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A diffusive predator-prey system with disease in predator species and no-flux boundary condition is considered. Sufficient
conditionswhich ensure persistence of the system are obtained. Conditions of disease-free ecosystem are also studied. Furthermore,
sufficient conditions for global asymptotic stability of the unique positive equilibrium and disease-free equilibrium of the system
are derived using the approach of Lyapunov function.

1. Introduction

Ecoepidemiology is a relatively new branch of study in
theoretical biology, which tackles problems by dealing with
both ecological and epidemiological approach. It can be
viewed as the coupling of an ecological predator-prey or
competition model with an epidemiological SI, SIS, or more
complex model. Anderson and May [1] were the first who
marked that the effect of disease in ecological systems is
an important issue from both mathematical and ecological
point of view. They proposed an ecoepidemiological model
bymerging the ecological predator-preymodel introduced by
Lotka and Volterra with epidemiological model.

Clearly, in the natural world, species does not exist alone.
While the disease is spread within the species, the species
also competes with other species for environmental resources
like space or food, or is predated by other species. Therefore,
it is of more biological significance to consider the effect of
interacting species when we study the dynamical behaviors
of epidemiological models.

Many papers have been devoted to study the effects of a
disease on a predator-prey system. Venturino [2] studied SI
and SIS models with disease spread among the prey when the
logistic growth of both the prey and predator populations is

assumed and the predators eat infected preys only. In [3], Hsu
and Huang considered the following predator-prey model:

𝑑𝑢

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) − 𝑝 (𝑢) V,

𝑑V
𝑑𝑡

= 𝑠V(1 −
ℎV
𝑢

) ,

(1)

where 𝑢 and V represent densities of the populations of
prey and predators, respectively, and 𝑟, 𝑠, 𝐾, and ℎ are
positive constants. The population of prey grows logistically
with carrying capacity 𝐾 and intrinsic growth rate 𝑟 in the
absence of predation. Predators consume prey according
to the functional response 𝑝(𝑢) and grow logistically with
intrinsic growth rate 𝑠. Carrying capacity of the predator
species is proportional to the size of the prey population.
It should be noticed that the model described by (1) is a
generalisation of the prey-predator model proposed by May
[4] which is known as Holling-Tanner model. In this model
the functional response 𝑝(𝑢) = 𝑎𝑢/(𝑏 + 𝑢) is of the Holling
type [5], and it is one of the prototype models involving limit
cycle dynamics.
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2. Model Formulation

On the basis of (1) we propose an ecoepidemiological model
with a disease spread in the predator population. We assume
that only predator can be infected and the infected individual
does not recover or become immune. Because the predation
ability of healthy (and susceptible at the same time) predators
is stronger than infected ones, we suppose that prey can
be preyed on only by healthy predators. Moreover, we also
assume the simplest linear form of functional response
𝑝(𝑢) = 𝑘𝑢. Therefore, the model reads

𝑑𝑢

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) − 𝑘𝑢V,

𝑑V
𝑑𝑡

= 𝑠V(1 −
ℎV
𝑢

) − 𝛽𝑤V,

𝑑𝑤

𝑑𝑡
= 𝛽𝑤V − 𝑑𝑤 − 𝜇𝑤

2
,

(2)

where 𝑢, V, and 𝑤 represent densities of the populations of
prey, susceptible predator, and infected predator, respectively.
The death rate of infected predators equals 𝑑, 𝛽 is the
infectious rate of the disease, and 𝜇 is the density-dependent
death rate of infected predators. Other parameters are the
same as in (1).

Species dispersal is one of the most prevalent phenomena
of nature, and many empirical studies and monographs on
population dynamics in a spatial heterogeneous environment
have been done (see [6–15] and the references cited therein).
Most important subjects of population diffusion models are
coexistence of populations, local and global stability of equi-
libria, existence of periodic solutions, and so forth, (see [16–
20]). In particular, single populationmodels were considered,
for example, in [21–23], while predator-prey system with the
prey dispersal was studied, for example, in [24–26]. Such type
of model is still of great interest and importance; compare the
recent papers [27–30] and the references therein.

Taking into account inhomogeneous distribution of
predators and their prey in different spatial locations within a
fixed bounded domainΩ inR𝑁with smooth boundary at any
given time and the natural tendency of each species to diffuse
to areas of smaller population density, we are led to consider
the following reaction-diffusion system:

𝜕𝑢

𝜕𝑡
= 𝑑
1
Δ𝑢 + 𝑟𝑢 (1 −

𝑢

𝐾
) − 𝑘𝑢V, 𝑥 ∈ Ω,

𝜕V
𝜕𝑡

= 𝑑
2
ΔV + 𝑠V(1 −

ℎV
𝑢

) − 𝛽𝑤V, 𝑥 ∈ Ω,

𝜕𝑤

𝜕𝑡
= 𝑑
3
Δ𝑤 + 𝛽𝑤V − 𝑑𝑤 − 𝜇𝑤

2
, 𝑥 ∈ Ω,

𝜕𝑢

𝜕𝜂
=

𝜕V
𝜕𝜂

=
𝜕𝑤

𝜕𝜂
= 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0, V (𝑥, 0) = V

0
(𝑥) ≥ 0,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) ≥ 0, 𝑥 ∈ Ω,

(3)

where Ω is a bounded domain in R𝑁 (𝑁 = 2 or 3 in reality)
with smooth boundary 𝜕Ω, 𝜕/𝜕𝜂 is the outward derivative
normal to 𝜕Ω, and 𝑑

