. (81)

From 𝛿
𝑛
≤ 𝑑 < 1 and (80), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (82)

We note that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧𝑛 − 𝑆

𝑛+1
𝑧𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑧𝑛+1

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1 − 𝑆

𝑛+1
𝑧𝑛+1

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(83)

From (79), (82), and Lemma 9, we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0. (84)

On the other hand, we note that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(85)

From (82), (84), and the uniform continuity of 𝑆, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (86)

In addition, note that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 −𝑊𝑧𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 −𝑊𝑛𝑧𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 −𝑊𝑧𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
−𝑊𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
.

(87)

So, from (53), (78), and [4, Remark 3.2], it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 −𝑊𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (88)

Step 4. Finally we prove that 𝑥
𝑛
→ V = 𝑃

𝐹
𝑥
0
as 𝑛 → ∞.

Indeed, since {𝑥
𝑛
} is bounded, there exists a subsequence

{𝑥
𝑛
𝑖

}which converges weakly to some𝑤. From (58) and (76)–
(78), we have that Θ𝑘

𝑛
𝑖

𝑥𝑛
𝑖

⇀ 𝑤,Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤 and 𝑧𝑛
𝑖

⇀ 𝑤,
where 𝑘 ∈ {1, 2, . . . ,𝑀} and 𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is
uniformly continuous, by (86), we get lim

𝑛→∞
‖𝑧
𝑛
− 𝑆
𝑚
𝑧
𝑛
‖ =

0, for any 𝑚 ≥ 1. Hence, from Lemma 11, we obtain 𝑤 ∈

Fix(𝑆). In the meantime, utilizing Lemma 19, we deduce from
(88) and 𝑧

𝑛
𝑖

⇀ 𝑤 that 𝑤 ∈ Fix(𝑊) = ⋂
∞

𝑛=1
Fix(𝑇
𝑛
). Next,

we prove that 𝑤 ∈ ⋂
𝑁

𝑚=1
𝐼(𝐵𝑚, 𝑅𝑚). As a matter of fact, since

𝐵𝑚 is 𝜂𝑚-inverse strongly monotone, 𝐵𝑚 is a monotone and
Lipschitz continuousmapping. It follows fromLemma23 that
𝑅𝑚 + 𝐵𝑚 is maximal monotone. Let (V, 𝑔) ∈ 𝐺(𝑅𝑚 + 𝐵𝑚);
that is, 𝑔 − 𝐵𝑚V ∈ 𝑅𝑚V. Again, since Ω

𝑚

𝑛
𝑢𝑛 = 𝐽𝑅

𝑚
,𝜆
𝑚,𝑛

(𝐼 −

𝜆
𝑚,𝑛
𝐵
𝑚
)Λ
𝑚−1

𝑛
𝑢
𝑛
, 𝑛 ≥ 1,𝑚 ∈ {1, 2, . . . , 𝑁}, we have

Ω
𝑚−1

𝑛
𝑢𝑛 − 𝜆𝑚,𝑛𝐵𝑚Ω

𝑚−1

𝑛
𝑢𝑛 ∈

(𝐼 + 𝜆𝑚,𝑛𝑅𝑚
)Ω
𝑚

𝑛
𝑢𝑛;

(89)

that is,

1

𝜆𝑚,𝑛

(Ω
𝑚−1

𝑛
𝑢
𝑛
− Ω
𝑚

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐵
𝑚
Ω
𝑚−1

𝑛
𝑢
𝑛
) ∈ 𝑅
𝑚
Ω
𝑚

𝑛
𝑢
𝑛
.

