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We study a class of discrete SIRS epidemic models with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼) and disease-induced mortality. By using
analytic techniques and constructing discrete Lyapunov functions, the global stability of disease-free equilibrium and endemic
equilibrium is obtained. That is, if basic reproduction numberR

0
< 1, then the disease-free equilibrium is globally asymptotically

stable, and ifR
0
> 1, then the model has a unique endemic equilibrium and when some additional conditions hold the endemic

equilibrium also is globally asymptotically stable. By using the theory of persistence in dynamical systems, we further obtain that
only when R

0
> 1, the disease in the model is permanent. Some special cases of 𝐹(𝑆)𝐺(𝐼) are discussed. Particularly, when

𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜆𝐼), it is obtained that the endemic equilibrium is globally asymptotically stable if and only if R
0
> 1.

Furthermore, the numerical simulations show that for general incidence rate 𝐹(𝑆)𝐺(𝐼) the endemic equilibrium may be globally
asymptotically stable only asR

0
> 1.

1. Introduction

During the past decades, no matter discrete epidemic models
or continuous epidemic models, have been widely studied.
Many important and interesting results can be found in [1–28]
and the references cited therein. The main research subjects
are the computation of the threshold value or basic repro-
duction number which distinguishes whether the infectious
disease will persist or die out, the local and global stability
of the disease-free equilibrium and endemic equilibrium,
the extinction, persistence, and permanence of the disease,
and the bifurcations, chaos, and more complex dynamical
behaviors of the models.

Among these questions, global stability of equilibria
has always been one of the research focuses and difficult
problems.Many authors have investigated this question using
the second Lyapunov method (see [29]). The most popular
types of Lyapunov functions candidate for population biology
models are the Volterra-type functions 𝑥 − 𝑥

∗
− ln(𝑥/𝑥∗)

and the quadratic function (𝑐/2)(𝑥 − 𝑥∗)2. The former has
been successfully applied for various disease propagation

models by Korobeinikov and his coworkers (see [7–10] and
the references cited therein). In [11], Li et al. presented an
algebraic approach to prove the global stability, which can
provide the method of constructing a Lyapunov function and
prove the negative definiteness of the derivative. Recently,
by combining Volterra functions and quadratic functions,
Vargas-De-León has studied global stability of classic con-
tinuous SIS, SIR, and SIRS epidemic models with constant
recruitment, disease-induced death, and standard incidence
rate and bilinear incidence rate in [12, 13], respectively.
McCluskey in [14–16] introduced the Lyapunov functional
formed as ∫𝜏

0
(𝑥(𝑡−𝑠)/𝑥

∗
−1− ln(𝑥(𝑡−𝑠)/𝑥∗))𝑑𝑠 to investigate

global stability of endemic equilibrium of SEIR epidemic
model with distributed delay or discrete delay.

It is well known that a crucial role inmathematicalmodels
of infectious disease is played by the so-called incidence rate,
namely, a function describing themechanism of transmission
of the disease. In most epidemiological models, bilinear
incidence rate 𝛽𝑆𝐼 and standard incidence rate 𝛽𝑆𝐼/𝑁 are
frequently used, where 𝑁 is the total number of the pop-
ulation (𝑁 = 𝑆 + 𝐼 + 𝑅) and 𝛽 > 0 is the per capita
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contact rate. These incidences imply that the contact number
between 𝑆 and 𝐼 is proportional to 𝑆𝐼 or 𝑆𝐼/𝑁. But the
infection probability per contact is likely influenced by the
number of infective and susceptible individuals, because
more infective individuals can increase the infection risk and
susceptible individuals would avoid the contact with infective
individuals.Therefore, a number of nonlinear incidence rates
are suggested by researchers. After studying the cholera
epidemic spread in Bari in 1973, Capasso and Serio [17]
introduced the saturated incidence rate𝛽𝑆𝐺(𝐼) into epidemic
models. To incorporate the effect of the behavioral changes
of the susceptible individuals, Liu et al. proposed the general
incidence rate𝛽𝑆𝐼𝑝/(1+𝑘𝐼𝑞) in [18], where𝑝, 𝑞 > 0 and 𝑘 ≥ 0.
The special cases when 𝑝 and 𝑞 are given different values have
been used bymany authors (see, e.g., Korobeinikov andMaini
[6], Ruan and Wang [19], and Xiao and Ruan [20]).

However, until now, to the best of our knowledge, there
are few search results about global stability of equilibria
for discrete SIRS model with nonlinear incidence rate. Hu
et al. in [28] discussed local stability and complex dynamical
behaviors for a class of discrete SIRS epidemic models with
general nonlinear incidence rate discretized by the forward
Euler scheme. Enatsu et al. in [22] proposed a class of
discrete SIR epidemic models with bilinear incidence rate,
which are derived from continuous SIR epidemic models
with distributed delays by using a variation of the backward
Euler method, and obtained that global stability of disease-
free equilibrium and endemic equilibrium. Muroya et al. in
[23] discussed global stability and permanence of a discrete
epidemic model with bilinear incidence rate and for disease
with immunity and latency spreading in a heterogeneous host
population, which is also discretized from the continuous
case by using the backward Euler method. In [24], Enatsu
et al. studied a class of discrete SIR epidemic models with
nonlinear incidence rates and distributed delays, which are
derived from the corresponding continuous SIR epidemic
models by applying a variation of the backward Euler
discretization. Using discrete-time analogue of Lyapunov
functionals, the global asymptotic stability of the disease-
free equilibriumand endemic equilibrium is fully determined
by the basic reproduction number 𝑅

0
, when the infection

incidence rate has a suitable monotone property.
Motivated by the fact that discrete epidemic models are

more appropriate approach to understand disease transmis-
sion dynamics and to evaluate eradication policies because
they permit arbitrary time step units, preserving the basic
features of corresponding continuous models, in this paper,
we will extend a discrete-time analogue of Lyapunov tech-
niques proposed in [25–27] to the following discrete SIRS
epidemic models with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼),
which is established by using the backward Euler scheme
(see [30, 31]) to discretize the corresponding continuous SIRS
epidemic model:

𝑆 (𝑛 + 1) = 𝑆 (𝑛) + Λ − 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1) ,

𝐼 (𝑛 + 1) = 𝐼 (𝑛) + 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1) ,

𝑅 (𝑛 + 1) = 𝑅 (𝑛) + 𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1) .

(1)

We will investigate the global behaviors of solutions of model
(1). By constructing new discrete Lyapunov functions, we will
establish some new criteria on the global asymptotic stability
of the disease-free equilibrium and endemic equilibrium for
model (1). By using the theory of persistence in dynamical
systems, we will further obtain the sufficient and necessary
conditions for the permanence of the disease for model (1).

The organization of this paper is as follows. In Section 2,
the existence of equilibria and positivity of solutions for
model (1) are given. In Section 3, the results on the global
asymptotic stability of the disease-free equilibrium and
endemic equilibrium for model (1) are stated and proved. In
Section 4, the results on the permanence of the disease in
model (1) are established. In Section 5, the global asymptotic
stability of the endemic equilibrium of model (1) for the
special case 𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆) is discussed. Finally, some
examples are given to illustrate the main theoretical results
in Section 6.

2. Equilibria and Positivity

For model (1), 𝑆(𝑛), 𝐼(𝑛), and 𝑅(𝑛) represent the numbers
of susceptible, infectious, and recovered individuals at 𝑛th
generation, respectively. The parameters Λ, 𝜇, 𝛼, and 𝑘 are
positive constants and 𝛾 is nonnegative constant in whichΛ is
the recruitment rate into the population,𝜇 is the natural death
rate, 𝛼 is the disease-induced death rate, 𝑘 is the recovery rate
of the infectious individuals, 𝛾 is the rate of losing immunity,
𝛾 > 0 implies that the recovered individuals would lose the
immunity, and 𝛾 = 0 implies that the recovered individuals
acquire permanent immunity. The spread of disease can be
described by general form with incidence rate 𝐹(𝑆)𝐺(𝐼);
that is, the incidence rate depends on the number of the
susceptible individuals and the number of the infectious
individuals. This generalizes the bilinear incidence rate (i.e.,
𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼), saturated incidence rate with respect to 𝑆
(i.e., 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜆𝑆)), and saturated incidence rate
with respect to 𝐼 (i.e., 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1+𝜔𝐼)), where 𝛽 > 0,
𝜆 ≥ 0, and 𝜔 ≥ 0 are constants, which denotes the contact
coefficient and the saturated coefficient, respectively.

The initial condition for model (1) is given by

𝑆 (0) > 0, 𝐼 (0) > 0, 𝑅 (0) ≥ 0. (2)

In this paper, for functions 𝐹(𝑆) and 𝐺(𝐼), we firstly
introduce the following assumption.

(𝐻
1
) 𝐹(𝑆) and 𝐺(𝐼) are positive, monotonically increasing,
and continuous differentiable functions defined for all
𝑆 ≥ 0 and 𝐼 ≥ 0, the derivative𝐺󸀠(0) exists, and𝐹(0) =
𝐺(0) = 0. Furthermore,𝐺(𝐼)/𝐼 is nonincreasing for all
𝐼 > 0.
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Remark 1. Assumption (𝐻
1
) is basic for model (1). In fact, for

many special cases of 𝐹(𝑆)𝐺(𝐼), for example, 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼,
𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜆𝑆), and 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜔𝐼), (𝐻

1
)

is always satisfied.

In order to obtain the existence of disease-free equilib-
rium and endemic equilibrium of model (1), we introduce a
constant

R
0
=
𝐹 (Λ/𝜇)𝐺

󸀠
(0)

𝑘 + 𝜇 + 𝛼
. (3)

We have the following result.

