
Research Article
Zagreb Eccentricity Indices of the Generalized Hierarchical
Product Graphs and Their Applications

Zhaoyang Luo1,2 and Jianliang Wu1

1 School of Mathematics, Shandong University, Jinan 250100, China
2Department of Mathematics, Changji University, Changji 831100, China

Correspondence should be addressed to Jianliang Wu; jlwu@sdu.edu.cn

Received 12 October 2013; Accepted 22 December 2013; Published 10 February 2014

Academic Editor: Juan Manuel Peña

Copyright © 2014 Z. Luo and J. Wu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let𝐺 be a connected graph.Thefirst and secondZagreb eccentricity indices of𝐺 are defined as𝑀∗
1
(𝐺) = ∑V∈𝑉(𝐺) 𝜀

2

𝐺
(V) and𝑀∗

2
(𝐺) =

∑
𝑢V∈𝐸(𝐺) 𝜀𝐺(𝑢)𝜀𝐺(V), where 𝜀𝐺(V) is the eccentricity of the vertex V in 𝐺 and 𝜀2

𝐺
(V) = (𝜀

𝐺
(V))2. Suppose that 𝐺(𝑈) ⊓𝐻(0 ̸=𝑈 ⊆ 𝑉(𝐺))

is the generalized hierarchical product of two connected graphs 𝐺 and 𝐻. In this paper, the Zagreb eccentricity indices 𝑀∗
1
and

𝑀
∗

2
of 𝐺(𝑈) ⊓𝐻 are computed. Moreover, we present explicit formulas for the𝑀∗

1
and𝑀∗

2
of S-sum graph, Cartesian, cluster, and

corona product graphs by means of some invariants of the factors.

1. Introduction

A topological index is a real number associatedwith chemical
constitution purporting for correlation of chemical structure
with various physical properties, chemical reactivity, or bio-
logical activity, which is used to understand properties of
chemical compounds in theoretical chemistry [1].

Up to now, hundreds of topological indices have been
defined in chemical literatures, various applications of these
topological indices have been found, andmanymathematical
properties are also investigated. Wiener index 𝑊 is the first
topological index, introduced by American chemist Wiener,
for investigating boiling points of alkanes in 1947 [2]. The
well known degree-based topological indices are the first
and second Zagreb indices 𝑀

1
and 𝑀

2
, which have been

introduced byGutman and Trinajstić [3] and applied to study
molecular chirality in quantitative structure-activity relation-
ship (QSAR) and quantitative structure-property relation-
ship (QSPR) analysis and so forth. Resently, the first and
second Zagreb eccentricity indices 𝑀∗

1
and 𝑀

∗

2
have been

introduced byGhorbani andHosseinzadeh [4] andVukičević
and Graovac [5] as the revised version of the Zagreb indices
𝑀
1
and 𝑀

2
, respectively. They computed the Zagreb eccen-

tricity indices of some composite graphs and showed that
𝑀
∗

1
(𝐺)/|𝐺| ≥ 𝑀

∗

2
(𝐺)/|𝐸(𝐺)| holds for all acyclic and uni-

cyclic graphs and that neither this nor the opposite inequality

holds for all bicyclic graphs. For further results of the Zagreb
eccentricity indices, we encourage the reader to refer to [6–8].

In 2009, Spain mathematicians Barrière and coauthors
[9] introduced a new composite graph, namely, hierarchical
product graph. In the same year, this team also reported a
generalization of both Cartesian and the hierarchical product
of graphs, namely, the generalized hierarchical product of
graphs in [10]. After that, many results for some topological
indices of the (generalized) hierarchical product of graphs are
reported; see [11–17].

In this paper, the Zagreb eccentricity indices of the gen-
eralized hierarchical product graph 𝐺(𝑈) ⊓ 𝐻 are computed
and as some special cases of𝐺(𝑈)⊓𝐻, the Zagreb eccentricity
indices of theCartesian product graph𝐺◻𝐻, the 𝑆-sumgraph
𝐺+
𝑆
𝐻, and the cluster product graph 𝐺{𝐻} are determined,

respectively. Moreover, as applications, we present explicit
formulas for the 𝑀∗

1
and 𝑀

∗

2
indices of the 𝐶

4
nanotorus

𝐶
𝑚
◻𝐶
𝑛
, the 𝐶

4
nanotubes 𝑃

𝑚
◻𝐶
𝑛
, the zig-zay polyhex nan-

otube 𝑇𝑈𝐻𝐶
6
[2𝑛, 2], the hexagonal chain 𝐿

𝑛
, and so forth.

2. Preliminaries

Throughout this paper, all graphs are simple, finite, and
undirected. For terminology and notations that are not
defined here, we refer the reader to West [18].
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Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺), 𝜓
𝐺
) be a graph with the vertex set

𝑉(𝐺) ̸= 0, the edge set 𝐸(𝐺), and an incidence function 𝜓
𝐺

that associates with each edge of 𝐺, an unordered pair of
vertices of 𝐺. If 𝑒 is an edge and 𝑢 and V are vertices such
that 𝜓

𝐺
(𝑒) = 𝑢V, then 𝑒 is said to join 𝑢 and V, and the

vertices 𝑢 and V are called the ends of 𝑒. The cardinality of
𝑉(𝐺) and 𝐸(𝐺) is denoted by |𝐺| and |𝐸(𝐺)|, respectively. We
denote the degree and the neighborhood of a vertex V of𝐺 by
𝑑
𝐺
(V) and𝑁

𝐺
(V); then 𝑑

𝐺
(V) = |𝑁

𝐺
(V)|. As usual, the distance

between vertices 𝑢 and V of a connected graph 𝐺, denoted by
𝑑
𝐺
(𝑢, V), is defined as the number of edges in a shortest path

connecting the vertices 𝑢 and V. Suppose that 𝑑(𝑥 | 𝐺) =

∑V∈𝑉(𝐺) 𝑑𝐺(𝑥, V) and 𝑑
2

(𝑥 | 𝐺) = ∑V∈𝑉(𝐺)(𝑑𝐺(𝑥, V))
2. The

eccentricity 𝜀
𝐺
(V) of a vertex V in 𝐺 is the largest distance

between V and any other vertex 𝑢 of 𝐺; that is, 𝜀
𝐺
(V) =

max
𝑢∈𝑉(𝐺)

𝑑
𝐺
(𝑢, V). For two graphs𝐺 and𝐻, if there exist two

bijections 𝜃 : 𝑉(𝐺) → 𝑉(𝐻) and 𝜑 : 𝐸(𝐺) → 𝐸(𝐻) such
that 𝜓

𝐺
(𝑒) = 𝑢V if and only if 𝜓

𝐻
(𝜑(𝑒)) = 𝜃(𝑢)𝜃(V), then we

say that 𝐺 and 𝐻 are isomorphic, denoted by 𝐺 ≅ 𝐻. Let
Top(𝐺) denote a certain topological index of 𝐺. In general, if
𝐺 ≅ 𝐻, then Top(𝐺) = Top(𝐻).