(90)

In terms of the monotonicity of 𝑅
𝑚, we get

⟨V − Ω𝑚
𝑛
𝑢
𝑛
, 𝑔 − 𝐵

𝑚
V

−

1

𝜆
𝑚,𝑛

(Ω
𝑚−1

𝑛
𝑢
𝑛
− Ω
𝑚

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐵
𝑚
Ω
𝑚−1

𝑛
𝑢
𝑛
)⟩ ≥ 0

(91)

and, hence,

⟨V − Ω𝑚
𝑛
𝑢
𝑛
, 𝑔⟩

≥ ⟨V − Ω𝑚
𝑛
𝑢𝑛, 𝐵𝑚V

+

1

𝜆
𝑚,𝑛

(Ω
𝑚−1

𝑛
𝑢
𝑛
− Ω
𝑚

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐵
𝑚
Ω
𝑚−1

𝑛
𝑢
𝑛
)⟩
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= ⟨V − Ω𝑚
𝑛
𝑢
𝑛
, 𝐵
𝑚
V − 𝐵
𝑚
Ω
𝑚

𝑛
𝑢
𝑛
+ 𝐵
𝑚
Ω
𝑚

𝑛
𝑢
𝑛
− 𝐵
𝑚
Ω
𝑚−1

𝑛
𝑢
𝑛

+

1

𝜆𝑚,𝑛

(Ω
𝑚−1

𝑛
𝑢
𝑛
− Ω
𝑚

𝑛
𝑢
𝑛
)⟩

≥ ⟨V − Ω𝑚
𝑛
𝑢𝑛, 𝐵𝑚Ω

𝑚

𝑛
𝑢𝑛 − 𝐵𝑚Ω

𝑚−1

𝑛
𝑢𝑛⟩

+ ⟨V − Ω𝑚
𝑛
𝑢
𝑛
,

1

𝜆
𝑚,𝑛

(Ω
𝑚−1

𝑛
𝑢
𝑛
− Ω
𝑚

𝑛
𝑢
𝑛
)⟩ . (92)

In particular,

⟨V − Ω𝑚
𝑛
𝑖

𝑢𝑛
𝑖

, 𝑔⟩

≥ ⟨V − Ω𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐵
𝑚
Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− 𝐵
𝑚
Ω
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

+ ⟨V − Ω𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

,

1

𝜆
𝑚,𝑛
𝑖

(Ω
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

− Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

)⟩ .

(93)

Since ‖Ω𝑚
𝑛
𝑢𝑛 − Ω

𝑚−1

𝑛
𝑢𝑛‖ → 0 (due to (76)) and ‖𝐵𝑚Ω

𝑚

𝑛
𝑢𝑛 −

𝐵𝑚Ω
𝑚−1

𝑛
𝑢𝑛‖ → 0 (due to the Lipschitz continuity of 𝐵𝑚), we

conclude fromΩ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤 and condition (ii) that

lim
𝑖→∞

⟨V − Ω𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝑔⟩ = ⟨V − 𝑤, 𝑔⟩ ≥ 0. (94)

It follows from the maximal monotonicity of 𝐵
𝑚 + 𝑅𝑚

that 0 ∈ (𝑅𝑚 + 𝐵𝑚)𝑤; that is, 𝑤 ∈ 𝐼(𝐵𝑚, 𝑅𝑚).
Therefore, 𝑤 ∈ ⋂

𝑁

𝑚=1
𝐼(𝐵
𝑚
, 𝑅
𝑚
). Next, we prove that

𝑤 ∈ ⋂
𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
). Since Θ𝑘

𝑛
𝑥
𝑛
= 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 −

𝑟
𝑘,𝑛
𝐴
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛
, 𝑛 ≥ 1, 𝑘 ∈ {1, 2, . . . ,𝑀}, we have

𝐹𝑘 (Θ
𝑘

𝑛
𝑥𝑛, 𝑦) + 𝜑𝑘 (𝑦) − 𝜑𝑘 (Θ

𝑘

𝑛
𝑥𝑛) + ⟨𝐴𝑘Θ

𝑘−1

𝑛
𝑥𝑛, 𝑦 − Θ

𝑘

𝑛
𝑥𝑛⟩

+

1

𝑟
𝑘,𝑛

⟨𝑦 − Θ
𝑘

𝑛
𝑥
𝑛
, Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛
⟩ ≥ 0.