Theorem 2. Assume that (𝐻
1
) holds.

(1) When R
0
≤ 1, then model (1) has only a unique

disease-free equilibrium 𝐸
0
(Λ/𝜇, 0, 0).

(2) WhenR
0
> 1, then model (1) shows a unique endemic

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
), except for 𝐸0, where 𝑆∗, 𝐼∗,

and 𝑅∗ satisfy

Λ = 𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
) + 𝜇𝑆

∗
− 𝛾𝑅
∗
,

𝐼
∗
(𝑘 + 𝜇 + 𝛼) = 𝐹 (𝑆

∗
) 𝐺 (𝐼
∗
) ,

𝑘𝐼
∗
= (𝜇 + 𝛾) 𝑅

∗
.

(4)

Proof. Obviously, model (1) always has a disease-free equilib-
rium 𝐸

0
(Λ/𝜇, 0, 0). From (4), we have

𝑅
∗
=

𝑘𝐼
∗

𝜇 + 𝛾
, Λ = 𝐼

∗
(𝑘 + 𝜇 + 𝛼) + 𝜇𝑆

∗
− 𝛾𝑅
∗
. (5)

Hence,

𝑆
∗
=
1

𝜇
(Λ − 𝐼

∗
(𝑘 + 𝜇 + 𝛼 −

𝑘𝛾

𝜇 + 𝛾
))

=
Λ

𝜇
− 𝐼
∗
(𝜇 + 𝛼) (𝜇 + 𝛾) + 𝑘𝜇

𝜇 (𝜇 + 𝛾)
,

(6)

and from the second equation of (4) we further have

𝐼
∗
(𝑘 + 𝜇 + 𝛼) = 𝐹(

Λ

𝜇
− 𝐼
∗
(𝜇 + 𝛼) (𝜇 + 𝛾) + 𝑘𝜇

𝜇 (𝜇 + 𝛾)
)𝐺 (𝐼

∗
) .

(7)

When 𝐼 > 0, let

𝐻(𝐼) = 𝑘 + 𝜇 + 𝛼 − 𝐹(
Λ

𝜇
− 𝐼

(𝜇 + 𝛼) (𝜇 + 𝛾) + 𝑘𝜇

𝜇 (𝜇 + 𝛾)
)
𝐺 (𝐼)

𝐼
.

(8)

Then by (𝐻
1
) we obtain

lim
𝐼→0
+

𝐻(𝐼) = 𝑘 + 𝜇 + 𝛼 − 𝐹(
Λ

𝜇
)𝐺
󸀠
(0) {

≥ 0, R
0
≤ 1,

< 0, R
0
> 1.

(9)

Let 𝐼 = Λ(𝜇 + 𝛾)/((𝜇 + 𝛾)(𝜇 + 𝛼) + 𝑘𝜇); then we obviously
have 𝐻(𝐼) = 𝑘 + 𝜇 + 𝛼 > 0. From (𝐻

1
), 𝐹((Λ/𝜇) − 𝐼(((𝜇 +

𝛼)(𝜇 + 𝛾) + 𝑘𝜇)/𝜇(𝜇 + 𝛾))) is monotonically decreasing for
𝐼 ∈ (0, 𝐼], and hence𝐻(𝐼) is monotonically increasing for 𝐼 ∈
(0, 𝐼]. Thus, from (9), we obtain that when R

0
≤ 1 equation

𝐻(𝐼) = 0 has not any solution in (0, 𝐼) and when R
0
> 1

equation𝐻(𝐼) = 0 has a unique positive solution 𝐼∗ in (0, 𝐼).
This shows that when R

0
≤ 1 model (1) does not have any

endemic equilibrium. WhenR
0
> 1, let

𝑅
∗
=

𝑘𝐼
∗

𝜇 + 𝛾
, 𝑆

∗
=
1

𝜇
(Λ − 𝐼

∗
(𝑘 + 𝜇 + 𝛼 −

𝑘𝛾

𝜇 + 𝛼
)) ,

(10)

and then 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is a unique endemic equilibrium of
model (1). This completes the proof.

From Theorem 2, we can claim that the basic repro-
duction number of model (1) is R

0
. On the positivity and

ultimate boundedness of solutions ofmodel (1), we obtain the
following theorem.

Theorem 3. Assume that (𝐻
1
) holds. Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛))

be the solution of model (1) with initial conditions (2); then
(𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) is positive for any 𝑛 > 0 and ultimately
bounded.

Proof. Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any solution of model (1) with
initial conditions (2). Further, let𝑁(𝑛) = 𝑆(𝑛) + 𝐼(𝑛) + 𝑅(𝑛));
then model (1) is equivalent to the following form:

𝐼 (𝑛 + 1) =
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (𝑛) + 𝐹 (𝑁 (𝑛 + 1)

− 𝐼 (𝑛 + 1) − 𝑅 (𝑛 + 1) )

× 𝐺 (𝐼 (𝑛 + 1)) ) ,

𝑅 (𝑛 + 1) =
𝑅 (𝑛) + 𝑘𝐼 (𝑛 + 1)

1 + 𝜇 + 𝛾
,

𝑁 (𝑛 + 1) =
𝑁 (𝑛) + Λ − 𝛼𝐼 (𝑛 + 1)

1 + 𝜇
,

(11)

𝑆 (𝑛 + 1) = 𝑆 (𝑛) + Λ − 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1) .

(12)
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In the following, we will use the induction to prove the
positivity of (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)). When 𝑛 = 0, we have

𝐼 (1) =
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (0) + 𝐹 (𝑁 (1) − 𝐼 (1) − 𝑅 (1)) 𝐺 (𝐼 (1))) ,

(13)

𝑅 (1) =
𝑅 (0) + 𝑘𝐼 (1)

1 + 𝜇 + 𝛾
, 𝑁 (1) =

𝑁 (0) + Λ − 𝛼𝐼 (1)

1 + 𝜇
,

(14)

𝑆 (1) = 𝑆 (0) + Λ − 𝐹 (𝑆 (1)) 𝐺 (𝐼 (1)) − 𝜇𝑆 (1) + 𝛾𝑅 (1) .

(15)

From (13)–(15) we see that as long as 𝐼(1) is confirmed, then
𝑅(1),𝑁(1), and 𝑆(1) will be whereafter confirmed.

Firstly, we prove that if 𝐼(1) > 0, then 𝑆(1) > 0 and 𝑅(1) >
0. From (14), we directly obtain 𝑅(1) > 0 when 𝐼(1) > 0. Let
𝑥 = 𝑆(1), and from (15) we obtain

Φ (𝑥) ≜ (1 + 𝜇) 𝑥 + 𝐹 (𝑥) 𝐺 (𝐼 (1)) − 𝛾𝑅 (1) − 𝑆 (0) − Λ = 0.

(16)

It is obvious that, when 𝐼(1) > 0, Φ(𝑥) is monotonically
increasing for 𝑥 ≥ 0. Obviously, Φ(𝑥) is a continuous
function for 𝑥. Since Φ(0) = −𝛾𝑅(1) − 𝑆(0) − Λ < 0 and
lim
𝑥→+∞

Φ(𝑥) = +∞, we obtain that Φ(𝑥) = 0 has a unique
positive solution 𝑥. Therefore, we further have 𝑆(1) = 𝑥 > 0.
Furthermore, we also have𝑁(1) = 𝑆(1) + 𝐼(1) + 𝑅(1) > 0.

Let 𝑦 = 𝐼(1)); then from (13) we see that 𝑦 must satisfy
the following equation:

Ψ (𝑦) ≜ 𝑦 −
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (0) + 𝐹 (𝑁 (1) − 𝑦 − 𝑅 (1)) 𝐺 (𝑦)) = 0,

(17)

where

𝑁(1) =
𝑁 (0) + Λ − 𝛼𝑦

1 + 𝜇
, 𝑅 (1) =

𝑅 (0) + 𝑘𝑦

1 + 𝜇 + 𝛾
. (18)

Denote

𝑎
0
=
𝑁 (0) + Λ

1 + 𝜇
−

𝑅 (0)

1 + 𝜇 + 𝛾
,

𝑏
0
=

𝛼

1 + 𝜇
+ 1 +

𝑘

1 + 𝜇 + 𝛾
.

(19)

Obviously, 𝑎
0
> 0. Let 𝑦

0
= 𝑎
0
/𝑏
0
; then when 𝑦 = 𝑦

0
we have

𝑁(1) − 𝑦 − 𝑅(1) = 0. We also have that 𝑁(1) − 𝑦 − 𝑅(1) is
monotonically decreasing with respect to 𝑦 ∈ [0, 𝑦

0
]. Hence,

by (𝐻
1
), 𝐹(𝑁(1) − 𝑦 −𝑅(1)) is also monotonically decreasing

with respect to 𝑦 ∈ [0, 𝑦
0
]. From the expression of Ψ(𝑦)

and (𝐻
1
), we obtain thatΨ(𝑦) is monotonically increasing for

𝑦 ∈ [0, 𝑦
0
]. Obviously, Ψ(𝑦) is a continuousfunction for 𝑦.