The total eccentricity and the eccentric connectivity
indices 𝜁(𝐺) and 𝜉

𝑐

(𝐺) of graph 𝐺 are defined as 𝜁(𝐺) =

∑V∈𝑉(𝐺) 𝜀𝐺(V) and 𝜉
𝑐

(𝐺) = ∑
𝑢V∈𝐸(𝐺)[𝜀𝐺(𝑢) + 𝜀

𝐺
(V)] =

∑V∈𝑉(𝐺) 𝑑𝐺(V)𝜀𝐺(V), respectively. The Zagreb indices of 𝐺
are defined as 𝑀

1
(𝐺) = ∑

𝑢V∈𝐸(𝐺)[𝑑𝐺(𝑢) + 𝑑
𝐺
(V)] =

∑
𝑢∈𝑉(𝐺)

(𝑑
𝐺
(𝑢))
2 and 𝑀

2
(𝐺) = ∑

𝑢V∈𝐸(𝐺) 𝑑𝐺(𝑢)𝑑𝐺(V). Very
recently, the topological indices based on vertex eccentricities
attracted some attention in chemistry. In an analogy with
the Zagreb indices, the first and second Zagreb eccentricity
indices 𝑀∗

1
and 𝑀∗

2
of a connected graph 𝐺 are defined by

[4, 5]. That is,

𝑀
∗

1
(𝐺) = ∑

V∈𝑉(𝐺)
𝜀
2

𝐺
(V) = ∑

V∈𝑉(𝐺)
(𝜀
𝐺
(V))2,

𝑀
∗

2
(𝐺) = ∑

𝑢V∈𝐸(𝐺)
𝜀
𝐺
(𝑢) 𝜀
𝐺
(V) .

(1)

Lemma 1 (see [4]). Let 𝐾
𝑛
be the complete graph of order 𝑛;

then 𝜁(𝐾
𝑛
) = 𝑛, 𝜉𝑐(𝐾

𝑛
) = 𝑛(𝑛 − 1), 𝑀∗

1
(𝐾
𝑛
) = 𝑛, and

𝑀
∗

2
(𝐾
𝑛
) = (
𝑛

2
).

Lemma 2 (see [4]). Let 𝐶
𝑛
be the cycle of length 𝑛; then

𝜁(𝐶
𝑛
) = 𝑛⌊𝑛/2⌋, 𝜉𝑐(𝐶

𝑛
) = 2𝑛⌊𝑛/2⌋, and𝑀∗

1
(𝐶
𝑛
) = 𝑀

∗

2
(𝐶
𝑛
) =

𝑛⌊𝑛/2⌋
2.

Lemma 3 (see [4]). Let 𝑃
𝑛
be the path on 𝑛 ≥ 2 vertices. Then

𝜁 (𝑃
𝑛
) =

{{{

{{{

{

1

4
𝑛 (3𝑛 − 2) , 2 | 𝑛,

1

4
(𝑛 − 1) (3𝑛 + 1) , 2 ∤ 𝑛,

(2)

𝑀
∗

1
(𝑃
𝑛
) =

{{{

{{{

{

1

12
𝑛 (𝑛 − 1) (7𝑛 − 2) , 2 | 𝑛,

1

12
(𝑛 − 1) (7𝑛

2

− 2𝑛 − 3) , 2 ∤ 𝑛,

(3)

𝜉
𝑐

(𝑃
𝑛
) =

{{{

{{{

{

1

2
(3𝑛
2

− 6𝑛 + 4) , 2 | 𝑛,

3

2
(𝑛 − 1)

2

, 2 ∤ 𝑛,

(4)

𝑀
∗

2
(𝑃
𝑛
) =

{{{

{{{

{

1

12
𝑛 (7𝑛
2

− 21𝑛 + 20) , 2 | 𝑛,

1

12
(𝑛 − 1) (7𝑛

2

− 14𝑛 + 3) , 2 ∤ 𝑛.

(5)

3. Zagreb Eccentricity Indices of Generalized
Hierarchical Product Graphs

In this section, we calculate the Zagreb eccentricity indices of
the generalized hierarchical product graphs.

Definition 4 (see [9]). Let 𝐺 and𝐻 be two connected graphs;
0 ̸=𝑈 ⊆ 𝑉(𝐺). Then the generalized hierarchical product
𝐺(𝑈)⊓𝐻 is the graphwith vertex set𝑉(𝐺)×𝑉(𝐻) and vertices
(𝑢
𝑟
, V
𝑖
) and (𝑢

𝑠
, V
𝑘
) are adjacent if and only if [𝑢

𝑟
= 𝑢
𝑠
∈ 𝑈 and

V
𝑖
V
𝑘
∈ 𝐸(𝐻)] or [V

𝑖
= V
𝑘
∈ 𝑉(𝐻) and 𝑢

𝑟
𝑢
𝑠
∈ 𝐸(𝐺)].

Given a connected graph 𝐺 and 0 ̸=𝑈 ⊆ 𝑉(𝐺), a path
connecting vertices 𝑥 and 𝑦 through 𝑈 is a 𝑥𝑈𝑦-path of 𝐺
containing some vertex 𝑧 ∈ 𝑈 (vertex 𝑧 could be the vertex
𝑥 or vertex 𝑦). Then the distance through𝑈 between 𝑥 and 𝑦
is denoted by 𝑑

𝐺(𝑈)
(𝑥, 𝑦), which is the length of the shortest

path 𝑥𝑈𝑦 in 𝐺. Note that if one of the vertex 𝑥 and 𝑦 belongs
to𝑈, then𝑑

𝐺(𝑈)
(𝑥, 𝑦) = 𝑑

𝐺
(𝑥, 𝑦); see [13]. Similarly, we define

some invariants related to 𝑈 in 𝐺 as follows:

𝜀
𝐺(𝑈)

(V) = max
𝑢∈𝑉(𝐺)

𝑑
𝐺(𝑈)

(𝑢, V),
𝜁(𝐺(𝑈)) = ∑V∈𝑉(𝐺) 𝜀𝐺(𝑈)(V),
𝜖(𝐺(𝑈)) = ∑V∈𝑈 𝜀𝐺(𝑈)(V); see [15],
𝜉
𝑐

(𝐺(𝑈)) = ∑
𝑢V∈𝐸(𝐺)(𝜀𝐺(𝑈)(𝑢) + 𝜀𝐺(𝑈)(V)); see [15],

𝑀
∗

1
(𝐺(𝑈)) = ∑V∈𝑉(𝐺) 𝜀

2

𝐺(𝑈)
(V),

𝑚
∗

1
(𝐺(𝑈)) = ∑V∈𝑈 𝜀

2

𝐺(𝑈)
(V),

𝑀
∗

2
(𝐺(𝑈)) = ∑

𝑢V∈𝐸(𝐺) 𝜀𝐺(𝑈)(𝑢)𝜀𝐺(𝑈)(V).

Theorem 5 (see [15]). Let graphs 𝐺 and 𝐻 be connected;
0 ̸=𝑈 ⊆ 𝑉(𝐺). Then

𝜉
𝑐

(𝐺 (𝑈) ⊓ 𝐻) = |𝑈| 𝜉
𝑐

(𝐻) + |𝐻| 𝜉
𝑐

(𝐺 (𝑈))

+ 2 |𝐸 (𝐺)| 𝜁 (𝐻) + 2 |𝐸 (𝐻)| 𝜖 (𝐺 (𝑈)) .

(6)

Lemma6 (see [10]). Let𝐺 and𝐻 be two connected graphs and
0 ̸=𝑈 ⊆ 𝑉(𝐺). Then

𝜀
𝐺(𝑈)⊓𝐻

(𝑢, V) = 𝜀
𝐺(𝑈)

(𝑢) + 𝜀
𝐻
(V) . (7)

Theorem 7. Let graphs 𝐺 and𝐻 be connected; 0 ̸=𝑈 ⊆ 𝑉(𝐺).
Then

(i)

𝑀
∗

1
(𝐺 (𝑈) ⊓ 𝐻) = |𝐻|𝑀

∗

1
(𝐺 (𝑈))

+ |𝐺|𝑀
∗

1
(𝐻) + 2𝜁 (𝐺 (𝑈)) 𝜁 (𝐻) ,

(8)
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(ii)

𝑀
∗

2
(𝐺 (𝑈) ⊓ 𝐻) = |𝐸 (𝐻)|𝑚

∗

1
(𝐺 (𝑈)) + |𝐸 (𝐺)|𝑀

∗

1
(𝐻)

+ |𝑈|𝑀
∗

2
(𝐻) + |𝐻|𝑀

∗

2
(𝐺 (𝑈))

+ 𝜉
𝑐

(𝐺 (𝑈)) 𝜁 (𝐻) + 𝜉
𝑐

(𝐻) 𝜖 (𝐺 (𝑈)) .