1
, 𝑑
2
, and 𝑑

3
are strictly positive diffusion

coefficients.
To reduce the number of parameters we make the follow-

ing change of variables:

𝑟𝑡 → 𝑡,
𝑢

𝐾
→ 𝑢, 𝑏V → V, 𝜇𝑤 → 𝑤, (4)

and we rename parameters accordingly,

𝑘

𝑟
→ 𝑘,

𝑠

𝑟
→ 𝑠,

𝑠ℎ

𝑟𝐾
→ 𝑏,

𝑑
1

𝑟
→ 𝑑
1
,

𝑑
2

𝑟
→ 𝑑
2
,

𝑑
3

𝑟
→ 𝑑
3
,

𝛽

𝑟
→ 𝛽,

𝑑

𝑟
→ 𝑑,

𝜇

𝑟
→ 𝜇,

(5)

obtaining nondimensional version of the model
𝜕𝑢

𝜕𝑡
= 𝑑
1
Δ𝑢 + 𝑢 (1 − 𝑢) − 𝑘𝑢V, 𝑥 ∈ Ω,

𝜕V
𝜕𝑡

= 𝑑
2
ΔV + V (𝑠 −

V
𝑢
) − 𝛽𝑤V, 𝑥 ∈ Ω,

𝜕𝑤

𝜕𝑡
= 𝑑
3
Δ𝑤 + 𝛽𝑤V − 𝑑𝑤 − 𝑤

2
, 𝑥 ∈ Ω,

𝜕𝑢

𝜕𝜂
=

𝜕V
𝜕𝜂

=
𝜕𝑤

𝜕𝜂
= 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0, V (𝑥, 0) = V

0
(𝑥) ≥ 0,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) ≥ 0, 𝑥 ∈ Ω.

(6)

In this paper we assume that 𝑁 = 1 as calculations are
simpler in such a case. However, the results presented below
can be extended for 𝑁 > 1. Our goal is to give conditions
guaranteeing persistence of the ecosystem described by (6).
The persistence means that the disease is spread and endemic
equilibrium appears. Equations (6) have positive (endemic)
equilibrium (𝑢

∗
, V∗, 𝑤∗), where

𝑢
∗
=

1

2𝛽2
(𝛽
2
− 𝑘𝑑𝛽 − 𝑘𝑠 − 1

+√(𝛽2 − 𝑘𝑑𝛽 − 𝑘𝑠 − 1)
2

+ 4𝛽2) ,

V∗ =
1 − 𝑢
∗

𝑘
, 𝑤

∗
= 𝛽V∗ − 𝑑.

(7)

Notice that V∗ > 0 ⇔ 𝑢
∗

< 1 and 𝑤
∗

> 0 ⇔ V∗ > 𝑑/𝛽 ⇔

𝑢
∗

< 1 − 𝑑𝑘/𝛽, which means that 𝛽 > 𝑑𝑘 is the necessary
condition for the existence of the positive equilibrium.

One can easily check that 𝑢
∗

< 1, while the inequality
V∗ > 𝑑/𝛽 is equivalent to 𝛽 > 𝑑𝑘 + 𝑑/𝑠.

On the other hand, it is also important to know conditions
for disease-free ecosystem. Assuming that 𝑤 = 0 we obtain
semitrivial disease-free equilibrium (𝑢, V, 0) with

𝑢 =
1

1 + 𝑘𝑠
, V = 𝑠𝑢. (8)
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Remark 1. For any parameter values (6) have the semitrivial
equilibrium DFE with coordinates (𝑢, V, 0).

If 𝛽 > 𝑑𝑘 + (𝑑/𝑠), then (6) have the unique positive
equilibrium EE with coordinates (𝑢∗, V∗, 𝑤∗).

In the next sections we focus on the analysis of (6) and
propose conditions for global stability of EE. We start from
the case without diffusion (𝑑

𝑖
= 0 for 𝑖 = 1, 2, 3) and then

turn to the system with positive diffusion coefficients.

3. The Model without Diffusion

In this section we assume 𝑑
𝑖
= 0, 𝑖 = 1, 2, 3; that is, consider

spatially homogenous case

�̇� = 𝑢 (1 − 𝑢) − 𝑘𝑢V,

V̇ = V (𝑠 −
V
𝑢
) − 𝛽𝑤V,

�̇� = 𝛽𝑤V − 𝑑𝑤 − 𝑤
2
.

(9)

It is obvious that local solutions of (9) exist and are unique
for any positive initial data (𝑢

0
, V
0
, 𝑤
0
). Moreover, if 𝑤

0
= 0,

then 𝑤(𝑡) = 0 for all 𝑡 ≥ 0. Hence, we assume that some
infected predators appear at 𝑡 = 0 and we want to know if the
disease spreads in the ecosystem.

Basing on the positivity of solutions we obtain the
following estimates:

�̇� ≤ 𝑢 (1 − 𝑢) ⇒ 𝑢 (𝑡) ≤ 𝑢
𝑀

:= max {𝑢
0
, 1} , (10)

which yields

V̇ ≤ V(𝑠 −
V

𝑢
𝑀

) ⇒ V (𝑡) ≤ V
𝑀

:= max {𝑠𝑢
𝑀
, V
0
} , (11)

and therefore

�̇� ≤ 𝑤 (𝛽V
𝑀

− 𝑑 − 𝑤) ⇒ 𝑤 (𝑡)

≤ 𝑤
𝑀

:= max {𝛽V
𝑀

− 𝑑, 𝑤
0
} .

