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We investigate the Cauchy problem for the modified Novikov equation. We establish blow-up criteria on the initial data to guarantee

the corresponding solution blowing up in finite time.

1. Introduction

In this paper, we consider the following Cauchy problem of
the modified Novikov equation:

U — Uy + (@+b) uzux

= auuu,, +bu'u £>0, x€R, ey

xXxx>

u(0,x) =uy(x), xeR,

where the coefficients a and b are positive constants.

In [1], Lai et al. presented the global existence of strong
solutions and gave a blow-up scenario of strong solutions to
the equation.

By using Green’s function G(x) = (1/2)e* for the
operator A = (1 - aﬁ)“ 2 () is equivalent to the nonlocal
equation

2
u, +buu,

2
=Gx* |—au'u, +

a— 6b(uui)x N 2b2—aui]

(2)
t>0, xR,

u(0,x) =uy(x), x€R,

where notation * denotes the spatial convolution.
Letting a = 3b and using the scaling translation & = bu,
(1) can be reformulated into the Novikov equation

~ ~ ~2~ ~ ~2
U, — Uy, +40°0, = 30l U, + U Uy, (3)

which was derived by Novikov in a symmetry classification
of nonlocal PDEs with quadratic or cubic nonlinearity [2];
subsequently, he found a scalar Lax pair for the Novikov
equation (also see [3]) and proved that the Novikov equation
is integrable. The equation has been investigated by many
scholars. Hone and Wang gave a matrix Lax pair for the
Novikov equation in [4] and showed how it was related by
a reciprocal transformation to a negative flow in the Sawada-
Kotera hierarchy. By using the matrix Lax pair, Hone et al.
calculated the explicit formulas for multipeak on solutions of
(1) in [3]. Ni and Zhou showed that the Novikov equation
is well-posed in H®, s > 3/2 by applying Kato’s semigroup
theory and the Novikov equation is locally well-posed in the
Besov spaces B;, with the critical index s = 3/2 and also
considered the persistence properties of the solution. In [5],
Jiang and Ni gave sufficient conditions on the initial data
to guarantee the formulation of singularities in finite time
and a global existence result was also established in [6]. It is
worth pointing out recent many works have been done for the
Novikov equation and the related equations, one can refer to
[7-12] and the references therein.

Now, we give some elementary results and a blow-up
scenario of strong solutions which will be used in this paper.

Theorem 1 (see [13]). Givenu (x,t = 0) = u, € H(R) with
s > 3/2, then there exist a maximal T = T(u,) > 0 and a
unique solution u to (1) such that

u=u(,uy) € C([0,T); H (R)) nC' ([0,T); H*" (R)).
(4)
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Moreover, the solution depends continuously on the initial
data; that is, the mapping uy, — u(,u,) : H'(R) —
C([0, T); HS(R)) N C'([0, T); H Y (R)) is continuous.

Theorem 2 (see [1]). Assume uy(x) € H', s = 3/2, and let T

be the maximal existence time of the solution u(x, t) to (1) with

the initial data uy(x). If a > b, then the corresponding solution
blows up in finite time if and only if

ltlTIII} hriﬁnf (uuy) (x,t) = —00. (5)

We also need to introduce the classical particle trajectory

method. Suppose u(x, t) is a solution of the Novikov equation;
let g(x, t) be the particle line evolved by the solution u:

dq(x,t) . 5
—— =bu” (q(x,1),1), ©

q(x,t=0)=x.
Then

qy (x,t) = exp <2 Jt uu, (g,s) ds) ,

0

9 (%,0) =1,

7)
which is always positive before the blow-up time. Therefore,
the function q(x,t) is an increasing diffeomorphism of the
line before blow-up.

Let y = A’u = (1 - 02)u; the following identity can be
obtained:

y(q (), ) g (x, 1) = y, (x) e I (8)

In fact, direct computation yields
d
L @)

= iy + 2909 + Yoy

= Ny + 4byu g} + b’ y.q;
= (ut — Upex T AUy, (I/l - uxx) + buz (ux - uxxx)) qi

—auu,, yqi + 4buu,, yqi

= (4b-a) uuxyqi.
)

Remark 3. From (8), it follows that if y,(x) = Azuo(x) >0
then y(t,x) = Au(t,x) > 0. Since Af = G * f, for f €
L*(R), therefore, we obtain u(x) > 0. Ify, = (1—a§)u0(x) <0,
the result is similar.