(9)

Proof. Let 𝑉(𝐺) = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
} and 𝑉(𝐻) = {V

1
, V
2
, . . . ,

V
𝑛
}.
(i) By the definition of Zagreb eccentricity index𝑀∗

1
and

Lemma 6, we have

𝑀
∗

1
(𝐺 (𝑈) ⊓ 𝐻) = ∑

(𝑢
𝑟
,V
𝑖
)∈𝑉(𝐺(𝑈)⊓𝐻)

𝜀
2

𝐺(𝑈)⊓𝐻
((𝑢
𝑟
, V
𝑖
))

= ∑

𝑢
𝑟
∈𝑉(𝐺)

∑

V
𝑖
∈𝑉(𝐻)

(𝜀
𝐺(𝑈)

(𝑢
𝑟
) + 𝜀
𝐻
(V
𝑖
))
2

= |𝐻| ∑

𝑢
𝑟
∈𝑉(𝐺)

𝜀
2

𝐺(𝑈)
(𝑢
𝑟
) + |𝐺| ∑

V
𝑖
∈𝑉(𝐻)

𝜀
2

𝐻
(V
𝑖
)

+ 2 ∑

𝑢
𝑟
∈𝑉(𝐺)

𝜀
𝐺(𝑈)

(𝑢
𝑟
) ∑

V
𝑖
∈𝑉(𝐻)

𝜀
𝐻
(V
𝑖
)

= |𝐻|𝑀
∗

1
(𝐺 (𝑈)) + |𝐺|𝑀

∗

1
(𝐻)

+ 2𝜁 (𝐺 (𝑈)) 𝜁 (𝐻) .

(10)

(ii) We partition the edges of 𝐺(𝑈) ⊓ 𝐻 into two subsets
𝐸
1
and 𝐸

2
, as follows:

𝐸
1
= {(𝑢
𝑟
, V
𝑖
) (𝑢
𝑟
, V
𝑘
)

∈ 𝐸 (𝐺 (𝑈) ⊓ 𝐻) | V
𝑖
V
𝑘
∈ 𝐸 (𝐻) , 𝑢

𝑟
∈ 𝑈} ,

𝐸
2
= {(𝑢
𝑟
, V
𝑖
) (𝑢
𝑠
, V
𝑖
)

∈ 𝐸 (𝐺 (𝑈) ⊓ 𝐻) | 𝑢
𝑟
𝑢
𝑠
∈ 𝐸 (𝐺) , V

𝑖
∈ 𝑉 (𝐻)} .

(11)

From the definition of Zagreb eccentricity index 𝑀
∗

2
and

Lemma 6, we get

𝑀
∗

2
(𝐺 (𝑈) ⊓ 𝐻)

= ∑

(𝑢
𝑟
,V
𝑖
)(𝑢
𝑠
,V
𝑘
)∈𝐸(𝐺(𝑈)⊓𝐻)

𝜀
𝐺(𝑈)⊓𝐻

((𝑢
𝑟
, V
𝑖
)) 𝜀
𝐺(𝑈)⊓𝐻

((𝑢
𝑠
, V
𝑘
))

= ∑

(𝑢
𝑟
,V
𝑖
)(𝑢
𝑠
,V
𝑘
)∈𝐸
1
∪𝐸
2

𝜀
𝐺(𝑈)⊓𝐻

((𝑢
𝑟
, V
𝑖
)) 𝜀
𝐺(𝑈)⊓𝐻

((𝑢
𝑠
, V
𝑘
))

= ∑

𝑢
𝑟
∈𝑈

∑

V
𝑖
V
𝑘
∈𝐸(𝐻)

[𝜀
𝐺(𝑈)

(𝑢
𝑟
) + 𝜀
𝐻
(V
𝑖
)] [𝜀
𝐺(𝑈)

(𝑢
𝑟
) + 𝜀
𝐻
(V
𝑘
)]

+ ∑

V
𝑖
∈𝑉(𝐻)

∑

𝑢
𝑟
𝑢
𝑠
∈𝐸(𝐺)

[𝜀
𝐺(𝑈)

(𝑢
𝑟
) + 𝜀
𝐻
(V
𝑖
)]

× [𝜀
𝐺(𝑈)

(𝑢
𝑠
) + 𝜀
𝐻
(V
𝑖
)]

= |𝐸 (𝐻)| ∑

𝑢
𝑟
∈𝑈

𝜀
2

𝐺(𝑈)
(𝑢
𝑟
) + ∑

𝑢
𝑟
∈𝑈

𝜀
𝐺(𝑈)

(𝑢
𝑟
)

× ∑

V
𝑖
V
𝑘
∈𝐸(𝐻)

(𝜀
𝐻
(V
𝑖
) + 𝜀
𝐻
(V
𝑘
))

+ |𝑈| ∑

V
𝑖
V
𝑘
∈𝐸(𝐻)

𝜀
𝐻
(V
𝑖
) 𝜀
𝐻
(V
𝑘
) + |𝐸 (𝐺)| ∑

V
𝑖
∈𝑉(𝐻)

𝜀
2

𝐻
(V
𝑖
)

+ ∑

V
𝑖
∈𝑉(𝐻)

𝜀
𝐻
(V
𝑖
) ∑

𝑢
𝑟
𝑢
𝑠
∈𝐸(𝐺)

[𝜀
𝐺(𝑈)

(𝑢
𝑟
) + 𝜀
𝐺(𝑈)

(𝑢
𝑠
)]

+ |𝐻| ∑

𝑢
𝑟
𝑢
𝑠
∈𝐸(𝐺)

𝜀
𝐺(𝑈)

(𝑢
𝑟
) 𝜀
𝐺(𝑈)

(𝑢
𝑠
)

= |𝐸 (𝐻)|𝑚
∗

1
(𝐺 (𝑈)) + 𝜖 (𝐺 (𝑈)) 𝜉

𝑐

(𝐻) + |𝑈|𝑀
∗

2
(𝐻)

+ |𝐸 (𝐺)|𝑀
∗

1
(𝐻) + 𝜁 (𝐻) 𝜉

𝑐

(𝐺 (𝑈)) + |𝐻|𝑀
∗

2
(𝐺 (𝑈)) .

(12)

This completes the proofs.

Definition 8 (see [13]). Let𝐺 and𝐻 be two connected graphs.
Then the Cartesian product 𝐺◻𝐻 has the vertex set 𝑉(𝐺) ×
𝑉(𝐻) and vertices (𝑢

𝑟
, V
𝑖
) and (𝑢

𝑠
, V
𝑘
) are adjacent if and only

if [𝑢
𝑟
= 𝑢
𝑠
∈ 𝑉(𝐺) and V

𝑖
V
𝑘
∈ 𝐸(𝐻)] or [V

𝑖
= V
𝑘
∈ 𝑉(𝐻) and

𝑢
𝑟
𝑢
𝑠
∈ 𝐸(𝐺)], where 𝑟, 𝑠 = 1, 2, . . . , |𝐺| and 𝑖, 𝑘 = 1, 2, . . . , |𝐻|.

Note that if 𝑈 = 𝑉(𝐺), then 𝐺(𝑈) ⊓ 𝐻 ≅ 𝐺◻𝐻. So by
Theorem 7, the following corollary is obvious.

Corollary 9. Let 𝐺 and𝐻 be two connected graphs. Then

𝑀
∗

1
(𝐺◻𝐻) = |𝐺|𝑀

∗

1
(𝐻) + |𝐻|𝑀

∗

1
(𝐺) + 2𝜁 (𝐺) 𝜁 (𝐻) ,

(13)

𝑀
∗

2
(𝐺◻𝐻) = |𝐸 (𝐺)|𝑀

∗

1
(𝐻) + |𝐸 (𝐻)|𝑀

∗

1
(𝐺)

+ |𝐺|𝑀
∗

2
(𝐻) + |𝐻|𝑀

∗

2
(𝐺)

+ 𝜉
𝑐

(𝐺) 𝜁 (𝐻) + 𝜉
𝑐

(𝐻) 𝜁 (𝐺) .