(12)

Notice that if solutions are bounded, then their derivatives are
bounded as well, and therefore solutions exist for all 𝑡 ≥ 0.
Moreover, if 𝑢

0
≤ 1, V

0
≤ 𝑠, and 𝑤

0
≤ 𝛽𝑠 − 𝑑 for 𝑑 < 𝛽𝑠,

then 𝑢(𝑡) ≤ 1, V(𝑡) ≤ 𝑠, and𝑤(𝑡) ≤ 𝛽𝑠 − 𝑑 for all 𝑡 ≥ 0. Hence,
D = {(𝑢, V, 𝑤) : 𝑢 ≤ 1, V ≤ 𝑠,𝑤 ≤ 𝛽𝑠−𝑑},𝛽𝑠 > 𝑑, is positively
invariant for (9).

Moreover, we obtain

�̇� ≥ 𝑢 (1 − 𝑢 − 𝑘𝑠) , (13)

and assuming 𝑘𝑠 < 1 we obtain 𝑢(𝑡) > 𝛿
𝑢
for any 𝑢

0
≥ 𝛿
𝑢
,

𝛿
𝑢
< 1−𝑘𝑠, as solutions of the logistic equation are increasing

below the carrying capacity threshold. Similarly,

V̇ ≥ V(𝑠 −
V
𝛿
𝑢

− 𝛽
2
𝑠) , (14)

and if 𝛽 < 1, then V(𝑡) > 𝛿V for V0 ≥ 𝛿V, 𝛿V < 𝑠(1 − 𝛽
2
)𝛿
𝑢
.

Finally,

�̇� ≥ 𝑤 (𝛽𝛿V − 𝑑 − 𝑤) , (15)

implying that if 𝑑 < 𝛽𝛿V, then 𝑤(𝑡) > 𝛿
𝑤
for 𝑤
0

≥ 𝛿
𝑤
with

𝛿
𝑤

< 𝛽𝛿V.

Corollary 2. If 𝛽𝑠 > 𝑑, then the setD = [0, 1]×[0, 𝑠]×[0, 𝛽𝑠−

𝑑] is positively invariant and globally attractive, while if𝛽𝑠 ≤ 𝑑,
then D = [0, 1] × [0, 𝑠] × [0, 𝛽𝑠] is positively invariant and
globally attractive for (9).

If additionally 𝑘𝑠 < 1, then the set E = [𝛿, 1] × [0, 𝑠] ×

[0, 𝛽𝑠 − 𝑑], 𝛽𝑠 > 𝑑 (or E = [𝛿, 1] × [0, 𝑠] × [0, 𝛽𝑠], 𝛽𝑠 ≤ 𝑑), is
positively invariant and globally attractive for any 𝛿 < 1 − 𝑘𝑠.

If 𝑘𝑠 < 1, 𝛽 < 1, and 𝑑 < 𝛽𝑠(1 − 𝛽
2
)(1 − 𝑘𝑠), then the set

G = [𝛿
𝑢
, 1] × [𝛿V, 𝑠] × [𝛿

𝑤
, 𝛽𝑠 − 𝑑] is positively invariant and

globally attractive for any 𝛿
𝑢

< 1 − 𝑘𝑠, 𝛿V < 𝑠(1 − 𝛽
2
)𝛿
𝑢
, and

𝛿
𝑤

< 𝛽𝛿V − 𝑑.

Corollary 3. If 𝑘𝑠 < 1, 𝛽 < 1, and 𝑑 < 𝛽𝑠(1−𝛽
2
)(1−𝑘𝑠), then

the system described by (9) is persistent; that is, all solutions
are bounded below from 0 and bounded above by some positive
constants.

3.1. Local Stability of DFE and EE. Jacobi matrix for (9) reads

𝐽 (𝑢, V, 𝑤)

= (

1 − 2𝑢
2
− 𝑘V −𝑘𝑢 0

V2

𝑢2
𝑠 − 2

V
𝑢

− 𝛽𝑤 −𝛽V

0 𝛽𝑤 𝛽V − 𝑑 − 2𝑤

).

(16)

ForDFEwe have the following relations: 1−𝑢−𝑘V = 0, V = 𝑠𝑢,
and hence

𝐽DFE = (

−𝑢 −𝑘𝑢 0

𝑠
2

−𝑠 −𝛽V
0 0 𝛽V − 𝑑

) , (17)

implying that local stability of DFE depends on the sign of
𝛽V − 𝑑, as submatrix (

−𝑢 −𝑘𝑢

𝑠
2
−𝑠

) generates eigenvalues with
negative real parts. We easily see that 𝛽V−𝑑 > 0 is equivalent
to 𝛽 > 𝑑𝑘 + (𝑑/𝑠), that is, to the existence of EE, according to
Remark 1.