(95)

By (A2), we have

𝜑
𝑘
(𝑦) − 𝜑

𝑘
(Θ
𝑘

𝑛
𝑥
𝑛
) + ⟨𝐴

𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
, 𝑦 − Θ

𝑘

𝑛
𝑥
𝑛
⟩

+

1

𝑟
𝑘,𝑛

⟨𝑦 − Θ
𝑘

𝑛
𝑥𝑛, Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛⟩ ≥ 𝐹𝑘 (𝑦, Θ

𝑘

𝑛
𝑥𝑛) .

(96)

Let 𝑧
𝑡
= 𝑡𝑦+ (1− 𝑡)𝑤, for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. This implies

that 𝑧
𝑡
∈ 𝐶. Then, we have

⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐴
𝑘
𝑧
𝑡
⟩

≥ 𝜑
𝑘
(Θ
𝑘

𝑛
𝑥
𝑛
) − 𝜑
𝑘
(𝑧
𝑡
) + ⟨𝑧

𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐴
𝑘
𝑧
𝑡
⟩

− ⟨𝑧𝑡 − Θ
𝑘

𝑛
𝑥𝑛, 𝐴𝑘Θ

𝑘−1

𝑛
𝑥𝑛⟩

− ⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
,

Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛

𝑟
𝑘,𝑛

⟩ + 𝐹
𝑘
(𝑧
𝑡
, Θ
𝑘

𝑛
𝑥
𝑛
)

= 𝜑
𝑘
(Θ
𝑘

𝑛
𝑥
𝑛
) − 𝜑
𝑘
(𝑧
𝑡
) + ⟨𝑧

𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐴
𝑘
𝑧
𝑡
− 𝐴
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
⟩

+ ⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐴
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
− 𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
⟩

− ⟨𝑧
𝑡 − Θ
𝑘

𝑛
𝑥𝑛,

Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛

𝑟
𝑘,𝑛

⟩ + 𝐹𝑘 (𝑧𝑡, Θ
𝑘

𝑛
𝑥𝑛) .

(97)

By (58), we have ‖𝐴
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
− 𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Furthermore, by the monotonicity of 𝐴
𝑘
, we obtain ⟨𝑧

𝑡
−

Θ
𝑘

𝑛
𝑥
𝑛
, 𝐴
𝑘
𝑧
𝑡
− 𝐴
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
⟩ ≥ 0. Then, by (A4), we obtain

⟨𝑧
𝑡
− 𝑤,𝐴

𝑘
𝑧
𝑡
⟩ ≥ 𝜑
𝑘 (
𝑤) − 𝜑𝑘

(𝑧
𝑡
) + 𝐹
𝑘
(𝑧
𝑡
, 𝑤) . (98)

Utilizing (A1), (A4), and (98), we obtain

0 = 𝐹
𝑘 (𝑧𝑡, 𝑧𝑡) + 𝜑𝑘 (𝑧𝑡) − 𝜑𝑘 (𝑧𝑡)

≤ 𝑡𝐹
𝑘
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) 𝐹𝑘

(𝑧
𝑡
, 𝑤) + 𝑡𝜑

𝑘
(𝑦)

+ (1 − 𝑡) 𝜑𝑘 (
𝑤) − 𝜑𝑘

(𝑧
𝑡
)

≤ 𝑡 [𝐹𝑘 (𝑧𝑡, 𝑦) + 𝜑𝑘 (𝑦) − 𝜑𝑘 (𝑧𝑡)] + (1 − 𝑡) ⟨𝑧𝑡 − 𝑤,𝐴𝑘𝑧𝑡⟩

= 𝑡 [𝐹
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
)] + (1 − 𝑡) 𝑡⟨𝑦 − 𝑤,𝐴𝑘

𝑧
𝑡
⟩,

(99)

and, hence,

0 ≤ 𝐹
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
) + (1 − 𝑡) ⟨𝑦 − 𝑤,𝐴𝑘

𝑧
𝑡
⟩ .