(14)

Remark 10. Equation (14) corrects the corresponding
Corollary 9 in [4]. According to (14), we recompute the
second Zagreb eccentricity indices of the 𝐶

4
nanotubes as

below (see Example 11).

Example 11. Using the results as above, it is easy to obtain
the first and second Zagreb eccentricity indices of the 𝐶

4

nanotorus 𝐶
𝑚
◻𝐶
𝑛
(𝑚 ≥ 𝑛 ≥ 3) and the 𝐶

4
nanotubes

𝑃
2𝑚
◻𝐶
𝑛
(𝑛 ≥ 3) and 𝑃

2𝑚+1
◻𝐶
𝑛
(𝑛 ≥ 3). By Corollary 9 and

Lemmas 2 and 3, we have

𝑀
∗

1
(𝐶
𝑚
◻𝐶
𝑛
) =

1

2
𝑀
∗

2
(𝐶
𝑚
◻𝐶
𝑛
) = 𝑚𝑛(⌊

𝑚

2
⌋ + ⌊

𝑛

2
⌋)

2

,

𝑀
∗

1
(𝑃
2𝑚
◻𝐶
𝑛
)

= 𝑚𝑛 [
14

3
𝑚
2

− 3𝑚 +
1

3
+ 2⌊

𝑛

2
⌋

2

+ 2 (3𝑚 − 1) ⌊
𝑛

2
⌋] ,
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𝑀
∗

1
(𝑃
2𝑚+1

◻𝐶
𝑛
) = 𝑚𝑛(

14

3
𝑚
2

+ 4𝑚 +
1

3
)

+ 𝑛 (2𝑚 + 1) ⌊
𝑛

2
⌋

2

+ 2𝑚𝑛 (3𝑚 + 2) ⌊
𝑛

2
⌋ ,

𝑀
∗

2
(𝑃
2𝑚
◻𝐶
𝑛
) = 𝑚𝑛(

28

3
𝑚
2

− 10𝑚 +
11

3
)

+ (4𝑚 − 1) 𝑛⌊
𝑛

2
⌋

2

+ 2 (6𝑚
2

− 4𝑚 + 1) 𝑛 ⌊
𝑛

2
⌋ ,

𝑀
∗

2
(𝑃
2𝑚+1

◻𝐶
𝑛
) = 𝑚𝑛(

28

3
𝑚
2

+ 4𝑚 −
1

3
)

+ (4𝑚 + 1) 𝑛⌊
𝑛

2
⌋

2

+ 4𝑚 (3𝑚 + 1) 𝑛 ⌊
𝑛

2
⌋ .

(15)

Lemma 12 (see [19]). Let ◻𝑛
𝑖=1
𝐺
𝑖
be Cartesian product of 𝑛 ≥ 2

connected graphs 𝐺
𝑖
. Then

(a) |◻𝑛
𝑖=1
𝐺
𝑖
| = |𝑉(◻

𝑛

𝑖=1
𝐺
𝑖
)| = ∏

𝑛

𝑖=1
|𝐺
𝑖
|.

(b) |𝐸(◻𝑛
𝑖=1
𝐺
𝑖
)| = ∑

𝑛

𝑖=1
[∏
𝑛

𝑗=1,𝑗 ̸= 𝑖
|𝐺
𝑗
||𝐸(𝐺
𝑖
)|] =

∑
𝑛

𝑖=1
|𝐸(𝐺
𝑖
)|∏
𝑛

𝑗=1,𝑗 ̸= 𝑖
|𝐺
𝑗
|.

(c) 𝜁(◻𝑛
𝑖=1
𝐺
𝑖
) = ∑

𝑛

𝑖=1
[∏
𝑛

𝑗=1,𝑗 ̸= 𝑖
|𝐺
𝑗
|𝜁(𝐺
𝑖
)] =

∑
𝑛

𝑖=1
𝜁(𝐺
𝑖
)∏
𝑛

𝑗=1,𝑗 ̸= 𝑖
|𝐺
𝑗
|.

Corollary 13. Let ◻𝑛
𝑖=1
𝐺
𝑖
be Cartesian product of 𝑛 ≥ 2 simple

connected graphs 𝐺
𝑖
. Then

𝑀
∗

1
(◻
𝑛

𝑖=1
𝐺
𝑖
) =

𝑛

∑

𝑖=1

[

[

𝑛

∏

𝑗=1,𝑗 ̸= 𝑖


𝐺
𝑗


𝑀
∗

1
(𝐺
𝑖
)]

]

+ 2 ∑

1≤𝑠<𝑡≤𝑛

[

𝑛

∏

𝑘=1,𝑘 ̸= 𝑠,𝑡

𝐺𝑘
 𝜁 (𝐺𝑠) 𝜁 (𝐺𝑡)] .

(16)

Proof. The case 𝑛 = 2 is proved in Corollary 9. We prove
the assertion by induction. Suppose the result is valid for 𝑛
graphs. Then by Lemma 12, we have

𝑀
∗

1
(◻
𝑛+1

𝑖=1
𝐺
𝑖
) = 𝑀

∗

1
(𝐺
𝑛+1

◻ (◻
𝑛

𝑖=1
𝐺
𝑖
))

=
𝐺𝑛+1

𝑀
∗

1
(◻
𝑛

𝑖=1
𝐺
𝑖
) +

◻
𝑛

𝑖=1
𝐺
𝑖

𝑀
∗

1
(𝐺
𝑛+1

)

+ 2𝜁 (𝐺
𝑛+1

) 𝜁 (◻
𝑛

𝑖=1
𝐺
𝑖
)

=
𝐺𝑛+1



𝑛

∑

𝑖=1

[

[

𝑛

∏

𝑗=1,𝑗 ̸= 𝑖


𝐺
𝑗


𝑀
∗

1
(𝐺
𝑖
)]

]

+ 2
𝐺𝑛+1



× ∑

1≤𝑠<𝑡≤𝑛

[

𝑛

∏

𝑘=1,𝑘 ̸= 𝑠,𝑡

𝐺𝑘
 𝜁 (𝐺𝑠) 𝜁 (𝐺𝑡)]

+

𝑛

∏

𝑖=1

𝐺𝑖
𝑀
∗

1
(𝐺
𝑛+1

)

+ 2𝜁 (𝐺
𝑛+1

)

𝑛

∑

𝑖=1

[

[

𝑛

∏

𝑗=1,𝑗 ̸= 𝑖


𝐺
𝑗


𝜁 (𝐺
𝑖
)]

]

=

𝑛+1

∑

𝑖=1

[

[

𝑛+1

∏

𝑗=1,𝑗 ̸= 𝑖


𝐺
𝑗


𝑀
∗

1
(𝐺
𝑖
)]

]

+ 2 ∑

1≤𝑠<𝑡≤𝑛+1

[

𝑛+1

∏

𝑘=1,𝑘 ̸= 𝑠,𝑡

𝐺𝑘
 𝜁 (𝐺𝑠) 𝜁 (𝐺𝑡)] .

(17)

This completes the proof.

Example 14. TheHamming graph𝐻
𝑛
1
,𝑛
2
,...,𝑛
𝑠

= ◻
𝑛

𝑖=1
𝐾
𝑛
𝑖

. Thus,
by Corollary 13 and Lemma 1, we have 𝑀

∗

1
(𝐻
𝑛
1
,𝑛
2
,...,𝑛
𝑠

) =

𝑠
2

∏
𝑠

𝑖=1
𝑛
𝑖
. For 𝑛

1
= 𝑛
2
= ⋅ ⋅ ⋅ = 𝑛

𝑠
= 2, we attain the 𝑠-

dimensional hypercubes 𝑄
𝑠
. Therefore,𝑀∗

1
(𝑄
𝑠
) = 𝑠
2

2
𝑠.