Since

Ψ (0) = −
𝐼 (0)

1 + 𝑘 + 𝜇 + 𝛼
< 0,

Ψ (𝑦
0
) = 𝑦
0
−

1

1 + 𝑘 + 𝜇 + 𝛼
𝐼 (0)

=
(Λ + 𝑁 (0)) (1 + 𝜇 + 𝛾) − 𝑅 (0) (1 + 𝜇)

𝛼 (1 + 𝜇 + 𝛾) + (1 + 𝜇) (1 + 𝜇 + 𝛾) + 𝑘 (1 + 𝜇)

−
1

1 + 𝑘 + 𝜇 + 𝛼
𝐼 (0)

≥
Λ + 𝑆 (0) + 𝐼 (0)

1 + 𝑘 + 𝜇 + 𝛼
−

1

1 + 𝑘 + 𝜇 + 𝛼
𝐼 (0)

=
Λ + 𝑆 (0)

1 + 𝑘 + 𝜇 + 𝛼
,

(20)

there exists a unique 𝑦 ∈ (0, 𝑦
0
) such that Ψ(𝑦) = 0.

Now, we show that 𝑦 is a unique solution of Ψ(𝑦) = 0 on
(0,∞). Otherwise, there is a𝑦󸀠 ∈ [𝑦

0
,∞) such thatΨ(𝑦󸀠) = 0.

Since𝑦󸀠 ≥ 𝑦
0
, we have𝑁(1)−𝑦−𝑅(1) ≤ 0when𝑦 = 𝑦󸀠. From

(𝐻
1
), we have 𝐹(𝑆) ≥ 0 for any 𝑆 ≥ 0; hence from Ψ(𝑦

󸀠
) = 0

we further have 𝑦󸀠 ≤ 𝐼(0)/(1 + 𝜇 + 𝛼 + 𝑘). On the other hand,
since 𝑎

0
> 𝐼(0)/(1 + 𝜇) and 𝑏

0
< (1 + 𝜇 + 𝛼 + 𝑘)/(1 + 𝜇), we

obtain𝑦󸀠 > 𝐼(0)/(1+𝜇+𝛼+𝑘), which leads to a contradiction.
Therefore, we certainly have 𝐼(1) = 𝑦 > 0. From the above

discussions, we finally have 𝐼(1) > 0, 𝑆(1) > 0, and 𝑅(1) > 0.
When 𝑛 = 1, we obtain

𝐼 (2) =
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (1) + 𝐹 (𝑁 (1) − 𝐼 (1) − 𝑅 (1)) 𝐺 (𝐼 (1))) ,

𝑅 (2) =
𝑅 (1) + 𝑘𝐼 (2)

1 + 𝜇 + 𝛾
,

𝑁 (2) =
𝑁 (1) + Λ − 𝛼𝐼 (2)

1 + 𝜇
,

𝑆 (2) = 𝑆 (1) + Λ − 𝐹 (𝑁 (2) − 𝐼 (2) − 𝑅 (2))

× 𝐺 (𝐼 (2)) − 𝜇𝑆 (2) + 𝛾𝑅 (2) .

(21)

Obviously, using a similar argument in the above process, we
also can obtain 𝑆(2) > 0, 𝐼(2) > 0, and 𝑅(2) > 0. Lastly, by
using the induction, we can finally obtain 𝑆(𝑛) > 0, 𝐼(𝑛) > 0,
and 𝑅(𝑛) > 0 for all 𝑛 > 0.

From the third equation of model (11), we have

𝑁(𝑛 + 1) ≤
1

1 + 𝜇
(𝑁 (𝑛) + Λ) . (22)

Since comparison equation,

𝑈 (𝑛 + 1) =
1

1 + 𝜇
(𝑈 (𝑛) + Λ) , (23)
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has a globally asymptotically stable equilibrium 𝑈
∗
= Λ/𝜇,

from the comparison principle of difference equations (see
[32]), we finally obtain

lim sup
𝑛→∞

𝑁(𝑛) ≤
Λ

𝜇
. (24)

Therefore, (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) is also ultimately bound. This
completes the proof.

3. Global Stability

Now, we are concerned with the global asymptotic stability of
disease-free equilibrium 𝐸

0 and endemic equilibrium 𝐸
∗ of

model (1), respectively.

Theorem 4. Assume that (𝐻
1
) holds. Then disease-free equi-

librium 𝐸
0
(Λ/𝜇, 0, 0) of model (1) is globally asymptotically

stable ifR
0
< 1 and is globally attractive ifR

0
= 1.

Proof. Calculating the linearization system of model (1) at
equilibrium 𝐸

0, we have

𝑢
𝑛+1

= 𝑢
𝑛
− 𝐹(

Λ

𝜇
)𝐺
󸀠
(0) V𝑛+1 − 𝜇𝑢𝑛+1 + 𝛾𝑤𝑛+1,

V
𝑛+1

= V
𝑛
+ 𝐹(

Λ

𝜇
)𝐺
󸀠
(0) V𝑛+1 − (𝑘 + 𝜇 + 𝛼) V𝑛+1,

𝑤
𝑛+1

= 𝑤
𝑛
+ 𝑘V
𝑛+1

− (𝜇 + 𝛾)𝑤
𝑛+1
.

(25)

From the second equation of system (25), we have

V
𝑛+1

=
V
𝑛

1 + 𝑘 + 𝜇 + 𝛼 − 𝐹 (Λ/𝜇)𝐺󸀠 (0)
. (26)

WhenR
0
< 1, we obtain

0 <
1

1 + 𝑘 + 𝜇 + 𝛼 − 𝐹 (Λ/𝜇)𝐺󸀠 (0)

=
1

1 + (𝑘 + 𝜇 + 𝛼) (1 −R
0
)
< 1.

(27)

Therefore, lim
𝑛→∞

V
𝑛
= 0. By

𝑢
𝑛+1

=
𝑢
𝑛
− 𝐹 (Λ/𝜇)𝐺

󸀠
(0) V
𝑛+1

1 + 𝜇
, 𝑤

𝑛+1
=
𝑤
𝑛
+ 𝑘V
𝑛+1

1 + 𝜇 + 𝛾
,

(28)

we further obtain lim
𝑛→∞

𝑢
𝑛
= 0 and lim

𝑛→∞
𝑤
𝑛
= 0. This

shows that 𝐸0 is locally stable when R
0
< 1. Since the case

R
0
= 1 is a critical one for model (1), in the following,

we discuss global attractivity of disease-free equilibrium 𝐸
0

whenR
0
≤ 1.

Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any positive solution of model (1)
with initial conditions (2). We need to consider the following
two cases.

Case 1.𝑁(𝑛) ≥ Λ/𝜇 for all 𝑛 = 1, 2, . . ..

Case 2. There exists an integer 𝑛
1
> 0 such that𝑁(𝑛

1
) < Λ/𝜇.

For Case 1, from (24), we directly have

lim
𝑛→∞

𝑁(𝑛) =
Λ

𝜇
. (29)

From third equation of (11), we further obtain

lim
𝑛→∞

𝐼 (𝑛) = lim
𝑛→∞

1

𝛼
[𝑁 (𝑛) (1 + 𝜇) − 𝑁 (𝑛 − 1) − Λ]

=
1

𝛼
[
Λ

𝜇
(1 + 𝜇) −

Λ

𝜇
− Λ] = 0.

(30)

For Case 2, by using the iterative computations to
inequality (22), we can obtain 𝑁(𝑛) < Λ/𝜇 for all 𝑛 ≥ 𝑛

1
.

Hence, 𝑆(𝑛) < Λ/𝜇 for all 𝑛 ≥ 𝑛
1
. From (𝐻

1
), we further

obtain

𝐹 (𝑆 (𝑛 + 1)) < 𝐹(
Λ

𝜇
) , ∀𝑛 ≥ 𝑛

1
. (31)

Since

𝐺 (𝐼 (𝑛 + 1))

𝐼 (𝑛 + 1)
≤ lim
𝐼→0
+

𝐺 (𝐼)

𝐼
= 𝐺
󸀠
(0) , (32)

from the second equation of model (1), it follows that, for all
𝑛 ≥ 𝑛
1
,

𝐼 (𝑛 + 1) − 𝐼 (𝑛) = 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1)

= 𝐼 (𝑛 + 1) (𝐹 (𝑆 (𝑛 + 1))

×
𝐺 (𝐼 (𝑛 + 1))

𝐼 (𝑛 + 1)
− (𝑘 + 𝜇 + 𝛼))

≤ 𝐼 (𝑛 + 1) (𝐹(
Λ

𝜇
)𝐺
󸀠
(0) − (𝑘 + 𝜇 + 𝛼))

= (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1) (R0 − 1) .

(33)

IfR
0
≤ 1, then

𝐼 (𝑛 + 1) − 𝐼 (𝑛) ≤ 0 for all 𝑛 ≥ 𝑛
1
. (34)

Hence, 𝐼(𝑛) is nonincreasing for 𝑛 ≥ 𝑛
1
. Consequently,

lim
𝑛→∞

𝐼(𝑛) = 𝐼 exists and 𝐼 ≥ 0.
Suppose 𝐼 > 0; then from the second and third

equations of model (11), we can obtain that lim
𝑛→∞

𝑅(𝑛) and
lim
𝑛→∞

𝑁(𝑛) exist, and

lim
𝑛→∞

𝑅 (𝑛) =
𝑘𝐼

𝜇 + 𝛾
:= 𝑅̂, lim

𝑛→∞
𝑁(𝑛) =

Λ − 𝛼𝐼

𝜇
:= 𝑁̂.

(35)

From 𝑆(𝑛) = 𝑁(𝑛)−𝐼(𝑛)−𝑅(𝑛), it follows that lim
𝑛→∞

𝑆(𝑛) =

𝑆 exists. Obviously, we have 𝑅̂ > 0, 𝑁̂ ≥ 0, and 𝑆 ≥ 0.
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Taking 𝑛 → ∞ from the both sides of model (1), we can
obtain the following equations:

Λ − 𝐹 (𝑆)𝐺 (𝐼) − 𝜇𝑆 + 𝛾𝑅̂ = 0,

𝐼 (𝑘 + 𝜇 + 𝛼) − 𝐹 (𝑆)𝐺 (𝐼) = 0,

𝑘𝐼 − (𝜇 + 𝛾) 𝑅̂ = 0.