(100)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

0 ≤ 𝐹
𝑘
(𝑤, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘 (
𝑤) + ⟨𝑦 − 𝑤,𝐴𝑘

𝑤⟩ . (101)

This implies that 𝑤 ∈ GMEP(𝐹
𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) and, hence,

𝑤 ∈ ⋂
𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘). Consequently, 𝑤 ∈ 𝐹 =

⋂
∞

𝑛=1
Fix(𝑇𝑛) ∩ ⋂

𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘) ∩ ⋂

𝑁

𝑚=1
𝐼(𝐵𝑚, 𝑅𝑚) ∩

Fix(𝑆). This shows that 𝜔𝑤({𝑥𝑛}) ⊂ 𝐹. From (45) and
Lemma 16, we infer that 𝑥𝑛 → V = 𝑃𝐹𝑥0 as 𝑛 → ∞. This
completes the proof.

4. Weak Convergence Theorem

In this section, we prove a weak convergence theorem for
an iterative algorithm for finding a common element of the
set of solutions of the set of solutions of finite generalized
mixed equilibrium problems, the set of solutions of finite
variational inclusions for maximal monotone and inverse
strong monotone mappings, and the set of common fixed
points of infinite nonexpansive mappings and asymptotically
𝜅-strict pseudocontractive mapping 𝑆 : 𝐶 → 𝐶 in the
intermediate sense in a real Hilbert space. This iterative
algorithm is based on the extragradient method and Mann-
type iterative method.

Theorem 25. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑀,𝑁 be two integers. Let 𝐹

𝑘
be

a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
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𝜑
𝑘
: 𝐶 → R ∪ {+∞} be a proper lower semicontinuous

and convex function, where 𝑘 ∈ {1, 2, . . . ,𝑀}. Let 𝑅
𝑖
: 𝐶 →

2
𝐻 be a maximal monotone mapping and let 𝐴𝑘 : 𝐻 →

𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜇𝑘-inverse strongly monotone
and 𝜂𝑖-inverse strongly monotone, respectively, where 𝑘 ∈

{1, 2, . . . ,𝑀}, 𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense, for some 0 ≤ 𝜅 < 1, with sequences
{𝛾
𝑛
} ⊂ [0,∞) and {𝑐

𝑛
} ⊂ [0,∞). Let {𝑇

𝑛
}
∞

𝑛=1
be a sequence

of nonexpansive self-mappings on 𝐶 and {𝜆
𝑛
} be a sequence in

(0, 𝑏], for some 𝑏 ∈ (0, 1). Assume that 𝐹 := ⋂
∞

𝑛=1
Fix(𝑇
𝑛
) ∩

⋂
𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) ∩ ⋂
𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) ∩ Fix(𝑆) is nonempty

and that either (B1) or (B2) holds. Let {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛿

𝑛
} be

sequences in [0, 1] such that 𝛼
𝑛
+ 𝛽
𝑛
≤ 1, 0 < 𝑎 ≤ 𝛼

𝑛
≤ 1 and

𝜅 ≤ 𝛿
𝑛
≤ 𝑑 < 1. Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝑢
𝑛
= 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
) 𝑇
(𝐹
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀−1,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐴
1
) 𝑥
𝑛
,

𝑧
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆
𝑁−1,𝑛

𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
+ 𝛽
𝑛
𝑊
𝑛
𝑧
𝑛
,

(102)

where 𝑊
𝑛
is the 𝑊-mapping generated by (2.2). Assume that

the following conditions hold:

(i) ∑∞
𝑛=1

𝛾
𝑛
< ∞ and ∑∞

𝑛=1
𝑐
𝑛
< ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
(𝛼
𝑛
+ 𝛽
𝑛
) < 1;

(iii) {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), ∀𝑖 ∈ {1, 2, . . . , 𝑁};

(iv) {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), ∀𝑘 ∈ {1, 2, . . . ,𝑀}.

Then, {𝑥
𝑛
} converges weakly to 𝑤 = lim

𝑛→∞
𝑃
𝐹
𝑥
𝑛
.