2. Blow-Up Criteria

In this section, we present the following blow-up criteria on
the initial data to guarantee that the corresponding strong
solution of (1) blowing up. Our method is partially motivated
by [14].
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Theorem 4. If a > 3b, suppose that u, € H(R), s > 3/2,
and there exists x, € R such that uy(x,) > 0 and yy(x,) =
(1- ai)uo(xo) =0,

Yo (x)=0(# 0) for x € (-00,x,),

(10)
Yo (x) <0(# 0) for x € (x4,00).
Then the corresponding solution u(x, t) to the modified Novikov
equation (1) with uy(x) as the initial datum blows up in finite
time.

Proof. By the local well-posedness theorem and a density
argument, it suffices to consider the case s > 3; without loss
of generality, we take s = 3 for simplicity of notation. We also
assume 1, # 0; otherwise, solutions are trivial.

Suppose that the solution exists globally. Due to (8) and
the initial condition (10), we have

y(q(xt),t) =0,

y(q(x,t),t) 20(# 0), forxe€(-00,x,), (1)

y(q(x,t),t) <0(# 0), forx € (x5 00),
forallt > 0. Since u(x,t) = G * y(x,t), x € R, t > 0, we can
write u(x, t) and u,(x, t) as follows:

X

&y E 1 dE+ Lo joo ey (E1) dE,

1 _
u(x,t):EexJ 3
X

w2 [ Ey@ndgr i [Tty @nde

X

(12)
As a result of (12)
(u+u,)(x,t)=¢" JOO ey (& 1) dE, (13)
(-u)wn=e* [ dy@nd, a9
forall ¢t > 0.

From (12) and differentiating uu (q(x,, t), t) with respect
to t, we have

4 (oun,) (g (v ). 1)

2
_ A1 g Jq(’“"’” g
= { ze . ey, 1)dE

% 2
e ([7 sty ) }
2 q(xo:t)



Abstract and Applied Analysis

q(xst) 2
=mfmumﬂxw”ww(f éy@adﬂ

—00

q(xg:t)

q(xo:t)
— ¢ 2axot) J- efy (£, 1) dE J

—00

&y, (& 1) dE

(0]

0 2
r ) 0 [ )
q

Xo»t

(6] ()

+ e2q(xo’f) J e_gyt (E) t) d{

q(oxo,t)

E%@n&j

q(xo:t)

= bu’(u = u,)’ (g (xo 1))

q(xot

)
- (=) (@) e [Ty @

—00

+bud(u+ ux)2 (q(xqt).t)

ey, (51)dE.

(15)

) (o), ) |

q(xpst

Equation (1) can be rewritten as

Ve = —b(yuz)x +(2b - a) yuu,. (16)
Firstly, we can estimate the first term as

(x5t)
e—q(xo’t) Jq 0
-00
(x5t

— _be’q(xo’t) Jq 0

—00

ey, (&, 1) dE

)
¢y @ 0w’ En),de

) [T
+(2b —a)e 1 J ey & u@t)u (& t)dg

—00

O 2
= b0 [y @0 dg
q(xo:t)
+(2b - a) 100D J ey (E ) uE 1) ue (1) dE
00
q(xg,t)
= be 1x0) J T (u3 - uzuxx) dé
—00
q(xo:t)
+(2b — a) e 10" J T (v'u, — uuu,, ) dE
3b-a 3 2 2b—-a 2
=—-u -buu, - uu,
3 2

a _ q(XO’t)
+ Ze oD J Sulde

3 ~00

3
6b —a q(xl]:t)
+ et J S dE
2 . x
2b-a _ a%ot)
+ T Zemixod) J Sude.
2 . x
17)
We also apply the following inequality in [6]:
q(xo:t) £ 3 ) 3
J e (Zu + 3uug —uE)(E, t)dé
- (18)

> 1003 (g (xp,t) 1) .

So we can derive

a _ q(xo,t)
3¢ Axoot) J Sulde
—00

6b —a _ q(xo’t)
e qort) J eEuuidf
=00

2b—a _ o)
+ 2 Bematxed) J efuidf
2 —o0

(1)
= ée“q(x"’t) fo:[]t e [(a - 3b) (2u3 - 3uui - 3ui)
+3b (2u3 + 3uu’ — 3ui)] d&

L4365 3bs_as
6 6

(19)
Putting (19) into (17), we have

q(xost
{mmj°
—00

2 b (q (x0,1) 1) 1, (4 (x0,1) 1)

) 3
¢y, (§1)dE

(20)
2b—a

u(q (xo,1) 1) 14 (9 (x051) 1)

6b—a
“ (ax0t). ).

Similarly, we have

+

emmj ey, (& 1) dE
‘1("0>t)

2 b (q (x0,1) 1) 1, (4 (x0,1) 1)

(21)
2b—a

+ u(q (x.t) 1) 11 (q (30 ) 1)

a—6b 3

s u’ (q(xgt),t).