Remark 15. Ghorbani and Hosseinzadeh computed the sec-
ond Zagreb eccentricity index of ◻𝑛

𝑖=1
𝐺
𝑖
in [4]. Here, we can

also obtain the explicit formula of𝑀∗
2
(◻
𝑛

𝑖=1
𝐺
𝑖
) by induction.

For two connected graphs 𝐺
𝑖
(𝑖 = 1, 2), we note that

𝐺
1
(𝑈) ⊓ 𝐺

2
≅ 𝐺
1
◻𝐺
2
if 𝑈 = 𝑉(𝐺

1
); then by Theorem 5, we

have

𝜉
𝑐

(𝐺
1
◻𝐺
2
) =

𝐺1
 𝜉
𝑐

(𝐺
2
) +

𝐺2
 𝜉
𝑐

(𝐺
1
)

+ 2
𝐸 (𝐺1)

 𝜁 (𝐺2) + 2
𝐸 (𝐺2)

 𝜁 (𝐺1) .

(18)

By induction, we can easily prove that

𝜉
𝑐

(◻
𝑛

𝑖=1
𝐺
𝑖
) =

𝑛

∑

𝑖=1

[

[

𝑛

∏

𝑗=1,𝑗 ̸= 𝑖


𝐺
𝑗


𝜉
𝑐

(𝐺
𝑖
)]

]

+ 2 ∑

1≤𝑠,𝑡≤𝑛

𝑠 ̸= 𝑡

[
[

[

𝑛

∏

𝑘=1

𝑘 ̸= 𝑠,𝑡

𝐺𝑘

𝐸 (𝐺𝑠)

 𝜁 (𝐺𝑡)
]
]

]

.

(19)

Therefore, by Corollary 9, Lemma 12 and the formula as
above, using a similarmethod of proof inCorollary 13, we can
obtain Corollary 16.

Corollary 16 (see [4]). Let ◻𝑛
𝑖=1
𝐺
𝑖
be Cartesian product of 𝑛 ≥

2 graphs 𝐺
𝑖
. Then

𝑀
∗

2
(◻
𝑛

𝑖=1
𝐺
𝑖
)

= ∑

1≤𝑠,𝑡≤𝑛

𝑠 ̸= 𝑡

[
[

[

𝑛

∏

𝑘=1

𝑘 ̸= 𝑠,𝑡

𝐺𝑘
 (
𝐸 (𝐺𝑠)

𝑀
∗

1
(𝐺
𝑡
) + 𝜉
𝑐

(𝐺
𝑠
) 𝜁 (𝐺
𝑡
))
]
]

]
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+

𝑛

∑

𝑖=1

[
[
[

[

𝑛

∏

𝑗=1

𝑗 ̸= 𝑖


𝐺
𝑗


𝑀
∗

2
(𝐺
𝑖
)

+2 ∑

1≤𝑠<𝑡≤𝑛

𝑠,𝑡 ̸= 𝑖

(

𝑛

∏

𝑘=1

𝑘 ̸= 𝑖,𝑠,𝑡


𝐺
𝑗


𝜁 (𝐺
𝑠
) 𝜁 (𝐺
𝑡
))

𝐸 (𝐺𝑖)

]
]

]

.

(20)

From Corollaries 13 and 16, the following corollary is
obvious.

Corollary 17. Let𝐺𝑛 = ◻𝑛
𝑖=1
𝐺 = 𝐺◻ ⋅ ⋅ ⋅ ◻𝐺⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
be Cartesian prod-

uct of 𝑛 ≥ 2 connected graphs 𝐺. Then

𝑀
∗

1
(𝐺
𝑛

) = 𝑛|𝐺|
𝑛−2

[|𝐺|𝑀
∗

1
(𝐺) + (𝑛 − 1) 𝜁

2

(𝐺)] ,

𝑀
∗

2
(𝐺
𝑛

) = 2 (
𝑛

2
) |𝐺|
𝑛−2

[|𝐸 (𝐺)|𝑀
∗

1
(𝐺) + 𝜉

𝑐

(𝐺) 𝜁 (𝐺)]

+ 𝑛|𝐺|
𝑛−1

𝑀
∗

2
(𝐺) + 2𝑛(

𝑛 − 1

2
) |𝐺|
𝑛−3

𝜁
2

(𝐺) .

(21)

4. Zagreb Eccentricity Indices of 𝑆-Sum Graphs

Let𝐺 be a connected graph.The vertices of a Line graph 𝐿(𝐺)
are the edges of 𝐺. Two edges of 𝐺 that share a vertex are
considered to be adjacent in 𝐿(𝐺). A Subdivision graph 𝑆(𝐺)
is the graph obtained by inserting an additional vertex in each
edge of 𝐺. That is, each edge of 𝐺 is replaced by a path of
length two.

Definition 18 (see [15]). For two connected graphs 𝐺 and 𝐻,
the 𝑆-sum 𝐺+

𝑆
𝐻 of 𝐺 and 𝐻 is a graph with vertex set

(𝑉(𝐺) ∪ 𝐸(𝐺)) × 𝑉(𝐻) and vertices (𝑢
𝑟
, V
𝑖
) and (𝑢

𝑠
, V
𝑘
) are

adjacent if and only if [𝑢
𝑟
= 𝑢
𝑠
∈ 𝑉(𝐺) and V

𝑖
V
𝑘
∈ 𝐸(𝐻)] or

[V
𝑖
= V
𝑘
∈ 𝑉(𝐻) and 𝑢

𝑟
𝑢
𝑠
∈ 𝐸(𝑆(𝐺))].

Note that if 0 ̸=𝑈 = 𝑉(𝐺) ⊂ 𝑉(𝑆(𝐺)), then 𝐺+
𝑆
𝐻 ≅

𝑆(𝐺)(𝑈) ⊓ 𝐻 ≅ 𝑆(𝐺)(𝑉(𝐺)) ⊓ 𝐻. So by Theorem 7, we can
compute the Zagreb eccentricity indices of 𝐺+

𝑆
𝐻 easily.

Lemma 19 (see [15]). Let 𝐺 and 𝐻 be two connected graphs.
If 𝑈 = 𝑉(𝐺), then we have

(a) |𝑉(𝑆(𝐺))| = |𝐺| + |𝐸(𝐺)|, |𝐸(𝑆(𝐺))| = 2|𝐸(𝐺)|,
(b) for each vertex V ∈ 𝑈, we have 𝑑

𝑆(𝐺)
(V) = 𝑑

𝐺
(V),

(c) for each vertex V ∈ 𝑉(𝑆(𝐺)) \ 𝑈, we have 𝑑
𝑆(𝐺)

(V) = 2.

Lemma 20 (see [15]). Let 𝐺 = 𝑇
𝑛
(𝑛 ≥ 2) be a tree with 𝑛

vertices. If 𝑈 = 𝑉(𝐺), then

(a) for each vertex V ∈ 𝑈, we have 𝜀
𝑆(𝐺)(𝑈)

(V) = 2𝜀
𝐺
(V),

(b) for each vertex V ∈ 𝑉(𝑆(𝐺)) \ 𝑈, we have 𝜀
𝑆(𝐺)(𝑈)

(V) =
2𝜀
𝐿(𝐺)

(V) + 1.