(36)

Hence, (𝑆, 𝐼, 𝑅̂) is an equilibrium ofmodel (1). However, from
Theorem 2, we see that whenR

0
≤ 1, (36) only has a unique

solution 𝑆 = Λ/𝜇, 𝐼 = 0, and 𝑅̂ = 0. This leads to a
contradiction. Therefore, we have 𝐼 = 0.

Therefore, we always have lim
𝑛→∞

𝐼(𝑛) = 𝐼 = 0. By (35),
it follows that lim

𝑛→∞
𝑅(𝑛) = 0 and lim

𝑛→∞
𝑁(𝑛) = Λ/𝜇.

Consequently, lim
𝑛→∞

𝑆(𝑛) = Λ/𝜇. This shows that disease-
free equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) is globally attractive when

R
0
≤ 1. This completes the proof.

In order to obtain the global asymptotic stability of
endemic equilibrium 𝐸

∗ of model (1), we need the following
assumptions.

(𝐻
2
) For any 𝑆 > 0,

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)
≥ 0. (37)

(𝐻
3
) For any 𝑆 > 0,

−
𝜇(𝑆
∗
)
2

𝐹 (𝑆
∗
)
+ 𝛾𝑅
∗
(

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)
) ≤ 0.

(38)

Theorem 5. Assume that (𝐻
1
)–(𝐻
3
) hold. If R

0
> 1, then

endemic equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of model (1) is globally

asymptotically stable.

Proof. We firstly define the auxiliary functions as follows:

𝑉
1
(𝑆) = 𝑆 − 𝑆

∗
− ∫

𝑆

𝑆
∗

𝐹 (𝑆
∗
)

𝐹 (𝜂)
𝑑𝜂,

𝑉
2 (𝐼) = 𝐼 − 𝐼

∗
− ∫

𝐼

𝐼
∗

𝐺 (𝐼
∗
)

𝐺 (𝜂)
𝑑𝜂,

𝑉
3
(𝑅) =

1

2
(𝑅 − 𝑅

∗
)
2
,

𝑉
4
(𝑁, 𝑅) =

1

2
(𝑁 − 𝑁

∗
+
𝛼

𝑘
(𝑅 − 𝑅

∗
))

2

,

(39)

where𝑁 = 𝑆 + 𝐼 + 𝑅 and𝑁∗ = 𝑆∗ + 𝐼∗ + 𝑅∗. From (𝐻
1
), we

easily obtain that when 𝑆 ̸= 𝑆
∗

𝑉
1 (𝑆) > 𝑆 − 𝑆

∗
− ∫

𝑆

𝑆
∗

𝐹 (𝑆
∗
)

𝐹 (𝑆
∗
)
𝑑𝜂 = 0, (40)

and when 𝐼 ̸= 𝐼
∗

𝑉
2
(𝐼) > 𝐼 − 𝐼

∗
− ∫

𝐼

𝐼
∗

𝐺 (𝐼
∗
)

𝐺 (𝐼
∗
)
𝑑𝜂 = 0. (41)

Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any positive solution of model (1)
with initial condition (2). By computing Δ𝑉

1
(𝑛) = 𝑉

1
(𝑆(𝑛 +

1)) − 𝑉
1
(𝑆(𝑛)), we have

Δ𝑉
1 (𝑛) = 𝑆 (𝑛 + 1) − 𝑆 (𝑛) − ∫

𝑆(𝑛+1)

𝑆(𝑛)

𝐹 (𝑆
∗
)

𝐹 (𝜂)
𝑑𝜂. (42)

From (𝐻
1
), it follows that

−
𝐹 (𝑆
∗
)

𝐹 (𝜂)
≤ −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
if 𝑆 (𝑛 + 1) ≥ 𝜂 ≥ 𝑆 (𝑛) ,

−
𝐹 (𝑆
∗
)

𝐹 (𝜂)
≥ −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
if 𝑆 (𝑛 + 1) ≤ 𝜂 ≤ 𝑆 (𝑛) .

(43)

Hence,

−∫

𝑆(𝑛+1)

𝑆(𝑛)

𝐹 (𝑆
∗
)

𝐹 (𝜂)
𝑑𝜂 ≤ −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
(𝑆 (𝑛 + 1) − 𝑆 (𝑛)) ,

Δ𝑉
1
(𝑛) ≤ 𝑆 (𝑛 + 1) − 𝑆 (𝑛) −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))

× (𝑆 (𝑛 + 1) − 𝑆 (𝑛))

= (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× (Λ − 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1))

= (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× (𝜇𝑆
∗
− 𝜇𝑆 (𝑛 + 1) + 𝐹 (𝑆

∗
) 𝐺 (𝐼
∗
)

− 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

+ 𝛾𝑅 (𝑛 + 1) − 𝛾𝑅
∗
)

= −𝜇(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)
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× (1 −
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

)

+ 𝛾(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑅 (𝑛 + 1) − 𝑅

∗
)

= −𝜇(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ 𝛾(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑅 (𝑛 + 1) − 𝑅

∗
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))

−
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

+
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

) .

(44)
By computing Δ𝑉

2
(𝑛) = 𝑉

2
(𝐼(𝑛 + 1)) − 𝑉

2
(𝐼(𝑛)), we also

have

Δ𝑉
2 (𝑛) ≤ 𝐼 (𝑛 + 1) − 𝐼 (𝑛) −

𝐺 (𝐼
∗
)

𝐺 (𝑛 + 1)

× (𝐼 (𝑛 + 1) − 𝐼 (𝑛))

= (1 −
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
)

× (𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1))

= (𝑘 + 𝜇 + 𝛼) 𝐼
∗
(1 −

𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
)

× (
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

−
𝐼 (𝑛 + 1)

𝐼∗
)

= (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× (
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

−
𝐼 (𝑛 + 1)

𝐼∗

+
𝐼 (𝑛 + 1)

𝐼∗

𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
) .

(45)

Further, by computing Δ𝑉
3
(𝑛) = 𝑉

3
(𝑅(𝑛 + 1)) −𝑉

3
(𝑅(𝑛)),

we have

Δ𝑉
3
(𝑛) =

1

2
((𝑅 (𝑛 + 1) − 𝑅 (𝑛))

2

+ 2 (𝑅 (𝑛 + 1) − 𝑅 (𝑛)) (𝑅 (𝑛) − 𝑅
∗
)

+ (𝑅 (𝑛) − 𝑅
∗
)
2
)

−
1

2
(𝑅 (𝑛) − 𝑅

∗
)
2

=
1

2
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)) (𝑅 (𝑛 + 1) + 𝑅 (𝑛) − 2𝑅

∗
)

= (𝑅 (𝑛 + 1) − 𝑅 (𝑛)) (𝑅 (𝑛 + 1) − 𝑅
∗
)

−
1

2
(𝑅 (𝑛 + 1) − 𝑅 (𝑛))

2

≤ (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝑅 (𝑛 + 1) − 𝑅 (𝑛))

= (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1))

= (𝑅 (𝑛 + 1) − 𝑅
∗
)

× (𝑘 (𝑁 (𝑛 + 1) − 𝑁
∗
)

− 𝑘 (𝑆 (𝑛 + 1) − 𝑆
∗
)

− (𝑘 + 𝜇 + 𝛾) (𝑅 (𝑛 + 1) − 𝑅
∗
))

= 𝑘 (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝑁 (𝑛 + 1) − 𝑁

∗
)

− 𝑘 (𝑅 (𝑛 + 1) − 𝑅
∗
)

× (𝑆 (𝑛 + 1) − 𝑆
∗
)

− (𝑘 + 𝜇 + 𝛾) (𝑅 (𝑛 + 1) − 𝑅
∗
)
2
.

(46)

Finally, by computing Δ𝑉
4
(𝑛) = 𝑉

4
(𝑁(𝑛 + 1), 𝑅(𝑛 + 1)) −

𝑉
4
(𝑁(𝑛), 𝑅(𝑛)), we further have

Δ𝑉
4 (𝑛) =

1

2
[(𝑁 (𝑛 + 1) − 𝑁 (𝑛) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

2

+ 2 (𝑁 (𝑛 + 1) − 𝑁 (𝑛) +
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

× (𝑁 (𝑛) − 𝑁
∗
+
𝛼

𝑘
(𝑅 (𝑛) − 𝑅

∗
)) ]

=
1

2
(𝑁 (𝑛 + 1) − 𝑁 (𝑛) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

× (𝑁 (𝑛 + 1) + 𝑁 (𝑛) +
𝛼

𝑘
(𝑅 (𝑛 + 1) + 𝑅 (𝑛))

−2 (𝑁
∗
−
𝛼

𝑘
𝑅
∗
))
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= (𝑁 (𝑛 + 1) − 𝑁 (𝑛) +
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

× (𝑁 (𝑛 + 1) − 𝑁
∗
+
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

−
1

2
(𝑁 (𝑛 + 1) − 𝑁

∗
+
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

2

≤ ((𝑁 (𝑛 + 1) − 𝑁
∗
) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

× ((𝑁 (𝑛 + 1) − 𝑁 (𝑛)) +
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

= ((𝑁 (𝑛 + 1) − 𝑁
∗
) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

× ( (Λ − 𝜇𝑁 (𝑛 + 1) − 𝛼𝐼 (𝑛 + 1))

+
𝛼

𝑘
(𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1)))

= ((𝑁 (𝑛 + 1) − 𝑁
∗
) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

× (𝜇𝑁
∗
− 𝜇𝑁 (𝑛 + 1)

−
𝛼 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

= −𝜇(𝑁 (𝑛 + 1) − 𝑁
∗
)
2
−
𝛼
2

𝑘2
(𝜇 + 𝛾)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

−
𝛼 (2𝜇 + 𝛾)

𝑘
(𝑁 (𝑛 + 1) − 𝑁

∗
) (𝑅 (𝑛 + 1) − 𝑅

∗
) .