For EEwe have the relations 1−𝑢
∗
−𝑘V∗ = 0, 𝑠−(V∗/𝑢∗)−

𝛽𝑤
∗
= 0, and 𝛽V∗ − 𝑑 − 𝑤

∗
= 0, and therefore

𝐽EE = (

−𝑢
∗

−𝑘𝑢
∗

0

(
V∗

𝑢∗
)

2

−
V∗

𝑢∗
−𝛽V∗

0 𝛽𝑤
∗

−𝑤
∗

). (18)
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Calculating characteristic polynomial for EE we obtain

𝑃 (𝜆) = 𝜆
3
+ 𝜆
2
(𝑢
∗
+
V∗

𝑢∗
+ 𝑤
∗
)

+ 𝜆(V∗ + 𝑢
∗
𝑤
∗
+
V∗𝑤∗

𝑢∗
+ 𝛽
2V∗𝑤∗ + 𝑘

(V∗)2

𝑢∗
)

+ V∗𝑤∗ + 𝛽
2
𝑢
∗V∗𝑤∗ + 𝑘

(V∗)2𝑤∗

𝑢∗
,

(19)

and it is easy to see that Routh-Hurwitz criterion yields
stability of EE.

Corollary 4. (I) If 𝛽 > 𝑑𝑘 + 𝑑/𝑠, then EE exists and is locally
asymptotically stable.

(II) If 𝛽 < 𝑑𝑘 + 𝑑/𝑠, then EE does not exist and DFE is
locally asymptotically stable.

In the original model parameters Condition (I) is 𝛽𝑟 >

𝑑𝑘+𝑟
2
𝑑/𝑠, which means that EE exists and is stable when the

disease spreads with sufficiently large coefficient 𝛽, but the
reproduction rate 𝑟 of predators cannot be large at the same
time.

3.2. Global Stability. First, we find conditions for global
stability of DFE in the set E.

Theorem 5. If 𝛽 < 𝑘𝑑+𝑑/𝑠, 𝑘 < 2, and 1−𝑘𝑠 > 𝛿 ≥ 𝑠/(2−𝑘),
then DFE is globally stable in E.

Proof. We define the Lyapunov function

𝐿
1
(𝑢, V, 𝑤) = 𝑢 − 𝑢 − 𝑢 ln 𝑢

𝑢
+ V − V − V ln V

V
+ 𝑤, (20)

and calculating the derivative of 𝐿
1
along the solution of (9)

we get

𝐿


1
(𝑢, V, 𝑤) = (𝑢 − 𝑢) (1 − 𝑢 − 𝑘V) + (V − V)

× (𝑠 −
V
𝑢

− 𝛽𝑤) + 𝛽V𝑤 − 𝑑𝑤 − 𝑤
2

≤ −(𝑢 − 𝑢)
2
− 𝑘 (𝑢 − 𝑢) (V − V)

+ (V − V)
𝑢V − 𝑢V

𝑢𝑢
+ (𝛽V − 𝑑)𝑤 − 𝑤

2
.

(21)

Due to the assumption on 𝛽we have 𝛽V−𝑑 < 0, and therefore

𝐿


1
(𝑢, V, 𝑤) ≤ −(𝑢 − 𝑢)

2
− 𝑘 (𝑢 − 𝑢) (V − V)

+ (V − V)
𝑢V − 𝑢V

𝑢𝑢
− 𝑤
2

≤ −((1 −
𝑘

2
−

𝑠

2𝑢
) (𝑢 − 𝑢)

2

+(
1

𝑢
−

𝑘

2
−

𝑠

2𝑢
) (V − V)2) .

(22)

In E we have 𝑢 ∈ [𝛿, 1], and hence

1

𝑢
−

𝑘

2
−

𝑠

2𝑢
≥ 1 −

𝑘

2
−

𝑠

2𝑢
≥ 1 −

𝑘

2
−

𝑠

2𝛿
≥ 0, (23)

due to the assumptions on 𝑘, 𝑠, and 𝛿. This completes the
proof.

Notice that for 𝑑 → 0 the first inequality assumed in
Theorem 5 is not satisfied. This means that if the death rate
of infected predators is small, then the range of stability of
DFE is small as well. Moreover, as 𝑘 < 2, to have 1 − 𝑘𝑠 > 0,
one needs 𝑠 ≤ 0.5; for example, if 𝑘 = 1, then 𝑠 < 0.5 and
1 − 𝑠 > 𝛿 ≥ 𝑠, so 𝛿 = 0.5 is a good choice independently of 𝑠.

Now, we turn to the problem of global stability of EE in
E.

Theorem 6. If 𝛽 > 𝑘𝑑 + 𝑑/𝑠, 𝑘 < 2, and 1 − 𝑘𝑠 > 𝛿 ≥ (1 −

𝑢
∗
)/(𝑘(2 − 𝑘)𝑢

∗
), then EE is globally stable in E.

Proof. We define the Lyapunov function

𝐿
2
(𝑢, V, 𝑤) = 𝑢 − 𝑢

∗
− 𝑢
∗ ln 𝑢

𝑢∗
+ V − V∗

− V∗ ln V
V∗

+ 𝑤 − 𝑤
∗
− 𝑤
∗ ln 𝑤

𝑤∗
,

(24)

and calculating the derivative of 𝐿
2
along the solution of (9)

we get

𝐿


2
(𝑢, V, 𝑤) = (𝑢 − 𝑢

∗
) (1 − 𝑢 − 𝑘V) + (V − V∗)

× (𝑠 −
V
𝑢

− 𝛽𝑤) + (𝑤 − 𝑤
∗
) (𝛽V − 𝑑 − 𝑤)

= −(𝑢 − 𝑢
∗
)
2

− 𝑘 (𝑢 − 𝑢
∗
) (V − V∗)

+ (V − V∗)
𝑢V∗ − 𝑢

∗V
𝑢𝑢∗

− (𝑤 − 𝑤
∗
) (𝑤 − 𝑤

∗
)

= −(𝑢 − 𝑢
∗
)
2

−
1

𝑢
(V − V∗)2 − (𝑤 − 𝑤

∗
)
2

+ (
V∗

𝑢𝑢∗
− 𝑘) (𝑢 − 𝑢

∗
) (V − V∗)

≤ −((1 −
V∗

2𝑢𝑢∗
−

𝑘

2
) (𝑢 − 𝑢

∗
)
2

+ (
1

𝑢
−

V∗

2𝑢𝑢∗
−

𝑘

2
) (V − V∗)2

+ (𝑤 − 𝑤
∗
) ) .