Theorem 21. Let 𝑇
𝑛
be a tree with order 𝑛 (𝑛 ≥ 2) and let 𝐻

be a connected graph; 0 ̸=𝑈 = 𝑉(𝑇
𝑛
) ⊂ 𝑉(𝑆(𝑇

𝑛
)). Then

(i)

𝑀
∗

1
(𝑇
𝑛
+
𝑆
𝐻) = |𝐻| [4𝑀

∗

1
(𝑇
𝑛
) + 4𝑀

∗

1
(𝐿 (𝑇
𝑛
))

+ 4𝜁 (𝐿 (𝑇
𝑛
)) + 𝑛 − 1]

+ (2𝑛 − 1)𝑀
∗

1
(𝐻) + 2𝜁 (𝐻)

× [2𝜁 (𝑇
𝑛
) + 2𝜁 (𝐿 (𝑇

𝑛
)) + 𝑛 − 1] ,

(22)

(ii)

𝑀
∗

2
(𝑇
𝑛
+
𝑆
𝐻) = 4 |𝐸 (𝐻)|𝑀

∗

1
(𝑇
𝑛
) + 2 (𝑛 − 1)𝑀

∗

1
(𝐻)

+ 𝑛𝑀
∗

2
(𝐻) + 2𝜉

𝑐

(𝐻) 𝜁 (𝑇
𝑛
)

+ 2 |𝐻| [2𝜌 (𝑇
𝑛
) + 𝜉
𝑐

(𝑇
𝑛
)]

+ 2𝜁 (𝐻) [𝜉
𝑐

(𝑇
𝑛
) + 2𝜁 (𝐿 (𝑇

𝑛
)) + 𝑛 − 1] ,

(23)

where 𝜌(𝑇
𝑛
) = ∑

𝑢V∈𝐸(𝑇
𝑛
)
𝜀
𝐿(𝑇
𝑛
)
(𝑢V)[𝜀

𝑇
𝑛

(𝑢) + 𝜀
𝑇
𝑛

(V)].

Proof. (i) We start to calculate 𝑀∗
1
(𝑇
𝑛
+
𝑆
𝐻). By Lemmas 19

and 20, we have

𝑀
∗

1
(𝑆 (𝑇
𝑛
) (𝑈)) = ∑

V∈𝑉(𝑆(𝑇
𝑛
))

𝜀
2

𝑆(𝑇
𝑛
)(𝑈)

(V)

= 4 ∑

V∈𝑉(𝑇
𝑛
)

𝜀
2

𝑇
𝑛

(V) + ∑

V∈𝑉(𝐿(𝑇
𝑛
))

[2𝜀
𝐿(𝑇
𝑛
)
(V) + 1]

2

= 4𝑀
∗

1
(𝑇
𝑛
) + 4𝑀

∗

1
(𝐿 (𝑇
𝑛
)) + 4𝜁 (𝐿 (𝑇

𝑛
))

+ 𝑛 − 1,

𝜁 (𝑆 (𝑇
𝑛
) (𝑈)) = ∑

V∈𝑉(𝑆(𝑇
𝑛
))

𝜀
𝑆(𝑇
𝑛
)(𝑈)

(V)

= 2 ∑

V∈𝑉(𝑇
𝑛
)

𝜀
𝑇
𝑛

(V) + 2 ∑

V∈𝑉(𝐿(𝑇
𝑛
))

𝜀
𝐿(𝑇
𝑛
)
(V)

+
𝐸 (𝑇𝑛)



= 2𝜁 (𝑇
𝑛
) + 2𝜁 (𝐿 (𝑇

𝑛
)) + 𝑛 − 1.

(24)

Combing these with (8) in Theorem 7, we can obtain the
corresponding result.

(ii) Now, let us compute𝑀∗
2
(𝑇
𝑛
+
𝑆
𝐻). By Lemmas 19 and

20, we get

𝑚
∗

1
(𝑆 (𝑇
𝑛
) (𝑈)) = ∑

V∈𝑈=𝑉(𝑇
𝑛
)

𝜀
2

𝑆(𝑇
𝑛
)(𝑈)

(V)

= 4 ∑

V∈𝑉(𝑇𝑛)

𝜀
2

𝑇
𝑛

(V) = 4𝑀∗
1
(𝑇
𝑛
) ,

𝑀
∗

2
(𝑆 (𝑇
𝑛
) (𝑈)) = ∑

𝑢V∈𝐸(𝑇
𝑛
)

𝜀
𝑆(𝑇
𝑛
)(𝑈)

(𝑢V)
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× [𝜀
𝑆(𝑇
𝑛
)(𝑈)

(𝑢) + 𝜀
𝑆(𝑇
𝑛
)(𝑈)

(V)]

= 2 ∑

𝑢V∈𝐸(𝑇
𝑛
)

[2𝜀
𝐿(𝑇
𝑛
)
(𝑢V) + 1]

× [𝜀
𝑇
𝑛

(𝑢) + 𝜀
𝑇
𝑛

(V)]

= 4 ∑

𝑢V∈𝐸(𝑇
𝑛
)

𝜀
𝐿(𝑇
𝑛
)
(𝑢V) [𝜀

𝑇
𝑛

(𝑢) + 𝜀
𝑇
𝑛

(V)]

+ 2 ∑

𝑢V∈𝐸(𝑇
𝑛
)

[𝜀
𝑇
𝑛

(𝑢) + 𝜀
𝑇
𝑛

(V)]

= 4𝜌 (𝑇
𝑛
) + 2𝜉

𝑐

(𝑇
𝑛
) ,

𝜉
𝑐

(𝑆 (𝑇
𝑛
) (𝑈)) = ∑

𝑢V∈𝐸(𝑆(𝑇
𝑛
))

[𝜀
𝑆(𝑇
𝑛
)(𝑈)

(𝑢) + 𝜀
𝑆(𝑇
𝑛
)(𝑈)

(V)]

= ∑

V∈𝑉(𝑆(𝑇
𝑛
))

𝑑
𝑆(𝑇
𝑛
)(𝑈)

(V) 𝜀
𝑆(𝑇
𝑛
)(𝑈)

(V)

= 2 ∑

V∈𝑈=𝑉(𝑇
𝑛
)

𝑑
𝑇
𝑛

(V) 𝜀
𝑇
𝑛

(V)

+ 2 ∑

V∈𝑉(𝐿(𝑇
𝑛
))

(2𝜀
𝐿(𝑇
𝑛
)
(V) + 1)

= 2𝜉
𝑐

(𝑇
𝑛
) + 4𝜁 (𝐿 (𝑇

𝑛
)) + 2 (𝑛 − 1) ,

𝜖 (𝑆 (𝑇
𝑛
) (𝑈)) = ∑

V∈𝑈=𝑉(𝑇
𝑛
)

𝜀
𝑆(𝑇
𝑛
)(𝑈)

(V)

= 2 ∑

V∈𝑉(𝑇
𝑛
)

𝜀
𝑇
𝑛

(V) = 2𝜁 (𝑇
𝑛
) .

(25)

Combing these results with (9) in Theorem 7, we obtain the
desired result.

Clearly, if 𝑛 is even, then 𝜌(𝑃
𝑛
) = (1/2)𝑛(𝑛 − 2) +

2∑
𝑛−2

𝑖=(𝑛/2)
𝑖(2𝑖 + 1). Otherwise, if 𝑛 is odd, then 𝜌(𝑃

𝑛
) =

2∑
𝑛−2

𝑖=((𝑛−1)/2)
𝑖(2𝑖 + 1). So, the following lemma holds.

Lemma 22. Let 𝑃
𝑛
be a path of order 𝑛. Then

𝜌 (𝑃
𝑛
) =

{{{

{{{

{

1

12
(𝑛 − 2) (14𝑛

2

− 23𝑛 + 12) , 2 | 𝑛,

1

12
(𝑛 − 1) (14𝑛

2

− 37𝑛 + 21) , 2 ∤ 𝑛.