(47)

Now, we define a Lyapunov function as follows:

𝑉 (𝑆, 𝐼, 𝑅) = 𝑉
1
(𝑆) + 𝑉

2
(𝐼) + 𝜔

1
𝑉
3
(𝑅) + 𝜔

2
𝑉
4
(𝑁, 𝑅) ,

(48)

where 𝜔
1
and 𝜔

2
are positive constants which will be chosen

in the following. It is obvious that from (40) and (41)
𝑉(𝑆, 𝐼, 𝑅) > 0 for all (𝑆, 𝐼, 𝑅) ̸= (𝑆

∗
, 𝐼
∗
, 𝑅
∗
) and 𝑉(𝑆, 𝐼, 𝑅) = 0

if and only if (𝑆, 𝐼, 𝑅) = (𝑆∗, 𝐼∗, 𝑅∗). By computing

Δ𝑉 (𝑛) = 𝑉 (𝑆 (𝑛 + 1) , 𝐼 (𝑛 + 1) , 𝑅 (𝑛 + 1))

− 𝑉 (𝑆 (𝑛) , (𝑛) , 𝑅 (𝑛)) ,

(49)

we have

Δ𝑉 (𝑛) ≤ −𝜇𝜔
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

− (
𝜔
2
𝛼
2

𝑘2
(𝜇 + 𝛾) + 𝜔

1
(𝑘 + 𝜇 + 𝛾))

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

− 𝜇(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ 𝛾(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑅 (𝑛 + 1) − 𝑅

∗
)

− 𝜔
1
𝑘 (𝑅 (𝑛 + 1) − 𝑅

∗
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

−
𝐼 (𝑛 + 1)

𝐼∗

+
𝐼 (𝑛 + 1)

𝐼∗

𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1))

+ (𝜔
1
𝑘 −

𝜔
2
𝛼 (2𝜇 + 𝛾)

𝑘
)

× (𝑁 (𝑛 + 1) − 𝑁
∗
) (𝑅 (𝑛 + 1) − 𝑅

∗
) .

(50)

Choose constants 𝜔
1
and 𝜔

2
as follows:

𝜔
1
=
𝛾𝐹 (𝑆
∗
)

𝑘 (𝑆
∗
)
2
, 𝜔

2
=

𝑘𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
. (51)

Then we further have

Δ𝑉 (𝑛) ≤ −
𝜇𝑘
2
𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛾𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(
𝛼 (𝜇 + 𝛾)

𝑘 (2𝜇 + 𝛾)
+
𝜇 + 𝛾

𝑘
+ 1)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

+
𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(𝑆 (𝑛 + 1) − 𝑆

∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)
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× (−
𝜇(𝑆
∗
)
2

𝐹 (𝑆
∗
)
+
𝛾(𝑆
∗
)
2

𝐹 (𝑆
∗
)

𝑅 (𝑛 + 1) − 𝑅
∗

𝑆 (𝑛 + 1) − 𝑆
∗

− 𝛾 (𝑅 (𝑛 + 1) − 𝑅
∗
)

𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆 (𝑛 + 1)) − 𝐹 (𝑆
∗
)
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)

×(
𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

))

= −
𝜇𝑘
2
𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛾𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(
𝛼 (𝜇 + 𝛾)

𝑘 (2𝜇 + 𝛾)
+
𝜇 + 𝛾

𝑘
+ 1)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

+
𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(𝑆 (𝑛 + 1) − 𝑆

∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× ( −
𝜇𝐹 (𝑆
∗
)

(𝑆
∗
)
2

− 𝛾 (𝑅 (𝑛 + 1) − 𝑅
∗
)

× (
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆 (𝑛 + 1)) − 𝐹 (𝑆
∗
)

−
(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 (𝑛 + 1) − 𝑆

∗
)
))

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)

×(
𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

)) .

(52)

Noting that 𝐹(𝑆) > 0, for all 𝑆 > 0, then we have

2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

≤ 0. (53)

From (𝐻
1
), it follows that𝐹(𝑆(𝑛+1)) ≥ 𝐹(𝑆∗)when 𝑆(𝑛+1) ≥

𝑆
∗ and 𝐹(𝑆(𝑛 + 1)) ≤ 𝐹(𝑆

∗
) when 𝑆(𝑛 + 1) ≤ 𝑆

∗. Hence, we
have the following inequality:

(𝑆 (𝑛 + 1) − 𝑆
∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) ≥ 0. (54)

Furthermore, from (𝐻
1
), we also have the following inequal-

ities:

𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

≥
𝐼 (𝑛 + 1)

𝐼∗
if 0 < 𝐼 (𝑛 + 1) ≤ 𝐼∗,

𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

≤
𝐼 (𝑛 + 1)

𝐼∗
if 𝐼 (𝑛 + 1) ≥ 𝐼∗,

(55)

which implies that

(
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)(

𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

) ≤ 0.

(56)

From (53), (54), and (56), we further obtain

Δ𝑉 (𝑛) ≤ −
𝜇𝑘
2
𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛾𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(
𝛼 (𝜇 + 𝛾)

𝑘 (2𝜇 + 𝛾)
+
𝜇 + 𝛾

𝑘
+ 1)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

+
𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(𝑆 (𝑛 + 1) − 𝑆

∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× [ −
𝜇𝐹 (𝑆
∗
)

(𝑆
∗
)
2

+ 𝛾 (𝑅
∗
− 𝑅 (𝑛 + 1))

× (
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆 (𝑛 + 1)) − 𝐹 (𝑆
∗
)

−
(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 (𝑛 + 1) − 𝑆

∗
)
)] .

(57)

From (𝐻
2
) and (𝐻

3
), we finally have Δ𝑉(𝑛) ≤ 0 for all 𝑛 ≥ 0.

Obviously, Δ𝑉(𝑛) = 0 if and only if 𝑆(𝑛) = 𝑆
∗, 𝐼(𝑛) = 𝐼

∗,
and 𝑅(𝑛) = 𝑅

∗ for all 𝑛 ≥ 0. Therefore, using the theorems
of stability of the difference equations (see Theorem 6.3 in
[33]), we obtain that 𝐸∗ is globally asymptotically stable.This
completes the proof.

As a special case of model (1), we consider the rate of
losing immunity 𝛾 = 0 in model (1); that is, model (1)
degenerates into a SIR epidemic model. Then, in the above
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calculation of Δ𝑉(𝑛), we can directly obtain the following
inequality without (𝐻

2
) and (𝐻

3
):

Δ𝑉 (𝑛) ≤ −𝜇 (𝑆 (𝑛 + 1) − 𝑆
∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)

×(
𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

)) .

(58)

We have Δ𝑉(𝑛) ≤ 0 for all 𝑛 ≥ 0 and Δ𝑉(𝑛) = 0 if and
only if 𝑆(𝑛) = 𝑆

∗ and 𝐼(𝑛) = 𝐼
∗ for all 𝑛 ≥ 0. Therefore, as

a consequence of Theorem 5, we have the following result.

Corollary 6. Assume that (𝐻
1
) holds and 𝛾 = 0 in model (1).

Then endemic equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) is globally asymptot-

ically stable if and only ifR
0
> 1.

Remark 7. By comparing the results obtained in [24], then,
from Corollary 6, we see thatTheorem 5 is a direct extension
of the corresponding result given in [24] on the global
stability of the endemic equilibrium in the nondelayed case
and the recovered individuals are in a position to lose the
immunity.

Remark 8. For general model (1), we spontaneously expect
that as long as basic reproduction number R

0
> 1, then

model (1) shows a unique endemic equilibrium which is
globally asymptotically stable. However, it is a pity that, in
Theorem 5, in order to obtain the global asymptotic stability
of endemic equilibrium 𝐸

∗, we need to introduce some
additional conditions, that is, (𝐻

2
) and (𝐻

3
). Furthermore,

from the proof of Theorem 5, we easily see that assumptions
(𝐻
2
) and (𝐻

3
) only are used to ensure Δ𝑉(𝑛) ≤ 0 for all

𝑛 ≥ 0. Therefore, an important open problem is whether
we can directly prove Δ𝑉(𝑛) ≤ 0 for all 𝑛 ≥ 0 without
assumptions (𝐻

2
) and (𝐻

3
) and further obtain the global

asymptotic stability of endemic equilibrium 𝐸
∗ of model (1)

only when basic reproduction numberR
0
> 1.

4. Permanence of Disease

In this section, we will use the theory of persistence in
general discrete dynamical systems to study the permanence
of model (1). We will obtain that the disease in model (1) is
permanent only when basic reproduction number R

0
> 1

and assumption (𝐻
1
) holds.