(25)

As in the proof of Theorem 5 we easily check that

1

𝑢
−

V∗

2𝑢𝑢∗
−

𝑘

2
≥ 1 −

V∗

2𝑢𝑢∗
−

𝑘

2
≥ 0 (26)

due to the assumptions. Thus the proof is completed.
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Notice that as 𝑑 → 0 existence of the state EE is
guaranteed independently of the values of 𝑘 and 𝑠. As before,
the inequalities 𝑘 < 2 and 𝑠 ≤ 0.5 hold. One can check that
if 𝑑 → 0, then the assumptions of Theorem 6 become 𝛽 > 0

and the others are the same as in Theorem 5 meaning that
there is large set of parameter values for which EE is globally
stable.

4. Analysis of (6)
We are looking for classical solutions of (6), and therefore
we need to specify the proper space of initial conditions;
cf. for example, [31]. Let C2+𝛼 denote the space of twice
differentiable functions withHölder coefficient 𝛼 ∈ (0, 1) and
letC1+𝛼/2,2+𝛼 denote the spaceC1+𝛼/2 with respect to the time
variable 𝑡 and C2+𝛼 with respect to the space variable 𝑥.

Proposition 7. Let 𝑉(0, ⋅) = (𝑢(0, ⋅), V(0, ⋅), 𝑤(0, ⋅)) ∈

C2+𝛼(Ω) and 𝑢(0, ⋅) > 0, V(0, ⋅) ≥ 0, 𝑤(0, ⋅) ≥ 0. Then there
exists unique solution of (6).

Proof. Let 𝑓(𝑉) denote the vector of kinetics for (6). The
function 𝑓 is locally Lipschitz continuous, because the coor-
dinates 𝑓

𝑖
, 𝑖 = 1, 2, 3, are either polynomials of the second

degree or rational functions well defined for 𝑢 > 0. Hence,
for 𝑉(0, ⋅) ∈ C2+𝛼, there exists 𝑇max > 0 such that, for
every 0 < 𝑇 < 𝑇max, there is a unique local solution 𝑉 ∈

C1+𝛼/2,2+𝛼(Ω × [0, 𝑇]) of (6) (compare, e.g., [31]).

Next, we would like to show nonnegativity and global
existence of solutions.

4.1. Invariant Sets. In this subsection, we use the framework
of invariant sets to prove global existence of solutions;
compare [32, 33]. We show that the set

D = [0, 1] × [0, 𝑠] × [0, 𝛽𝑠 − 𝑑] , 𝛽𝑠 > 𝑑, (27)

is invariant for (6), as in the case without diffusion, that is,
for (9). As before, if 𝛽𝑠 ≤ 𝑑 we can substitute the last interval
[0, 𝛽𝑠 − 𝑑] with [0, 𝛽𝑠].

Following the ideas presented in [32] we look for the
functions 𝐺 : R3 → R such that 𝐺(𝑋) ≤ 0 inD, 𝐺 is quasi-
convex,∇𝐺 is the left eigenvector for the diffusion coefficients
matrix 𝐷 (𝐷 = diag(𝑑

𝑖
)
3

𝑖=1
in our case), and ∇𝐺𝑓|

𝜕D ≤ 0,
where 𝑓 denotes the right-hand side kinetic function of the
studied system.

In the case of (6) studied in this section the matrix 𝐷 is
diagonal, and hence every vector is an eigenvector for this
matrix. Therefore, we can use functions 𝐺

𝑖
, 𝑖 = 1, 2, 3,

which are linear as functions of appropriate variable 𝑢, V, 𝑤,
respectively.

To show nonnegativity we use the functions

𝐺
1
(𝑉) = − 𝑢 ≤ 0,

𝐺
2
(𝑉) = − V ≤ 0,

𝐺
3
(𝑉) = − 𝑤 ≤ 0, for 𝑉 ∈ D.

(28)

We have

∇𝐺
1
(𝑉) 𝑓 (𝑉) = −𝑢 (1 − 𝑢 − 𝑘V) ≤ 0,

∇𝐺
2
(𝑉) 𝑓 (𝑉) = −V (𝑠 −

V
𝑢

− 𝛽𝑤) ≤ 0,

∇𝐺
3
(𝑉) 𝑓 (𝑉) = −𝑤 (𝛽V − 𝑑 − 𝑤) ≤ 0 on 𝜕D.