Proof. First, let us show that lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists, for any

𝑝 ∈ 𝐹. Put

Θ
𝑘

𝑛
= 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐴
𝑘
) 𝑇
(𝐹
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟
𝑘−1,𝑛

𝐴
𝑘−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐴
1
) 𝑥
𝑛
,

(103)

for all 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑛 ≥ 1;

Ω
𝑖

𝑛
= 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝐽
𝑅
𝑖−1
,𝜆
𝑖−1,𝑛

× (𝐼 − 𝜆
𝑖−1,𝑛

𝐵
𝑖−1
) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) ,

(104)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝑛 ≥ 1, Θ0
𝑛
= Ω
0

𝑛
= 𝐼, where 𝐼 is the

identity mapping on 𝐻. Then, we have that 𝑢
𝑛
= Θ
𝑀

𝑛
𝑥
𝑛
and

𝑧
𝑛
= Ω
𝑁

𝑛
𝑢
𝑛
. Take 𝑝 ∈ 𝐹 arbitrarily. Similar to the proof of

Theorem 24, we obtain that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
, (105)

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
, (106)

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

𝑘 ∈ {1, 2, . . . ,𝑀} ,

(107)

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
, 𝑘 = 1, 2, . . . ,𝑀,

(108)

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

𝑖 ∈ {1, 2, . . . , 𝑁} ,

(109)

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
, 𝑖 ∈ {1, 2, . . . , 𝑁} .

(110)

We observe that
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
𝛿
𝑛
(𝑧
𝑛
− 𝑝) + (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

= 𝛿𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿𝑛)

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛿𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿𝑛)

× [(1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜅

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

= [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿𝑛) (𝜅 − 𝛿𝑛)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿𝑛) 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(111)

It follows from (105), (106), and (111) that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
− 𝛽
𝑛
)(𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑘
𝑛
− 𝑝) + 𝛽

𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2
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≤ (1 − 𝛼
𝑛
− 𝛽
𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

+ 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

= (1 + 𝛼
𝑛
𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
𝑐
𝑛

≤ (1 + 𝛾𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛. (112)

By Lemma 13 and condition (i), we deduce that lim
𝑛→∞‖𝑥𝑛−

𝑝‖ exists. Hence, {𝑥𝑛} is bounded and so are {𝑢𝑛}, {𝑧𝑛}, and
{𝑘𝑛}.

In addition, by Lemma 7(b), we obtain from (105), (106),
and (111) that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛 − 𝛽𝑛)(𝑥𝑛 − 𝑝) + 𝛼𝑛(𝑘𝑛 − 𝑝) + 𝛽𝑛(𝑊𝑛𝑧𝑛 − 𝑝)
󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (𝛼𝑛 + 𝛽𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
(𝑘
𝑛
− 𝑝) + 𝛽

𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑝)

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

− (𝛼𝑛 + 𝛽𝑛) (1 − 𝛼𝑛 − 𝛽𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) + 𝛽
𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛
)

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼𝑛 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (𝛼
𝑛
+ 𝛽
𝑛
) [

𝛼
𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+

𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
]

− (𝛼
𝑛
+ 𝛽
𝑛
) (1 − 𝛼

𝑛
− 𝛽
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛+1

− 𝑥
𝑛

𝛼𝑛 + 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

1 − 𝛼
𝑛
− 𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

1 − 𝛼
𝑛
− 𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

1 − 𝛼
𝑛 − 𝛽𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼
𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛 [(

1 + 𝛾
𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛]

−

1 − 𝛼
𝑛
− 𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2

= (1 + 𝛼
𝑛
𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
𝑐
𝑛
−

1 − 𝛼
𝑛
− 𝛽
𝑛

𝛼
𝑛
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 + 𝛾𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛 − (1 − 𝛼𝑛 − 𝛽𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
,

(113)

which immediately yields

(1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(114)

From lim
𝑛→∞

𝛾
𝑛
= 0, lim

𝑛→∞
𝑐
𝑛
= 0, lim sup

𝑛→∞
(𝛼
𝑛
+𝛽
𝑛
) <

1, and the existence of lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖, it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (115)

Again, utilizing Lemma 7(b), we obtain from (105), (106), and
(111) that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛 − 𝛽𝑛)(𝑥𝑛 − 𝑝) + 𝛼𝑛(𝑘𝑛 − 𝑝) + 𝛽𝑛(𝑊𝑛𝑧𝑛 − 𝑝)
󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