Let 𝑋 be a metric space with metric 𝑑 and let 𝑓 : 𝑋 →

𝑋 be a continuous map. For any 𝑥
0
∈ 𝑋, the sequence {𝑥

𝑛
}

defined by 𝑥
𝑛+1

= 𝑓(𝑥
𝑛
) for any integer 𝑛 ≥ 0 is said to be a

solution sequence through 𝑥
0
, and the omega limit set of {𝑥

𝑛
}

is defined by 𝜔(𝑥
0
) = {𝑦 ∈ 𝑋 : there is a sequence 𝑛

𝑘
→ ∞

such that lim
𝑘→∞

𝑥
𝑛
𝑘

= 𝑦}. For a nonempty set𝑀 ⊂ 𝑋, we

further define the stable set of 𝑀 by 𝑊𝑠(𝑀) = {𝑥
0
∈ 𝑋 :

lim
𝑛→∞

𝑑(𝑥
𝑛
,𝑀) = 0}.

Let𝑋
0
be a nonempty open set of𝑋. We denote

𝜕𝑋
0
:= 𝑋 \ 𝑋

0
, 𝑀

𝜕
:= {𝑥
0
∈ 𝜕𝑋
0
: 𝑥
𝑛
∈ 𝜕𝑋
0
∀𝑛 ≥ 0} .

(59)

Lemma 9. Let 𝑓 : 𝑋 → 𝑋 be a continuous map. Assume that
the following conditions hold.

(𝐶
1
) 𝑓 is compact and point dissipative, and 𝑓(𝑋

0
) ⊆ 𝑋

0
.

(𝐶
2
) There exists a finite sequence M = {𝑀

1
, . . . ,𝑀

𝑘
} of

compact and isolated invariant sets such that

(a) 𝑀
𝑖
⋂𝑀
𝑗
= 0 for any 𝑖, 𝑗 = 1, 2, . . . , 𝑘 and 𝑖 ̸= 𝑗;

(b) Ω(𝑀
𝜕
) := ⋃

𝑥∈𝑀
𝜕

𝜔(𝑥) ⊂ ⋃
𝑘

𝑖=1
𝑀
𝑖
;

(c) no subset ofM forms a cycle in 𝜕𝑋
0
;

(d) 𝑊𝑠(𝑀
𝑖
)⋂𝑋
0
= 0 for each 1 ≤ 𝑖 ≤ 𝑘.

Then 𝑓 is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
));

that is, there exists a constant 𝜂 > 0 such that
lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝜕𝑋
0
) ≥ 𝜂 for all 𝑥

0
∈ 𝑋
0
.

Here, the definitions on the compactness and point
dissipativity ofmap𝑓 and the definitions on the compactness,
isolated invariance, and the cycle in 𝜕𝑋

0
for sequence M =

{𝑀
1
, . . . ,𝑀

𝑘
} can be found in [34]. Furthermore, Lemma 9

can be obtained fromTheorem 1.1.3, Theorem 1.3.1, Remark
1.3.1, andTheorem 1.3.3 given by Zhao in [34].

On the permanence of the disease for model (1), we have
the following result.

Theorem 10. Assume that (𝐻
1
) holds. Then, the disease in

model (1) is permanent; that is, there are two constants 𝑀 >

𝑚 > 0 such that

𝑚 ≤ lim inf
𝑛→∞

𝐼 (𝑛) ≤ lim sup
𝑛→∞

𝐼 (𝑛) ≤ 𝑀, (60)

for any positive solution (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) of model (1) if and
only ifR

0
> 1.

Proof. From Theorem 4 we see that the necessity is obvious.
Now, we only need to prove the sufficiency. Define two sets as
follows:

𝑋 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅
3
: 𝑆 > 0, 𝐼 ≥ 0, 𝑅 ≥ 0} ,

𝑋
0
= {(𝑆, 𝐼, 𝑅) ∈ 𝑋 : 𝑆 > 0, 𝐼 > 0, 𝑅 ≥ 0} .

(61)

We have

𝜕𝑋
0
= 𝑋 \ 𝑋

0
= {(𝑆, 𝐼, 𝑅) : 𝑆 > 0, 𝐼 = 0, 𝑅 ≥ 0} . (62)

For any initial point 𝑥
0

= (𝑆
0
, 𝐼
0
, 𝑅
0
) ∈ 𝑋, let 𝑥

𝑛
=

(𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be the solution of model (1) through 𝑥
0
. We

define map 𝑓 : 𝑋 → 𝑋 by 𝑓(𝑥
0
) = 𝑥
1
.

From the positivity and ultimate boundedness of solu-
tions of model (1), we obtain 𝑓(𝑋

0
) ⊆ 𝑋

0
and 𝑓 is also point

dissipative.
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By observing the proof of Theorem 3, we see that, since
𝑁(1) and 𝑅(1) are continuous with respect to𝑁(0) and 𝑅(0),
respectively, Ψ(𝑦) is also continuous with respect to 𝑥

0
=

(𝑆
0
, 𝐼
0
, 𝑅
0
). Hence, 𝐼(1), as the solution of Ψ(𝑦) = 0, is also

continuous for 𝑥
0
. Similarly, from the expression ofΦ(𝑥) and

the continuity of 𝐼(1) with respect to 𝑥
0
, we obtain thatΦ(𝑥)

is continuous with respect to 𝑥
0
. Hence, 𝑆(1), as the solution

of Φ(𝑥) = 0, is also continuous for 𝑥
0
. Therefore, we finally

obtain that map 𝑓 is continuous on 𝑋. From this, we obtain
that 𝑓 also is compact.

In 𝜕𝑋
0
, we have 𝐼(𝑛) ≡ 0, and hence (𝑆(𝑛), 𝑅(𝑛)) satisfies

𝑆 (𝑛 + 1) = 𝑆 (𝑛) + Λ − 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1) ,

𝑅 (𝑛 + 1) = 𝑅 (𝑛) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1) .

(63)

Obviously, we can obtain (𝑆(𝑛), 𝑅(𝑛)) → (Λ/𝜇, 0) as 𝑛 →

∞. This shows that 𝜔(𝑥
0
) = {𝐸

0
} for any 𝑥

0
∈ 𝑀
𝜕
and

Ω(𝑀
𝜕
) = ⋃

𝑥∈𝑀
𝜕

𝜔(𝑥) = {𝐸
∗
}. Choose M = {𝐸

0
}; then we

easily see that conditions (a)–(c) of Lemma 9 hold.
Now, we prove that condition (d) in Lemma 9 also holds.

Otherwise, there is a point (𝑆
0
, 𝐼
0
, 𝑅
0
) ∈ 𝑋

0
such that

(𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) → 𝐸
0 as 𝑛 → ∞. From R

0
> 1, we can

choose a small enough constant 𝜀 > 0 such that

(𝐹(
Λ

𝜇
) − 𝜀) (𝐺

󸀠
(0) − 𝜀) − (𝑘 + 𝜇 + 𝛼) > 0. (64)

Since lim
𝑛→∞

𝑆(𝑛) = Λ/𝜇 and lim
𝑛→∞

(𝐺(𝐼(𝑛))/𝐼(𝑛)) =

𝐺
󸀠
(0), there exists𝑁 > 0 such that 𝐹(𝑆(𝑛 + 1)) > 𝐹(Λ/𝜇) − 𝜀

and 𝐺(𝐼(𝑛 + 1))/𝐼(𝑛 + 1) > 𝐺󸀠(0) − 𝜀 for all 𝑛 > 𝑁. Therefore,
we have

𝐼 (𝑛 + 1)

= 𝐼 (𝑛) + 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1)) − (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1)

≥ 𝐼 (𝑛) + [(𝐹(
Λ

𝜇
) − 𝜀) (𝐺

󸀠
(0) − 𝜀) − (𝑘 + 𝜇 + 𝛼)]

× 𝐼 (𝑛 + 1) ,

(65)

for all 𝑛 > 𝑁. Consequently,

𝐼 (𝑛 + 1) [1 + 𝑘 + 𝜇 + 𝛼 − (𝐹(
Λ

𝜇
) − 𝜀) (𝐺

󸀠
(0) − 𝜀)]

≥ 𝐼 (𝑛) ,

(66)

for all 𝑛 > 𝑁. Since 0 ≤ 1+𝑘+𝜇+𝛼−(𝐹(Λ/𝜇)−𝜀)(𝐺󸀠(0)−𝜀) < 1,
we can finally obtain from (66) that lim

𝑛→∞
𝐼(𝑛) = ∞, which

leads to a contradiction.Therefore, condition (d) in Lemma 9
holds. Finally, from Lemma 9 we obtain that the disease in
model (1) is permanent. This completes the proof.

Remark 11. From Theorem 10, we directly see that assump-
tions (𝐻

2
) and (𝐻

3
) only are used to obtain the global

asymptotic stability of endemic equilibrium 𝐸
∗.

5. Special Case 𝐹(𝑆) = 𝑆/ (1 + 𝜆𝑆)

Now, we especially discuss the special case of model (1):
𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆), where 𝜆 ≥ 0 is a constant. Firstly, when
𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆), the basic reproduction number of model
(1) becomes

R
0
=
𝐹 (Λ/𝜇)𝐺

󸀠
(0)

𝑘 + 𝜇 + 𝛼
=

Λ𝐺
󸀠
(0)

(𝜇 + 𝜆Λ) (𝑘 + 𝜇 + 𝛼)
. (67)

Furthermore, by calculating, we obtain that (𝐻
2
) naturally

holds, and assumption (𝐻
3
) is equivalent to the following

simple form:

𝛾𝑅
∗
− 𝜇𝑆
∗
≤ 0. (68)

Therefore, as a direct consequence of Theorem 5, we firstly
have the following corollary.

Corollary 12. Assume that (𝐻
1
) holds and 𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆),

where 𝜆 ≥ 0 is a constant. IfR
0
> 1 and inequality (68) holds,

then endemic equilibrium𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) ofmodel (1) is globally

asymptotically stable.