(29)

Next we use

𝐺
1
(𝑉) = 𝑢 − 𝑢

𝑀
≤ 0,

𝐺
2
(𝑉) = V − V

𝑀
≤ 0,

𝐺
3
(𝑉) = 𝑤 − 𝑤

𝑀
≤ 0, for 𝑉 ∈ D,

(30)

where 𝑢
𝑀

= 1, V
𝑀

= 𝑠, and𝑤
𝑀

= 𝛽𝑠−𝑑, 𝛽𝑠 > 𝑑 (or𝑤
𝑀

= 𝛽𝑠,
𝛽𝑠 ≤ 𝑑). For these functions we obtain

∇𝐺
1
(𝑉) 𝑓 (𝑉) = 𝑢 (1 − 𝑢 − 𝑘V)

≤ 𝑢(1 − 𝑢)|𝑢=𝑢
𝑀

= 0,

∇𝐺
2
(𝑉) 𝑓 (𝑉) = V (𝑠 −

V
𝑢

− 𝛽𝑤)

≤ V(𝑠 −
V

𝑢
𝑀

)

V=V
𝑀

= 0,

∇𝐺
3
(𝑉) 𝑓 (𝑉) = 𝑤 (𝛽V − 𝑑 − 𝑤)

≤ 𝑤 (𝛽V
𝑀

− 𝑑 − 𝑤)
𝑤=𝑤

𝑀

= 0.

(31)

Therefore,D is invariant according to the theory of invariant
sets for RDEs.

The theory of invariant sets implies that, as in the case
described above, if there exists a compact invariant set, then
solutions of the studied system and initial data from this
invariant set are global in time. This leads to the global
existence of nonnegative solutions of (6) for nonnegative
initial data.

In the next section, we will investigate long-time behavior
of (6), including existence of global attractor and persistence
property.

5. Long-Time Behavior of Solutions of (6)
First we focus on the persistence of the system described
by (6) which is closely related to the existence of the
positive equilibrium EE.We use the comparison principle for
parabolic systems (cf., e.g., [34]) to show desired properties
of solution of (6). As a system for comparison, we take
the logistic equation with diffusion and zero-flux boundary
conditions.
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5.1. Global Attractor and Persistence Property

Lemma 8 (see [35]). Assume that 𝑢(𝑥, 𝑡) is a solution of the
problem

𝜕𝑢

𝜕𝑡
= 𝑑
1
Δ𝑢 + 𝑟𝑢 (1 −

𝑢

𝐾
) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝜂
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) > 0, 𝑥 ∈ Ω;

(32)

then lim
𝑡→∞

𝑢(𝑥, 𝑡) = 𝐾.

Lemma 9. Solutions of (6) satisfy

lim sup
𝑡→∞

max
𝑥∈Ω

𝑢 (𝑥, 𝑡) ≤ 1,

lim sup
𝑡→∞

max
𝑥∈Ω

V (𝑥, 𝑡) ≤ 𝑠,

lim sup
𝑡→∞

max
𝑥∈Ω

𝑤 (𝑥, 𝑡) ≤ 𝛽𝑠 − 𝑑, for 𝛽𝑠 > 𝑑,

or lim sup
𝑡→∞

max
𝑥∈Ω

𝑤 (⋅, 𝑡) ≤ 𝛽𝑠, for 𝛽𝑠 ≤ 𝑑.

(33)

Proof. Due to nonnegativity of solutions, from the first
equation of (6), we have

𝜕𝑢

𝜕𝑡
≤ 𝑑
1
Δ𝑢 + 𝑢 (1 − 𝑢) , (34)

andwe compare the solution of our problemwith the solution
of (32). Therefore, for an arbitrary 𝜀 > 0 there exists 𝑇 ∈

(0,∞) such that 𝑢(𝑥, 𝑡) ≤ 1 + 𝜀 for (𝑥, 𝑡) ∈ Ω × [𝑇,∞).
Next, from the second equation we have

𝜕V
𝜕𝑡

≤ 𝑑
2
ΔV + V (𝑠 −

V
1 + 𝜀

)

⇒ lim sup
𝑡→∞

max
𝑥∈Ω

V (𝑥, 𝑡) ≤ 𝑠 (1 + 𝜀) ,

(35)

and for any 𝜀
1
> 0 there exists 𝑇

1
∈ (𝑇,∞) such that V(𝑥, 𝑡) ≤

𝑠(1 + 𝜀
1
) in Ω × [𝑇

1
,∞).

Finally, from the third equation, we have

𝜕𝑤

𝜕𝑡
≤ 𝑑
3
Δ𝑤 + 𝑤 (𝛽 (𝑠 + 𝑠𝜀

1
) − 𝑑 − 𝑤) , (36)

and hence

lim sup
𝑡→∞

max
𝑥∈Ω

𝑤 (𝑥, 𝑡) ≤ 𝛽 (𝑠 + 𝑠𝜀
1
) − 𝑑 (or ≤ 𝛽 (𝑠 + 𝑠𝜀

1
)) ,

(37)

and the proof is completed, as 𝜀 and 𝜀
1
are arbitrary.

Theorem 10. If 𝑘𝑠 < 1, 𝛽𝑠 > 𝑑, and 𝛽(𝑠(1−𝛽
2
)+𝛽𝑑)(1−𝑘𝑠) >

𝑑, then the system described by (6) is persistent.