+ 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
− 𝛽𝑛 (1 − 𝛼𝑛 − 𝛽𝑛)

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛼𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼𝑛 [(1 + 𝛾𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛]

− 𝛽𝑛 (1 − 𝛼𝑛 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2

= (1 + 𝛼
𝑛
𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛼
𝑛
𝑐
𝑛

− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
− 𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
,

(116)

which leads to

𝛽
𝑛
(1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(117)

From lim
𝑛→∞

𝛾
𝑛
= 0, lim

𝑛→∞
𝑐
𝑛
= 0, condition (ii), and the

existence of lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖, it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (118)
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Note that

𝑥
𝑛+1

− 𝑥
𝑛
= 𝛼
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) + 𝛽
𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛
) . (119)

Hence, it is easy to see from 0 < 𝑎 ≤ 𝛼
𝑛 ≤ 1 that

𝑎
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
≤ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛
− 𝛽
𝑛
(𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛
)
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑊
𝑛𝑧𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
.

(120)

From (115) and (118), it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (121)

Combining (107) and (111), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛
,

(122)

where𝑀
1
= sup

𝑛≥1
‖𝑧
𝑛
− 𝑝‖
2, which implies

𝑟𝑘,𝑛 (2𝜇𝑘 − 𝑟𝑘,𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐴𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾𝑛𝑀1 + 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
) + 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛
.

(123)

From {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), 𝑘 ∈ {1, 2, . . . ,𝑀},

lim
𝑛→∞

𝛾
𝑛
= 0, lim

𝑛→∞
𝑐
𝑛
= 0, and (121), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (124)

Combining (108) and (111), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛
,

(125)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐴
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛
.

(126)

From lim
𝑛→∞

𝛾
𝑛
= 0, lim

𝑛→∞
𝑐
𝑛
= 0, (121), and (124), we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (127)

From (127), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
1

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
1

𝑛
𝑥
𝑛
− Θ
2

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󳨀→ as 𝑛 󳨀→ ∞.

(128)

Combining (109) and (111), we obtain

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾𝑛𝑀1 + 𝑐𝑛,

(129)

where 𝑖 ∈ {1, 2, . . . , 𝑁}, which implies

𝜆
𝑖,𝑛
(2𝜂
𝑖
− 𝜆
𝑖,𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
) + 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛
.

(130)

From {𝜆
𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), 𝑖 ∈ {1, 2, . . . , 𝑁}, lim𝑛→∞𝛾𝑛 =

0, lim
𝑛→∞

𝑐
𝑛
= 0, and (121), we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 ∈ {1, 2, . . . , 𝑁} . (131)
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Combining (110) and (111), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛𝑀1 + 𝑐𝑛,

(132)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛𝑀1 + 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛
𝑀
1
+ 𝑐
𝑛
.

(133)

From lim
𝑛→∞

𝛾
𝑛
= 0, lim

𝑛→∞
𝑐
𝑛
= 0, (121), and (131), we

obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 ∈ {1, 2, . . . , 𝑁} . (134)

By (134), we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢
𝑛
− Ω
𝑁

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢
𝑛
− Ω
1

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
1

𝑛
𝑢
𝑛
− Ω
2

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑁−1

𝑛
𝑢
𝑛
− Ω
𝑁

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(135)

From (128) and (135), we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(136)

By (121) and (136), we obtain

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(137)

We note that

𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿

𝑛
) (𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
) . (138)

From 𝛿
𝑛
≤ 𝑑 < 1 and (137), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (139)

On the other hand, we observe that
󵄩
󵄩
󵄩
󵄩
𝑧𝑛+1 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1 − 𝑥𝑛+1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
.

(140)

By (115) and (136), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (141)

We note that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆𝑧𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑧𝑛+1

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1 − 𝑆

𝑛+1
𝑧𝑛+1

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(142)

From (139), (141), Lemma 9, and the uniform continuity of 𝑆,
we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (143)

In addition, note that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
−𝑊𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
−𝑊𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
−𝑊
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝑛
𝑧
𝑛
−𝑊𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
.