(26)

Example 23. Suppose 𝐿
𝑛
is a linear hexagonal chain with 𝑛 ≥

2 hexagons (see Figure 1); note that 𝐿
𝑛
≅ 𝑃
𝑛+1

+
𝑆
𝑃
2
. Thus, by

Lemmas 3 and 22 andTheorem 21, we have

𝑀
∗

1
(𝐿
𝑛
) =

2

3
(14𝑛
3

+ 30𝑛
2

+ 19𝑛 + 3) ,

𝑀
∗

2
(𝐿
𝑛
) =

{{{

{{{

{

1

3
(35𝑛
3

+ 57𝑛
2

+ 25𝑛 + 3) , 2 | 𝑛,

1

3
(35𝑛
3

+ 57𝑛
2

+ 28𝑛 + 6) , 2 ∤ 𝑛.

(27)

Let 𝑛 be an integer with 𝑛 ≥ 3 and 𝑈 = 𝑉(𝐶
𝑛
). Note

that 𝜀
𝑆(𝐶
𝑛
)(𝑈)

(V) = 𝑛 for any vertex V ∈ 𝑉(𝑆(𝐶
𝑛
)). Then by

Theorem 7, we can obtain the following theorem.

Theorem 24. Let 𝐶
𝑛
(𝑛 ≥ 3) be a cycle and let 𝐻 be an

arbitrary connected graph; 0 ̸=𝑈 = 𝑉(𝐶
𝑛
) ⊂ 𝑉(𝑆(𝐶

𝑛
)). Then

𝑀
∗

1
(𝐶
𝑛
+
𝑆
𝐻) = 2𝑛 (𝑛

2

|𝐻| + 𝑀
∗

1
(𝐻) + 2𝑛𝜁 (𝐻)) ,

𝑀
∗

2
(𝐶
𝑛
+
𝑆
𝐻) = 𝑛 [(|𝐸 (𝐻)| + 2 |𝐻|) 𝑛

2

+ (4𝜁 (𝐻) + 𝜉
𝑐

(𝐻)) 𝑛

+ 2𝑀
∗

1
(𝐻) +𝑀

∗

2
(𝐻)] .

(28)

Example 25. Let 𝑛 be an integer with 𝑛 ≥ 3 and let Γ be the
zigzag polyhex nanotube 𝑇𝑈𝐻𝐶

6
[2𝑛, 2] (see Figure 2); then

Γ ≅ 𝐶
𝑛
+
𝑆
𝑃
2
. ByTheorem 24 and Lemma 3, we have𝑀∗

1
(Γ) =

4𝑛(𝑛 + 1)
2 and𝑀∗

2
(Γ) = 5𝑛(𝑛 + 1)

2.

5. Zagreb Eccentricity Indices of Cluster and
Corona Product Graphs

The cluster product, corona product, and join of two graphs
are important graph operations defined as below.

Definition 26 (see [20]). The cluster product graph 𝐺{𝐻} is
obtained by taking one copy of 𝐺 and |𝐺| copies of a rooted
graph𝐻 and by identifying the root of the 𝑖th copy of𝐻 with
the 𝑖th vertex of 𝐺, 𝑖 = 1, 2, . . . , |𝐺|.

Definition 27 (see [20]). The corona product graph 𝐺 ⊙ 𝐻 is
obtained by taking one copy of 𝐺 and |𝐺| copies of𝐻 and by
joining each vertex of the 𝑖th copy of𝐻 to the 𝑖th vertex of 𝐺,
𝑖 = 1, 2, . . . , |𝐺|.

Definition 28 (see [20]). The join graph 𝐺 + 𝐻: 𝑉(𝐺 + 𝐻) =

𝑉(𝐺)∪𝑉(𝐻);𝐸(𝐺+𝐻) = 𝐸(𝐺)∪𝐸(𝐻)∪{(𝑢, V) | 𝑢 ∈ 𝑉(𝐺), V ∈
𝑉(𝐻)}.

Let 𝐺 and 𝐻 be connected graphs; 𝑥 is a root-vertex
of 𝐻. Note that; if 0 ̸=𝑈 = {𝑥} ⊂ 𝑉(𝐻), then
𝐺{𝐻} ≅ 𝐻(𝑈) ⊓ 𝐺 ≅ 𝐻({𝑥}) ⊓ 𝐺. We define 𝜔

𝑥
(𝐻) =

∑
𝑢V∈𝐸(𝐻) 𝑑𝐻(𝑢, 𝑥)𝑑𝐻(V, 𝑥) and 𝜍𝑥(𝐻) = ∑

𝑢V∈𝐸(𝐻)[𝑑𝐻(𝑢, 𝑥) +

𝑑
𝐻
(V, 𝑥)] = ∑V∈𝑉(𝐻) 𝑑𝐻(V)𝑑𝐻(V, 𝑥).

Theorem 29. Let 𝐺 and 𝐻 be two connected graphs; 𝑥 is a
root-vertex of𝐻. Then

𝜉
𝑐

(𝐺 {𝐻}) = 𝜉
𝑐

(𝐺) + 2 |𝐸 (𝐻)| 𝜁 (𝐺)

+ 2 [|𝐸 (𝐺)| + |𝐺| |𝐸 (𝐻)|] 𝜀
𝐻
(𝑥) + |𝐺| 𝜍

𝑥
(𝐻) ,

(29)
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1 2 3 n· · ·

Figure 1: The linear hexagonal chain with 𝑛 hexagons 𝐿
𝑛
.

· · ·

Figure 2: The zig-zay polyhex nanotube 𝑇𝑈𝐻𝐶
6
[2𝑛, 2].

𝑀
∗

1
(𝐺 {𝐻}) = |𝐻|𝑀

∗

1
(𝐺)

+ 2 [|𝐻| 𝜀
𝐻
(𝑥) + 𝑑 (𝑥 | 𝐻)] 𝜁 (𝐺) + |𝐺|

× [|𝐻| 𝜀
2

𝐻
(𝑥) + 2𝜀

𝐻
(𝑥) 𝑑 (𝑥 | 𝐻)

+𝑑
2

(𝑥 | 𝐻)] ,

(30)

𝑀
∗

2
(𝐺 {H}) = 𝜀

𝐻
(𝑥) 𝜉
𝑐

(𝐺) + 𝑞


𝑀
∗

1
(𝐺)

+𝑀
∗

2
(𝐺) + [𝜍

𝑥
(𝐻) + 2 |𝐸 (𝐻)| 𝜀

𝐻
(𝑥)] 𝜁 (𝐺)

+ [|𝐸 (𝐺)| + |𝐺| |𝐸 (𝐻)|] 𝜀
2

𝐻
(𝑥)

+ |𝐺| 𝜀
𝐻
(𝑥) 𝜍
𝑥
(𝐻) + |𝐺| 𝜔

𝑥
(𝐻) .

(31)

Proof. Let 0 ̸=𝑈 = {𝑥} ⊂ 𝑉(𝐻). Then

𝜉
𝑐

(𝐻 (𝑈)) = 𝜉
𝑐

(𝐻 ({𝑥})) = ∑

𝑢V∈𝐸(𝐻)
[𝜀
𝐻({𝑥})

(𝑢) + 𝜀
𝐻({𝑥})

(V)]

= ∑

𝑢V∈𝐸(𝐻)
[𝑑
𝐻
(𝑢, 𝑥) + 𝑑

𝐻
(𝑢, 𝑥) + 2𝜀

𝐻
(𝑥)]

= 𝜍
𝑥
(𝐻) + 2 |𝐸 (𝐻)| 𝜀

𝐻
(𝑥) .

(32)

On the other hand, 𝜖(𝐻(𝑈)) = 𝜖(𝐻({𝑥})) = ∑V=𝑥 𝜀𝐻({𝑥})(V) =
𝜀
𝐻
(𝑥). Note that 𝐺{𝐻} ≅ 𝐺 ⊓ 𝐻({𝑥}). Thus, combing these

results withTheorem 5, we can obtain (29).
Similarly, we can determine (30) and (31) in terms of

Theorem 7, respectively.