Putting (21) and (22) into (15), we obtain

& 2ue (q(x01),1)

<2b (u4 + uzui) (q(xgt).t)
—(u—-u,) (6b L butu, - 2b- auui)
6 2
_bu 2 Zb—auui)
2

= 502 (@ - 12) (@ (x0 1), ).

6b — a3

+(u+u,) (—

(22)

Here we use the facts that (u — u,)(q(x,t),t) > 0, x €

(—00, q(xy, 1)), from (10) and (14), and (u + u,.)(q(x, 1), t) < 0,
x € (g(xy, 1), 00), from (10) and (13).

Claim 1. uu,(q(x,, t),t) < 0 is decreasing and uz(q(xo, t),t) <
ui(q(xo, t),t) forall t > 0.

Suppose that there exists a t, such that uz(q(xo, t),t) <
ui(q(xo,t), t) on [0,t,) and uz(q(xo,to),to) >
ui(q(xo, ty), ty)- Now, let

L(t) = u(u = u.) (g (x0,1) 1),
() :=u(u+u,)(q(xpt),t).
Firstly, differentiating I(t), we get

ar) ;2
a bu” (q(xo.1) 1)

q(xot) 2
e_q(xojt) J ’ ef)/(g; t)dg)
—00

(x0,t)
+—(eq”m”jf éy(&r)df)

N L
e ey, (&1)dE
00

X

1 q(xost) £ (o] f
T Eena | ena
—00 q( xpt
1 (49%ost) £ 0 &
+5j ey@m&j(;e%@o&
—00 q(xq,

x (1 —u) (q(x0) 1)
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<6b a 3 2 2b-a 2>
- = +bu - ———uu
2 6 2 *

x (= 1) (q (%0, ) 1)

a 2(2 2
> U (ux—u ), on [0,t,).
(24)
Secondly, differentiating I1(t), we get
dII (t)
ST bu’ (q (xo.1) 1)
Oo 2
( q(x,t) e }’(f, t)df)
(xo
( xot) ( e‘fy(’q’,t)df)
(e [ ctnena)
(gt
1 q(xg5t) 0 £
e U en@na]  cEna
q(x(,,t

q(xo:t)
+ l J e y (6 t) dE J e_g)/t (E’ t) df

2 )eo qo)
< b’ (u + ux)2 (q(xqt),t)
<6b a 3 2 2b—a 2)
—u +bu uu
6 2

xu, (q(xo:t) 1)

+ 1 (6b_au3 - buzux - 2b- auui)
2 6 2

x (u+u,) (q(x0,t) 1)

__(6b a 3 +bu 2 2b—auu2>
2 6 2 x
x (u+u) (q(x01) 1)
a 2( 2 2
:—gu (“x_” ), on [O,to).

(25)

Hence, from (24), (25), and the continuity property of ODEs,
we can draw

u’ (uh - ) (q (x0,)t) = =T (®) I () > =1 (0) I1 (0) > O,
(26)

for all £ > 0. This means ¢, can be extended to infinity. This is
a contradiction, so the claim is true.



Abstract and Applied Analysis

Moreover, using (24) and (25) again, we have the follow-
ing inequality for u? (ufC - uz)(q(xo, t),t):

d
S (12 =) (@ (1))
(27)

2 ~Sun, (4 (x0, 1), 1) (115 =) (q (50, 1) 1).

Putting (22) into (27) yields
iuz (u2 —u?) (q(x0,t) t)
dt x
a 2
> Ju (ux -u )(q(xo,t),t)

. (g E o (1~ 0) (q (50 5) ) s~ S, (x0)>.

(28)

Before completing the proof, we want the following
technical lemma.

Lemma 5 (see [15]). Suppose that @ is a twice continuous
differential satisfying
Q" (t) = C@ (1) D (), t>0, Cy>0,
(29)
®(0) >0, @' (0) > 0.
Then O(t) blows up in finite time. Moreover the blow-up time
T can be estimated in terms of the initial datum as

TSmax{ 2 ,m}
Co®(0) @' (0)

(30)

Let O(t) = fot uz(ui - uz)(q(xo, s), s)ds — ugug, (x,); then
(28) is an equation of type (29) with C, = a*/18. The proof is
complete by applying Lemma 5. O

When we change the signs of u,(x,) and y,(x) in Theo-
rem 4, similarly, we have the following blow-up criterion.

Theorem 6. Ifa > 3b, suppose that u, € H(R), s > (3/2),
and there exists a x, € R such that uy(x,) < 0 and yy(x,) =
(1- a,zc)uo(xo) =0,
Yo (x)<0(# 0) for x € (—00,x,),

31)
Yo (x)=0(# 0) for x € (x4,00).
Then the corresponding solution u(x, t) to the modified Novikov
equation (1) with uy(x) as the initial datum blows up in finite
time.
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