(144)

So, from (118), (136), and [4, Remark 3.2], it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 −𝑊𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (145)

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

}

of {𝑥
𝑛
} which converges weakly to 𝑤. From (136), we have

that 𝑧
𝑛
𝑖

⇀ 𝑤. From (143) and the uniform continuity of
𝑆, we have lim

𝑛→∞
‖𝑧
𝑛
− 𝑆
𝑚
𝑧
𝑛
‖ = 0, for any 𝑚 ≥ 1. So,

from Lemma 11, we have 𝑤 ∈ Fix(𝑆). Utilizing the similar
arguments to those in the proof of Theorem 24, we can
derive𝑤 ∈ ⋂

𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘) ∩⋂

𝑁

𝑖=1
𝐼(𝐵𝑖, 𝑅𝑖) ∩ Fix(𝑊).

Consequently, 𝑤 ∈ 𝐹. This shows that 𝜔𝑤(𝑥𝑛) ⊂ 𝐹.
Next, let us show that 𝜔𝑤(𝑥𝑛) is a single-point set. As a

matter of fact, let {𝑥𝑛
𝑗

} be another subsequence of {𝑥
𝑛
} such

that 𝑥
𝑛
𝑗

⇀ 𝑤
󸀠. Then, we get𝑤󸀠 ∈ 𝐹. If𝑤 ̸=𝑤

󸀠, from the Opial
condition, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑤

󵄩
󵄩
󵄩
󵄩
= lim
𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
𝑖

− 𝑤

󵄩
󵄩
󵄩
󵄩
󵄩
< lim
𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
𝑖

− 𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩
= lim
𝑗→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
𝑗

− 𝑤
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

< lim
𝑗→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
𝑗

− 𝑤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑤

󵄩
󵄩
󵄩
󵄩
.

(146)

This attains a contradiction. So we have 𝑤 = 𝑤
󸀠. Put V

𝑛
=

𝑃
𝐹
(𝑥
𝑛
). Since 𝑤 ∈ 𝐹, we have ⟨𝑥

𝑛
− V
𝑛
, V
𝑛
− 𝑤⟩ ≥ 0. By

Lemma 15, we have that {V
𝑛
} converges strongly to some𝑤

0
∈

𝐹. Since {𝑥
𝑛
} converges weakly to 𝑤, we have

⟨𝑤 − 𝑤
0
, 𝑤
0
− 𝑤⟩ ≥ 0. (147)

Therefore, we obtain𝑤 = 𝑤
0
= lim
𝑛→∞

𝑃
𝐹
𝑥
𝑛
. This completes

the proof.



16 Abstract and Applied Analysis

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This project was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, under Grant
no. 30-130-35-HiCi. The authors, therefore, acknowledge the
technical and financial support of KAU. The authors thank
the referees for their valuable comments and appreciation.

References

[1] J.-W. Peng and J.-C. Yao, “A new hybrid-extragradient method
for generalized mixed equilibrium problems, fixed point prob-
lems and variational inequality problems,” Taiwanese Journal of
Mathematics, vol. 12, no. 6, pp. 1401–1432, 2008.

[2] L.-C. Ceng and J.-C. Yao, “A hybrid iterative scheme for mixed
equilibrium problems and fixed point problems,” Journal of
Computational andAppliedMathematics, vol. 214, no. 1, pp. 186–
201, 2008.

[3] S. Takahashi and W. Takahashi, “Strong convergence theorem
for a generalized equilibrium problem and a nonexpansive
mapping in a Hilbert space,” Nonlinear Analysis: Theory, Meth-
ods & Applications, vol. 69, no. 3, pp. 1025–1033, 2008.

[4] Y. Yao, Y.-C. Liou, and J.-C. Yao, “Convergence theorem for
equilibrium problems and fixed point problems of infinite
family of nonexpansive mappings,” Fixed Point Theory and
Applications, vol. 2007, Article ID 064363, 12 pages, 2007.
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