Furthermore, in order to validate inequality (68), we have
the following result.

Theorem 13. Assume that (𝐻
1
) holds and 𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆)

with 𝜆 ≥ 0 is a constant. Then inequality (68) holds if one of
the following conditions holds:

(1) 1 <R
0
≤ (𝜇(𝑘 + 𝜇 + 𝛼) + Λ𝑘𝜆)/𝑘(𝜇 + 𝜆Λ),

(2) R
0
> (𝜇(𝑘 + 𝜇 + 𝛼) + Λ𝑘𝜆)/𝑘(𝜇 + 𝜆Λ) and 0 ≤ 𝛾 ≤

𝛾 := 𝜇/𝐿, where

𝐿 =
R
0
(𝜇 + 𝜆Λ) 𝑘

𝜇 (𝑘 + 𝜇 + 𝛼)
−
𝜇 (𝑘 + 𝜇 + 𝛼) + Λ𝑘𝜆

𝜇 (𝑘 + 𝜇 + 𝛼)
. (69)

Proof. When 𝐹(𝑆)𝐺(𝐼) = (𝑆/(1 + 𝜆𝑆))𝐺(𝐼), endemic equilib-
rium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of model (1) satisfies

Λ =
𝑆
∗

1 + 𝜆𝑆∗
𝐺 (𝐼
∗
) + 𝜇𝑆

∗
− 𝛾𝑅
∗
,

𝐼
∗
(𝑘 + 𝜇 + 𝛼) =

𝑆
∗

1 + 𝜆𝑆∗
𝐺 (𝐼
∗
) ,

𝑘𝐼
∗
= (𝜇 + 𝛾) 𝑅

∗
.

(70)

From the second and third equations of (70), we obtain

𝑆
∗
=

𝐼
∗
(𝑘 + 𝜇 + 𝛼)

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
, 𝑅

∗
=

𝑘𝐼
∗

𝜇 + 𝛾
. (71)

Putting (71) into the first equation of (70), we have

𝐼
∗
= (Λ −

𝜇 (𝑘 + 𝜇 + 𝛼) 𝐼
∗

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
)

×
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)
.

(72)
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Hence, from (71) and (72), we obtain

𝜇𝑆
∗
− 𝛾𝑅
∗
=

𝜇 (𝑘 + 𝜇 + 𝛼) 𝐼
∗

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
− 𝛾𝑅
∗

=
𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾) 𝑅

∗

(𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗) 𝑘
− 𝛾𝑅
∗

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× [𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

− 𝑘𝛾(
𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼)) 𝐼

∗
]

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× [𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

− 𝑘𝛾(
𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼))

× (Λ −
𝜇 (𝑘 + 𝜇 + 𝛼) 𝐼

∗

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
)

×
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)
]

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× [𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

−
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (Λ𝛾𝑘(
𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼))

− 𝑘𝛾𝜇 (𝑘 + 𝜇 + 𝛼))] .

(73)

Since 𝐺(𝐼)/𝐼 is nonincreasing for all 𝐼 > 0 in (𝐻
1
), we have

𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼) ≤ 𝐺

󸀠
(0) − 𝜆 (𝑘 + 𝜇 + 𝛼) . (74)

Therefore, from (73), we further have

𝜇𝑆
∗
− 𝛾𝑅
∗
≥

𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× (𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

−
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (Λ𝛾𝑘 (𝐺
󸀠
(0) − 𝜆 (𝑘 + 𝜇 + 𝛼))

− 𝑘𝛾𝜇 (𝑘 + 𝜇 + 𝛼) ))

=
𝑅
∗

𝑘 (𝐺󸀠 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

×
𝜇 (𝜇 + 𝛾) (𝑘 + 𝜇 + 𝛼)

2

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× [
1

𝑘 + 𝜇 + 𝛼
(𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼))

+
𝑘𝛾

𝑘 + 𝜇 + 𝛼

−

Λ𝑘𝛾 (𝐺
󸀠
(0) − 𝜆 (𝑘 + 𝜇 + 𝛼))

𝜇(𝑘 + 𝜇 + 𝛼)
2

]

=
𝑅
∗

𝑘 (𝐺󸀠 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

×
𝜇 (𝜇 + 𝛾) (𝑘 + 𝜇 + 𝛼)

2

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (𝜇 + 𝛾
𝜇 (𝜇 + 𝑘 + 𝛼) + Λ𝑘𝜆

𝜇 (𝑘 + 𝜇 + 𝛼)

−
Λ𝑘𝜆𝐺

󸀠
(0)

𝜇(𝑘 + 𝜇 + 𝛼)
2
)

=
𝑅
∗

𝑘 (𝐺󸀠 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

×
𝜇 (𝜇 + 𝛾) (𝑘 + 𝜇 + 𝛼)

2

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (𝜇 − 𝛾(
R
0
(𝜇 + 𝜆Λ) 𝑘

𝜇 (𝑘 + 𝜇 + 𝛼)

−
𝜇 (𝜇 + 𝑘 + 𝛼) + Λ𝑘𝜆

𝜇 (𝑘 + 𝜇 + 𝛼)
)) .

(75)

From (75), we obtain that, when the conditions ofTheorem 10
hold, 𝜇𝑆∗ − 𝛾𝑅∗ ≥ 0. Therefore, inequality (68) holds. This
completesthe proof.
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Remark 14. Obviously, from the above discussion for special
case𝐹(𝑆) = 𝑆/(1+𝜆𝑆) ofmodel (1), we also have an important
open problem, that is, whether endemic equilibrium 𝐸

∗ of
model (1) is globally asymptotically stable as long as basic
reproduction numberR

0
> 1.

In the following, we will give an affirmative answer for
above open problem in allusion to 𝐹(𝑆) = 𝑆 and 𝐺(𝐼) =

𝛽𝐼/(1+𝜔𝐼) in model (1), by constructing the other Lyapunov
function which is different from the Lyapunov function used
inTheorem 5.

Firstly, we see in model (1) when 𝐹(𝑆) = 𝑆 and 𝐺(𝐼) =
𝛽𝐼/(1 + 𝜔𝐼), where 𝛽 > 0 and 𝜔 ≥ 0 are two constants, basic
reproduction number

R
0
=
𝐹 (Λ/𝜇)𝐺

󸀠
(0)

𝑘 + 𝜇 + 𝛼
=

Λ𝛽

𝜇 (𝑘 + 𝜇 + 𝛼)
, (76)

and assumption (𝐻
1
) naturally holds. Therefore, from

Theorem 2, when R
0
> 1, model (1) has a unique endemic

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
).

Theorem 15. When 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜔𝐼) in model (1),
then endemic equilibrium 𝐸

∗ is globally asymptotically stable
ifR
0
> 1.

Proof. We consider the following Lyapunov function:

𝑈 (𝑆, 𝐼, 𝑅) =
𝛽

2𝛼
(𝑁 − 𝑁

∗
)
2
+ (𝐼 − 𝐼

∗
− 𝐼
∗ ln 𝐼

𝐼∗
)

+
𝜔

2
(𝐼 − 𝐼

∗
)
2
+
𝛽

2𝑘
(𝑅 − 𝑅

∗
)
2
.

(77)

It is clear that 𝑈(𝑆, 𝐼, 𝑅) > 0 for all (𝑆, 𝐼, 𝑅) ̸= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
) and

𝑈(𝑆, 𝐼, 𝑅) = 0 if and only if (𝑆, 𝐼, 𝑅) = (𝑆∗, 𝐼∗, 𝑅∗).
Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any positive solution ofmodel (1).

By computing

Δ𝑈 (𝑛) = 𝑈 (𝑆 (𝑛 + 1) , 𝐼 (𝑛 + 1) , 𝑅 (𝑛 + 1))

− 𝑈 (𝑆 (𝑛) , 𝐼 (𝑛) , 𝑅 (𝑛)) ,

(78)

a similar argument as in calculation Δ𝑉
3
(𝑛) inTheorem 5, we

obtain

Δ𝑈 (𝑛) ≤
𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
) (𝑁 (𝑛 + 1) − 𝑁 (𝑛))

+ (𝐼 (𝑛 + 1) − 𝐼 (𝑛) − 𝐼
∗ ln 𝐼 (𝑛 + 1)

𝐼 (𝑛)
)

+ 𝜆 (𝐼 (𝑛 + 1) − 𝐼
∗
) (𝐼 (𝑛 + 1) − 𝐼 (𝑛))

+
𝛽

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
) (𝑅 (𝑛 + 1) − 𝑅 (𝑛)) .

(79)

By using inequality ln(1 − 𝑥) ≤ −𝑥 for any 𝑥 < 1, we obtain

− ln 𝐼 (𝑛 + 1)
𝐼 (𝑛)

= ln 1 − (1 − 𝐼 (𝑛)

𝐼 (𝑛 + 1)
) ≤ −(1 −

𝐼 (𝑛)

𝐼 (𝑛 + 1)
) .

(80)

Hence,

Δ𝑈 (𝑛) ≤
𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)

× (Λ − 𝜇𝑁 − 𝛼𝐼 (𝑛 + 1))

+
1 + 𝜔𝐼 (𝑛 + 1)

𝐼 (𝑛 + 1)

× (𝐼 (𝑛 + 1) − 𝐼
∗
) (𝐼 (𝑛 + 1) − 𝐼 (𝑛))

+
𝛽

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)

× (𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1))

=
𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
) (Λ − 𝜇𝑁 − 𝛼𝐼 (𝑛 + 1))

+ (𝐼 (𝑛 + 1) − 𝐼
∗
)

× (𝛽𝑆 (𝑛 + 1) − (1 + 𝜔𝐼 (𝑛 + 1))

× (𝑘 + 𝜇 + 𝛼)) +
𝛽

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)

× (𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1)) .