Proof. Below we use upper bounds on 𝑢, V, and𝑤 obtained in
Lemma 9. From the first equation of (6), we have

𝜕𝑢

𝜕𝑡
≥ 𝑑
1
Δ𝑢 + 𝑢 (1 − 𝑢) − 𝑘𝑢𝑠 (1 + 𝜀)

= 𝑢 (1 − 𝑘𝑠 (1 + 𝜀) − 𝑢) ,

(38)

for 𝜀 > 0 such that 𝑘𝑠(1 + 𝜀) < 1. Then, by the comparison
principle and Lemma 8, we easily get 𝑢(𝑥, 𝑡) ≥ 1 − 𝑘𝑠(1 + 𝜀)

for 𝑡 large enough. As 𝜀 is arbitrary, we obtain

lim inf
𝑡→∞

min
𝑥∈Ω

𝑢 (𝑥, 𝑡) ≥ 1 − 𝑘𝑠 ≐ 𝑚
1
. (39)

Next, for any 𝜀
2
> 0 and 𝑡 large enough, from the second

equation, we have

𝜕V
𝜕𝑡

≥ 𝑑
2
ΔV + V(𝑠 −

V
1 − 𝑘𝑠 (1 + 𝜀)

− 𝛽 (𝛽𝑠 − 𝑑 + 𝜀
2
)) ,

(40)

and hence

lim inf
𝑡→∞

max
𝑥∈Ω

V (𝑥, 𝑡) ≥ (𝑠 − 𝛽 (𝛽𝑠 − 𝑑)) (1 − 𝑘𝑠) ≐ 𝑚
2
. (41)

From the third equation of (6), we have

𝜕𝑤

𝜕𝑡
≥ 𝑑
3
Δ𝑤 + 𝑤 (𝛽 (𝑚

2
+ 𝜀
3
) − 𝑑 − 𝑤) , (42)

for arbitrary small 𝜀
3

> 0 and 𝑡 large enough. Again by the
comparison principle and Lemma 8, we have

lim inf
𝑡→∞

min
𝑥∈Ω

𝑤 (𝑥, 𝑡) ≥ 𝛽𝑚
2
− 𝑑 ≐ 𝑚

3
. (43)

Taking into account Lemma 9we easily obtain the persistence
property.

5.2. Local and Global Stability of the Positive Equilibrium EE.
First, we discuss local stability of the positive equilibrium EE
under the influence of diffusion.

Proposition 11. If 𝛽 > 𝑑𝑘 + 𝑑/𝑠, then the unique positive
equilibriumEE of (6) exists and is locally asymptotically stable.

Proof. Linearizing (6) around EE we obtain

𝑉
𝑡
= (𝐷Δ + 𝐽EE) 𝑉, (44)

where 𝑉 = (𝑢(𝑥, 𝑡), V(𝑥, 𝑡), 𝑤(𝑥, 𝑡))
𝑇, 𝐷 = diag(𝑑

1
, 𝑑
2
, 𝑑
3
),

and 𝐽EE is the Jacobi matrix for (9) evaluated at the point
(𝑢
∗
, V∗, 𝑤∗). Assuming for simplicity that Ω = (0, 𝜋), we

have fundamental solutions of the form 𝑒
𝜆𝑡 cos(𝜇

𝑖
𝑥), 𝑖 ∈ N.

Therefore, for any wave number 𝑖 the matrix 𝐽EE changes to

𝐽
𝑖

EE = (

−𝑑
1
𝜇
2

𝑖
− 𝑢
∗

−𝑘V∗ 0

V∗2

𝑢∗2
−𝑑
2
𝜇
2

𝑖
−
V∗

𝑢∗
−𝛽V∗

0 𝛽𝑤
∗

−𝑑
3
𝜇
2

𝑖
− 𝑤
∗

),

(45)
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with the characteristic polynomial

𝑃
𝑖
(𝜆) = 𝜆

3
+ 𝜆
2
(𝑢
∗
+ 𝑑
1
𝜇
2

𝑖
+
V∗

𝑢∗
+ 𝑑
2
𝜇
2

𝑖
+ 𝑤
∗
+ 𝑑
3
𝜇
2

𝑖
)

+ 𝜆( (𝑢
∗
+ 𝑑
1
𝜇
2

𝑖
) (

V∗

𝑢∗
+ 𝑑
2
𝜇
2

𝑖
)

+ (𝑢
∗
+ 𝑑
1
𝜇
2

𝑖
) (𝑤
∗
+ 𝑑
3
𝜇
2

𝑖
)

+ (
V∗

𝑢∗
+ 𝑑
2
𝜇
2

𝑖
) (𝑤
∗
+ 𝑑
3
𝜇
2

𝑖
)

+ 𝛽
2V∗𝑤∗ + 𝑘

(V∗)2

𝑢∗
)

+ (𝑢
∗
+ 𝑑
1
𝜇
2

𝑖
) (

V∗

𝑢∗
+ 𝑑
2
𝜇
2

𝑖
) (𝑤
∗
+ 𝑑
3
𝜇
2

𝑖
)

+ 𝛽
2
𝑢
∗V∗𝑤∗ + 𝑘

(V∗)2𝑤∗

𝑢∗
,

(46)

and it is again easy to see that Routh-Hurwitz criterion yields
stability of EE independently of the magnitude of 𝑑

𝑖
, 𝑖 = 1, 2,

3.

In the following, we focus on global stability of EE, which
implies that the three populations coexisting in the ecosystem
will be spatially homogeneously distributed with increasing
time.