Let𝐺 and𝐻 be two simple graphs. If |𝐺| = 𝑛 and |𝐸(𝐺)| =
𝑞, then we say that 𝐺 is an (𝑛, 𝑞)-graph. According to the
definitions of the cluster and corona products, if𝐺 is an (𝑛, 𝑞)-
graph and𝐻 is a (𝑛, 𝑞)-graph, then𝐺{𝐻} is an (𝑛𝑛, 𝑞+𝑛𝑞)-
graph and 𝐺 ⊙ 𝐻 is an (𝑛𝑛 + 𝑛, 𝑞 + 𝑛𝑞 + 𝑛𝑛)-graph.

Corollary 30. Let 𝐺 be a connected (𝑛, 𝑞)-graph and 𝐻 is an
arbitrary (𝑛, 𝑞)-graph. Then

𝜉
𝑐

(𝐺 ⊙ 𝐻) = 𝜉
𝑐

(𝐺) + 2 (𝑞


+ 𝑛


) 𝜁 (𝐺) + 2𝑞 + 4𝑛𝑞


+ 3𝑛𝑛


,

(33)

𝑀
∗

1
(𝐺 ⊙ 𝐻) = (𝑛



+ 1)𝑀
∗

1
(𝐺)

+ 2 (2𝑛


+ 1) 𝜁 (𝐺) + 𝑛 (4𝑛


+ 1) ,

(34)

𝑀
∗

2
(𝐺 ⊙ 𝐻) = 𝜉

𝑐

(𝐺) + (𝑛


+ 𝑞


)𝑀
∗

1
(𝐺) +𝑀

∗

2
(𝐺)

+ (3𝑛


+ 4𝑞


) 𝜁 (𝐺) + 2𝑛 (𝑛


+ 2𝑞


) + 𝑞.

(35)

Proof. For any (𝑛, 𝑞)-graph 𝐻, let 𝑥 be the root-vertex of
graph 𝐻 + 𝑥 (the join of graphs 𝐻 and 𝐾

1
, 𝑥 is the unique

vertex in 𝐾
1
). Then 𝐻 + 𝑥 is a (𝑛 + 1, 𝑛



+ 𝑞


)-graph. It is
easy to see that 𝜀

𝐻+𝑥
(𝑥) = 1, 𝜍

𝑥
(𝐻 + 𝑥) = 𝑛



+ 2𝑞
. Note

that 𝐺 ⊙ 𝐻 ≅ 𝐺{𝐻 + 𝑥}; hence 𝜉𝑐(𝐺 ⊙ 𝐻) = 𝜉
𝑐

(𝐺{𝐻 + 𝑥}).
Equation (33) is obtained by (29). Moreover, we note that
𝑑(𝑥 | 𝐻 + 𝑥) = 𝑑

2

(𝑥 | 𝐻 + 𝑥) = 𝑛
 and 𝜔

𝑥
(𝐻 + 𝑥) = 𝑞

.
Hence, by (30) and (31), using the same method as above,
the corresponding equations (34) and (35) are also obtained,
respectively.

As applications, we present some examples as below, these
results can be attained by means of Corollary 30, Lemmas 2,
and 3.

Example 31. The following equations hold:

𝜉
𝑐

(𝑃
𝑚
⊙ 𝑃
𝑛
) = {

3𝑚
2

𝑛 + 5𝑚𝑛 − 4𝑚, 2 | 𝑚, 𝑚 ≥ 2;

3𝑚
2

𝑛 + 5𝑚𝑛 − 4𝑚 − 𝑛, 2 ∤ 𝑚, 𝑚 ≥ 3,

𝜉
𝑐

(𝐶
𝑚
⊙ 𝐶
𝑛
) = 𝑚(2 (2𝑛 + 1) ⌊

𝑚

2
⌋ + 7𝑛 + 2) ,

𝑚 ≥ 3, 𝑛 ≥ 3,

𝜉
𝑐

(𝑃
𝑚
⊙ 𝐶
𝑛
)

=

{{{{{{

{{{{{{

{

1

2
(6𝑚
2

𝑛 + 3𝑚
2

+ 10𝑚𝑛 − 2𝑚) ,

2 | 𝑚, 𝑚 ≥ 2, 𝑛 ≥ 3;

1

2
(6𝑚
2

𝑛 + 3𝑚
2

+ 10𝑚𝑛 − 2𝑚 − 2𝑛 − 1) ,

2 ∤ 𝑚, 𝑚 ≥ 3, 𝑛 ≥ 3,

𝜉
𝑐

(𝐶
𝑚
⊙ 𝑃
𝑛
) = 𝑚(4𝑛 ⌊

𝑚

2
⌋ + 7𝑛 − 2) , 𝑚 ≥ 3.

(36)

Example 32. Let𝐻 be an arbitrary graphwith 𝑛 vertices.Then

𝑀
∗

1
(𝑃
𝑚
⊙ 𝐻)

=

{{{{{{

{{{{{{

{

1

12
𝑚 (7𝑚

2

𝑛 + 7𝑚
2

+ 27𝑚𝑛 + 9𝑚 + 26𝑛 + 2) ,

2 | 𝑚, 𝑚 ≥ 2;

1

12
(7𝑚
3

𝑛 + 7𝑚
3

+ 27𝑚
2

𝑛 + 9𝑚
2

− 𝑚 − 9𝑛 − 3) ,

2 ∤ 𝑚, 𝑚 ≥ 3,

(37)
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𝑀
∗

1
(𝐶
𝑚
⊙ 𝐻)

= 𝑚((𝑛 + 1) ⌊
𝑚

2
⌋

2

+ 2 (2𝑛 + 1) ⌊
𝑚

2
⌋ + 4𝑛 + 1) ,

𝑚 ≥ 3.

(38)

Example 33. The following equations hold:

𝑀
∗

2
(𝑃
𝑚
⊙ 𝑃
𝑛
)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

1

12
(14𝑚
3

𝑛 + 45𝑚
2

𝑛 − 30𝑚
2

+34𝑚𝑛 − 30𝑚 + 12) ,

2 | 𝑚, 𝑚 ≥ 2;

1

12
(14𝑚
3

𝑛 + 45𝑚
2

𝑛 − 30𝑚
2

+ 28𝑚𝑛

−30𝑚 − 15𝑛 + 12) ,

2 ∤ 𝑚, 𝑚 ≥ 3,

𝑀
∗

2
(𝐶
𝑚
⊙ 𝐶
𝑛
)

= 𝑚((2𝑛 + 1) ⌊
𝑚

2
⌋

2

+ (7𝑛 + 2) ⌊
𝑚

2
⌋ + 6𝑛 + 1) ,

𝑚 ≥ 3, 𝑛 ≥ 3,

𝑀
∗

2
(𝑃
𝑚
⊙ 𝐶
𝑛
)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

1

12
(14𝑚
3

𝑛 + 7𝑚
3

+ 45𝑚
2

𝑛 − 3𝑚
2

+34𝑚𝑛 − 4𝑚 + 12) ,

2 | 𝑚, 𝑚 ≥ 2, 𝑛 ≥ 3;

1

12
(14𝑚
3

𝑛 + 7𝑚
3

+ 45𝑚
2

𝑛 − 3𝑚
2

+ 28𝑚𝑛

−7𝑚 − 15𝑛 + 3) ,

2 ∤ 𝑚, 𝑚 ≥ 3, 𝑛 ≥ 3,

𝑀
∗

2
(𝐶
𝑚
⊙ 𝑃
𝑛
)

= 𝑚(2𝑛⌊
𝑚

2
⌋

2

+ (7𝑛 − 2) ⌊
𝑚

2
⌋ + 6𝑛 − 3) ,

𝑚 ≥ 3.

(39)
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