(81)

Since 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) satisfies

Λ = 𝜇𝑁
∗
+ 𝛼𝐼
∗
= 𝜇𝑆
∗
+ (𝛼 + 𝜇) 𝐼

∗
+ 𝜇𝑅
∗
,

𝑘 + 𝜇 + 𝛼 =
𝛽𝑆
∗

1 + 𝜔𝐼∗
,

𝑘𝐼
∗
− (𝜇 + 𝛾) 𝑅

∗
= 0,

(82)

then from (81) we further have

Δ𝑈 (𝑛) ≤ −
𝜇𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

− 𝛽 (𝑁 (𝑛 + 1) − 𝑁
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

+ 𝛽 (𝐼 (𝑛 + 1) − 𝐼
∗
)

× (𝑆 (𝑛 + 1) −
(1 + 𝜔𝐼 (𝑛 + 1)) 𝑆

∗

1 + 𝜔𝐼∗
)

+ 𝛽 (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

−
𝛽 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)
2
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= −
𝜇𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

− 𝛽 (𝑁 (𝑛 + 1) − 𝑁
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

+ 𝛽 (𝐼 (𝑛 + 1) − 𝐼
∗
)

× ( (𝑁 (𝑛 + 1) − 𝑁
∗
)

− (𝐼 (𝑛 + 1) − 𝐼
∗
) − (𝑅 (𝑛 + 1) − 𝑅

∗
)

+𝑆
∗
−
(1 + 𝜔𝐼 (𝑛 + 1)) 𝑆

∗

1 + 𝜔𝐼∗
)

+ 𝛽 (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

−
𝛽 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)
2

= −
𝜇𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛽 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)
2

− 𝛽(𝐼 (𝑛 + 1) − 𝐼
∗
)
2
− 𝛽𝑆
∗
𝜔(𝐼 (𝑛 + 1) − 𝐼

∗
)
2

1 + 𝜔𝐼∗
.

(83)

Therefore, we finally get that Δ𝑈(𝑛) ≤ 0 for all 𝑛 ≥ 0.
Obviously, Δ𝑈(𝑛) = 0 if and only if 𝑁(𝑛 + 1) = 𝑁

∗,
𝐼(𝑛 + 1) = 𝐼

∗, and 𝑅(𝑛 + 1) = 𝑅
∗. Therefore, from the

theorems of stability of difference equations (seeTheorem 6.3
in [33]), we obtain that 𝐸∗ is globally asymptotically stable.
This completes the proof.

Remark 16. By combining Theorem 4, we can obtain that,
when 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜔𝐼) in model (1), disease-
free equilibrium 𝐸

0 is globally asymptotically stable if and
only if basic reproduction number R

0
≤ 1 and endemic

equilibrium 𝐸
∗ is globally asymptotically stable if and only if

R
0
> 1.

Remark 17. In [13], the author studied a continuous
SIRS epidemic model with bilinear incidence rate and
obtained that the disease-free equilibrium is globally stable
if basic reproduction number 𝑅

0
≤ 1 and the endemic

equilibrium is globally stable if 𝑅
0
> 1. However, in this

paper, we established the completely same results for
the corresponding backward Euler discretization model
with saturation incidence rate. This shows that the results
obtained in [13] are extended and improved in the discrete
models.

Remark 18. In [25], the following continuous SIRS epidemic
model with a class of nonlinear incidence rates and dis-
tributed delays is considered:

̇𝑆 (𝑡) = 𝐵 − 𝜇1𝑆 (𝑡) − 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝜏) 𝐺 (𝐼 (𝑡 − 𝜏)) 𝑑𝜏 + 𝛿𝑅 (𝑡) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝜏) 𝐺 (𝐼 (𝑡 − 𝜏)) 𝑑𝜏 − (𝜇
2
+ 𝛾) 𝐼 (𝑡) ,

𝑅̇ (𝑡) = 𝛾𝐼 (𝑡) − (𝜇3 + 𝛿) 𝑅 (𝑡) .

(84)

By applying Lyapunov functional techniques, Enatsu et al.
obtained that disease-free equilibrium (𝐵/𝜇

1
, 0, 0) of model

(84) is globally asymptotically stable if basic reproduction
number R

0
≤ 1 and endemic equilibrium (𝑆

∗
, 𝐼
∗
, 𝑅
∗
) of

model (84) is globally asymptotically stable if R
0
> 1 and

𝜇
1
𝑆
∗
− 𝛿𝑅
∗
≥ 0 hold. Comparing with the results obtained in

this paper, we can see that our results are the direct extension
of those in [25] for nondelayed discrete SIRS epidemic model
with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼).

However, we also see whether the conclusions obtained
in [25] can be extended to delayed discrete SIRS epidemic
models with more general nonlinear incidence rate 𝑓(𝑆, 𝐼),
which is left to further investigation in our future work.

6. Numerical Simulations

In this section, we give the following examples and numerical
simulations for model (1).

Example 1. Consider

𝐹 (𝑆) 𝐺 (𝐼) =
𝛽𝑆𝐼

1 + 𝜆𝑆
. (85)

We chooseΛ = 3,𝛼 = 0.2,𝜆 = 1,𝛽 = 0.8,𝜇 = 0.2, 𝛾 = 0.5,
and 𝑘 = 0.3. By calculating, we have the endemic equilibrium
𝐸
∗
= (7, 3.2941, 1.4118)) and the basic reproduction number

R
0
=

Λ𝛽

(𝑘 + 𝜇 + 𝛼) (𝜇 + 𝜆Λ)
= 1.0714 > 1. (86)

However, 𝛾𝑅∗ − 𝜇𝑆
∗
= −0.6941 < 0. Clearly, inequality

(56) does not hold. From the numerical simulation (see
Figure 1), we obtain that the endemic equilibrium 𝐸

∗ is still
globally asymptotically stable. Therefore, in our future work,
we expect to obtain the corresponding theoretical result for
the open problem in Remark 8.

Example 2. Consider

𝐹 (𝑆) 𝐺 (𝐼) =
𝛽𝑆
2
𝐼

1 + 𝜆√𝐼

. (87)

We choose Λ = 4, 𝛼 = 1.2, 𝜆 = 1, 𝛽 = 0.4, 𝜇 = 1.3,
𝛾 = 0.45, and 𝑘 = 1. By calculating, we have the endemic
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Figure 1: Time series of 𝑆(𝑛), 𝐼(𝑛), and 𝑅(𝑛).

equilibrium 𝐸
∗

= (3.0637, 0.0053, 0.0030)) and the basic
reproduction number

R
0
=

Λ
2
𝛽

𝜇2 (𝑘 + 𝜇 + 𝛼)
= 1.082 > 1. (88)

By further computation, we obtain, when 𝑆 = 2.7,

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)

=
𝑆
2

𝑆2 − (𝑆
∗
)
2
−

1

𝑆 − 𝑆∗
= −0.7281 < 0,

(89)

and, when 𝑆 = 3.064,

−
𝜇(𝑆
∗
)
2

𝐹 (𝑆
∗
)
+ 𝛾𝑅
∗
(

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)
)

= −𝜇 + 𝛾𝑅
∗
(

𝑆
2

𝑆2 − (𝑆
∗
)
2
−

1

𝑆 − 𝑆∗
) = 1.0943 > 0.

(90)

That is, neither (𝐻
2
) nor (𝐻

3
) holds. However, from the

numerical simulation (see Figure 2), it is clear that the
endemic equilibrium𝐸

∗ is still globally asymptotically stable.
Therefore, in our future work, we expect to obtain the
corresponding theoretical result for the open problem in
Remark 8.
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Figure 2: Time series of 𝑆(𝑛), 𝐼(𝑛), and 𝑅(𝑛).

7. Conclusions

This paper deals with global stability of disease-free equi-
librium and endemic equilibrium and the permanence
of disease for a class of discrete SIRS epidemic models
with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼) and disease-induced
mortality. Under the basic assumption (𝐻

1
), by applying

analytic techniques, we obtain that disease-free equilibrium
𝐸
0 of model (1) is globally asymptotically stable if basic

reproduction number R
0
≤ 1 and disease in the model is

permanent if R
0
> 1. Furthermore, motivated by the recent

progress of Lyapunov techniques in continuous epidemic
models (see, e.g., [25–27]), we construct the corresponding
discrete analogue of Lyapunov functions (seeTheorem 4) for
nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼). Under the assumptions
burdened on 𝐹(𝑆), that is, assumptions (𝐻

2
) and (𝐻

3
),

we prove that the global asymptotic stability for endemic
equilibrium 𝐸

∗ of model (1) for the case R
0
> 1 is an

extension of SIR-type models with nonlinear incidence rate
𝐹(𝑆)𝐺(𝐼) (see, for instance, [7, 26], etc.); that is, when SIRS
models degenerate into SIR models, endemic equilibrium
of the corresponding SIR models is globally asymptoti-
cally stable only if R

0
> 1 and basic assumption (𝐻

1
)

hold.
From the proof of theorems in this paper, we easily

see that discrete Lyapunov functions, such as 𝑉(𝑆, 𝐼, 𝑅)

in Theorem 5, also can be applied for advanced models,
including the models with delay. We expect to study the
global stability of discrete SIRS and SEIRS epidemic models
with rather general incidence rate𝑓(𝑆, 𝐼) and with discrete or
infinite delay, which is left as a future work.
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