Theorem 12. If 𝛽 > 𝑑𝑘+𝑑/𝑠 and 1− (V∗/2𝑚
1
𝑢
∗
) − (𝑘/2) > 0,

𝑚
1

= 1 − 𝑘𝑠 > 0, then the unique positive equilibrium EE of
(6) is globally asymptotically stable.

Proof. Weconstruct a Lyapunov functional on the basis of the
function 𝐿

2
for (9). Let us define𝑍(𝑡) = ∫

Ω
𝐿
2
(𝑢(𝑥, 𝑡), V(𝑥, 𝑡),

𝑤(𝑥, 𝑡))𝑑𝑥. Differentiating 𝑍 along the trajectories of (6) we
obtain

𝑑𝑍 (𝑡)

𝑑𝑡
= ∫
Ω

(
𝜕𝐿
2

𝜕𝑢
𝑢
𝑡
+

𝜕𝐿
2

𝜕V
V
𝑡
+

𝜕𝐿
2

𝜕𝑤
𝑤
𝑡
)𝑑𝑥

= ∫
Ω

(
𝑢 − 𝑢
∗

𝑢
𝑑
1
Δ𝑢 +

V − V∗

V
𝑑
2
ΔV

+
𝑤 − 𝑤

∗

𝑤
𝑑
3
Δ𝑤)𝑑𝑥

+ ∫
Ω

( (𝑢 − 𝑢
∗
) (1 − 𝑢 − 𝑘V)

+ (V − V∗) (
𝑠

𝑏
−
V
𝑢

− 𝛽𝑤)

+ (𝑤 − 𝑤
∗
) (𝛽V − 𝑑 − 𝑤) ) 𝑑𝑥,

(47)

and due to the Neumann boundary condition, we have

𝑑𝐸 (𝑡)

𝑑𝑡
= −∫
Ω

(𝑑
1

𝑢
∗

𝑢2
|∇𝑢|
2
+ 𝑑
2

V∗

V2
|∇V|2 + 𝑑

3

𝑤
∗

𝑤2
|∇𝑤|
2
)𝑑𝑥

− ∫
Ω

((𝑢 − 𝑢
∗
)
2

+
1

𝑢
(V − V∗)2 + (𝑤 − 𝑤

∗
)
2

) 𝑑𝑥

+ ∫
Ω

((
V∗

𝑢𝑢∗
− 𝑘) (𝑢 − 𝑢

∗
) (V − V∗)) 𝑑𝑥

≤ −∫
Ω

(𝑑
1

𝑢
∗

𝑢2
|∇𝑢|
2
+ 𝑑
2

V∗

V2
|∇V|2 + 𝑑

3

𝑤
∗

𝑤2
|∇𝑤|
2
)𝑑𝑥

− ∫
Ω

((𝑤 − 𝑤
∗
)
2

+ (1 −
V∗

2𝑚
1
𝑢∗

−
𝑘

2
) (𝑢 − 𝑢

∗
)
2

+(1 −
V∗

2𝑚
1
𝑢∗

−
𝑘

2
) (V − V∗)2)𝑑𝑥 ≤ 0

(48)

which implies the desired assertion.

5.3. Local and Global Stability of Semitrivial DFE Equilibrium.
Using the same approach as for the positive equilibrium
we can easily show that diffusion has no influence on the
dynamics of (6) also when the positive equilibrium does not
exist.

Corollary 13. If 𝛽 < 𝑑𝑘 + 𝑑/𝑠 and 1 − 𝑘/2 − 𝑠/2𝑚
1

> 0,
𝑚
1
= 1 − 𝑘𝑠 > 0, then the semitrivial equilibrium DFE of (6)

is globally asymptotically stable.

6. Discussion

In the paper we have considered a prey-predator ecosystem
in which the predator species is infected, such that three
species (prey, healthy predators, and infected predators) are
described in ecoepidemiological model based on the May
predator-prey model from ecological point of view and SI
model from epidemiological point of view. We have studied
the influence of spatial effects incorporating simple diffusion
equipped with zero-flux boundary condition into the model.
Our studies included global existence and uniqueness of
solutions, which is not a common procedure in the papers
devoted to biological modeling but is important and can be a
nontrivial, difficult issue (cf., e.g., [36]).

We have shown that the systemdynamicsmainly depends
on the infection rate parameter 𝛽. When 𝛽 is small, there is
no positive equilibrium and we expect that the population
of infected predators will become extinct. This is exactly
the result we obtained. We have formulated conditions for
local and global stability of the semitrivial equilibrium which
reflects the case of ecosystem without the disease. For 𝛽

large enough the positive equilibrium describing the disease
endemic state exists and it can be expected that it is stable.
In fact, there is a bifurcation at some threshold value 𝛽th,
such that for 𝛽 < 𝛽th there is no positive equilibrium and
the semitrivial equilibrium is locally asymptotically stable,
while for 𝛽 above this threshold, the semitrivial equilibrium
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loses stability and the positive stable equilibrium exists and is
stable. We have also obtained conditions on global stability of
the positive equilibrium.

Our main result shows that the diffusion has no signif-
icant influence on the model dynamics; that is, local and
global stability do not depend on the magnitude of diffusion
coefficients.We suspect that such type of themodel dynamics
can be a result of simple form of diffusion incorporated
into the model, as other types of diffusion can lead to more
complex dynamics; cf., for example, ([34–37]). However, in
our opinion, without complex studies on specific species it
is difficult to recognize the law governing the process of
diffusion, and therefore simple diffusion seems to be a good
approximation.
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